共查询到20条相似文献,搜索用时 15 毫秒
1.
Zircon U–Pb and pyrite Re–Os age constraints on pyrite mineralization in the Yinjiagou deposit,China
《International Geology Review》2012,54(13):1616-1625
We report new zircon U–Pb and pyrite Re–Os geochronological studies of the Yinjiagou poly-metallic deposit, sited along the southern margin of the North China Craton (SMNCC). In this deposit, pyrite, the most important economic mineral, is intergrown/associated with Mo, Cu, Au, Pb, Zn, and Ag. Prior to our new work, the age of chalcopyrite–pyrite mineralization was known only from its spatial relationship with molybdenite mineralization and with intrusions of known ages. The U–Pb and Re–Os isotope systems provide an excellent means of dating the mineralization itself and additionally place constraints on the ore genesis and metal source. Zircons separated from the quartz–chalcopyrite–pyrite veins include both detrital and magmatic groups. The magmatic zircons confine the maximum age of chalcopyrite–pyrite mineralization to 142.0 ± 1.5 Ma. The Re–Os results yield an age of 141.1 ± 1.1 Ma, which represents the age of the chalcopyrite–pyrite mineralization quite well. The common Os contents are notably low (0.5–20.1 ppt) in all samples. In contrast, the Re contents vary considerably (3.0–199.2 ppb), most likely depending on intensive boiling, which resulted in an increase of Re within the pyrite. This study demonstrates that the main chalcopyrite–pyrite mineralization occurred late in the magmatic history and was linked to a deeper intrusion involving dominant mantle-derived materials. This mineralization event might be related to the Early Cretaceous lithospheric destruction and thinning of the SMNCC. 相似文献
2.
《International Geology Review》2012,54(6):695-710
The Yinan gold deposit in the Luxi area of Shandong Province in northeastern China is a skarn-type ore deposit. In this article, we present results from sulphur, lead, carbon–oxygen, and helium–argon isotope chemistry to characterize the ore genesis and source features. We also present rhenium–osmium ages from molybdenite to evaluate the timing of ore formation. The δ34S values of pyrite from the ore deposit range from 0.7‰ to 5.60‰ with a mean at 2.70‰, close to mantle and meteorite sulphur. Among Pb isotopes, 206Pb/204Pb values range from 18.375 to 18.436, 207Pb/204Pb values from 15.694 to 15.8, and 208Pb/204Pb values from 38.747 to 39.067. The δ13C values of calcite associated with the ores range from ?0.2‰ to ?0.5‰ and their δ18O values show variation from 9.4‰ to 12.6‰, suggesting a mixed fluid source. The 3He/4He and 40Ar/36Ar ratios of fluids trapped in pyrite are in the range of 0.27–1.11 Ra and 439.4–826, respectively, with calculated proportion of the mantle-derived He ranging from 3.25% to 14.03% and atmosphere argon ranging from 35.8% to 67.3%. The data suggest that the ore-forming fluids were derived from the crust and were mixed with a distinct contribution of mantle helium. The Re and Os values vary from 32 × 10?6 to 93.02 × 10?6 and from 0.01 × 10?9 to 0.34 × 10?9, respectively. The model ages of molybdenite range from 126.96 ± 1.82 Ma to 129.49 ± 2.04 Ma, with a weighted mean age of 128.08 ± 0.75 Ma and isochron age of 130.3 ± 3 Ma. These ages are close to the age of the associated quartz diorite porphyrite pluton, suggesting a close relationship between Cretaceous magmatism and metallogeny in NE China. A comparison of the Yinan gold deposit in the Luxi area with those of the Jiaodong area shows that the contrast in metallogenic features between the two are linked with the tectonic and geodynamic history. 相似文献
3.
《International Geology Review》2012,54(12):1481-1491
ABSTRACTLiaoning Province in China is an area known for the occurrence of numerous copper and/or molybdenum deposits of variable size. However, the age of mineralization and tectonic setting in this region are still a subject of debate. In this study we describe the geology of these deposits and apply zircon U–Pb and molybdenite Re–Os isotopic dating to constrain their ages and define the metallogenic epochs of this province. The Huatong Cu–Mo deposit yields molybdenite Re–Os model ages of 127.6–126.3 Ma and an isochron age of 127.4 ± 0.7 Ma. The Dongbeigou Mo deposit yields molybdenite Re–Os model ages of 132.6–127.1 Ma, an isochron age of 128.1 ± 5.1 Ma, and a zircon U–Pb age of 129.4 ± 0.3 Ma for the associated monzogranite. The granodiorite associated with the Wanbaoyuan Cu–Mo deposit yields a zircon U–Pb age of 128.4 ± 1.1 Ma; the plagiogranite associated with the Yaojiagou Mo deposit yields an age of 167.5 ± 0.9 Ma; and the biotite–plagioclase gneiss from the Shujigou Cu deposit yields an age of 2549.4 ± 5.6 Ma. These results, together with previous geochronology data, show that intense Cu–Mo porphyry and skarn mineralization were coeval with Early–Middle Jurassic and Early Cretaceous granitic magmatism. The former was associated with the orogeny that followed the collision of the Siberian and North China plates and the resulting closure of the palaeo-Asian Ocean, and the latter with rifting that followed the subduction of the palaeo-Pacific Plate and associated lithospheric thinning. Volcanogenic massive sulfide Cu deposit. mineralization took place much earlier, in the late Archaean, and was related to continent–continent collision, palaeo-ocean closure, the formation of a united continental landmass, bimodal volcanism, magma emplacement, and subsequent metamorphism and deformation of syn-collisional granites. 相似文献
4.
The Himalayan Mianning–Dechang (MD) rare earth element (REE) belt in western Sichuan Province, southwestern China, is approximately 270 km long and 15 km wide, and contains total reserves of more than 3 Mt of light REEs (LREEs), comprising one giant (Maoniuping), one large (Dalucao), two small–medium-sized (Muluozhai and Lizhuang), and numerous smaller REE deposits. The belt occurs within the eastern Indo-Asian collision zone (EIACZ), where its location is controlled by large-scale strike-slip faults and tensional fissure zones. Himalayan carbonatite–syenite complexes consist predominantly of alkaline syenite stocks and carbonatite sills or dikes that host REE mineralization. Previous studies have reported inconsistent ages for alkaline magmatism syenite formation and REE mineralization. Here, we present new results of sensitive high-resolution ion micro-probe U–Pb dating of zircons from syenites from the Dalucao, Maoniuping, Lizhuang and Diaoloushan areas, the first systematic and precise age determinations for these rocks in the MD belt. The new data give concordant ages of 12.13 ± 0.19 and 11.32 ± 0.23 Ma for the Dalucao deposit, 22.81 ± 0.31 and 21.3 ± 0.4 Ma for Maoniuping, 26.77 ± 0.32 Ma for Muluozhai, and 27.41 ± 0.35 Ma for Lizhuang. These ages, which should be regarded as maximum ages for the REE mineralization in the study area, can be split into two groups, i.e. 11–12 Ma in the southern part of the MD belt and 12–27 Ma in the northern part, suggesting a progression of magmatism from north to south. These data suggest that the majority of carbonatite–syenite magmatism within the EIACZ occurred during the main stage of Himalayan metallogenesis. The ages presented in this study suggest that strike-slip shear along the MD belt was initiated at ca. 27 Ma and ended ca. 12 Ma. This timing is consistent with movements along the adjacent Ailaoshan–Red River strike-slip fault in southeastern Tibet (to the south of the MD belt) and one of the three Cenozoic strike-slip faults in eastern Tibet. Ascent of an asthenospheric mantle diapir beneath the EIACZ in the Cenozoic may have provided a thermal mechanism for the generation of magmas that formed the carbonatite–syenite complexes in the study area. Alternatitvely, the magmas may have been generated by decompression melting associated with the transition from a transpressional to a transtensional regime at 38–40 Ma. The precise age results for syenite magmatism in the study area indicate that this transition occurred prior to carbonatite–syenite magmatism and the formation of the MD REE belt, which is consistent with the regional tectonic model. 相似文献
5.
The Donggebi Mo deposit located in NW China is a newly discovered, large, stockwork-type Mo deposit with ore reserves of 441 Mt @ 0.115% Mo. Ore bodies occur along faults and fractures at the external contact zone of a concealed porphyritic granite and volcaniclastic rocks of Gandun Formation, spatially associated with a fine-grained granite. Mo-bearing veins are mainly assemblages of volatile-rich K-feldspar-quartz-oxide, K-feldspar-quartz, polymetallic sulfides and calcite-quartz. Zircon LA-ICP-MS U–Pb dating yielded concordant ages of 234.6 ± 2.7 Ma and 231.8 ± 2.4 Ma for the porphyritic granite and the fine-grained granite, respectively; molybdenite Re–Os dating gave an isochron age of 234.0 ± 2.0 Ma. These ages further confirm an important and extensive magmatic-metallogenic event in Eastern Tianshan during the Triassic Indosinian orogeny. Whole-rock major and trace element analyses indicate that the granitic rocks associated with Mo mineralization are high in Si, K, Rb, Th, Nb, Ta, Ga and LREE, but low in P, Ti, Sr and Ba, belonging to high-K calc-alkaline granites with A-type features. Magma was likely derived from the re-melting of thickened lower crust in a post-collision compression environment in the Late Permian, experienced strong crystal fractionation and formed the large Donggebi Mo deposit under an intra-plate extension setting in the Early to Middle Triassic. 相似文献
6.
The Zhifang Mo deposit is located in the northeastern Qinling Orogen along the southern margin of the North China Craton. The deposit represents a quartz-vein system hosted in the Mesoproterozoic Xiong'er Group volcanic rocks. We identify three hydrothermal stages (early, middle and late), characterized by veinlets of quartz–pyrite, quartz–molybdenite–pyrite–chalcopyrite–galena–sphalerite, and quartz–carbonate assemblages, respectively. Five molybdenite samples from the Zhifang deposit yield Re–Os ages ranging from 241.2 ± 1.6 Ma to 247.4 ± 2.5 Ma, with an isochron age of 246.0 ± 5.2 Ma (2σ, MSWD = 7.4), and a weighted mean age of 243.8 ± 2.8 Ma (2σ, MSWD = 5.5). The Re–Os age shows that the Mo mineralization occurred during the Indosinian Orogeny, and suggests that the mineralization is unrelated to the Yanshanian magmatism or the Paleo-Mesoproterozoic volcanic–hydrothermal event.This study also reports a new Sr–Nd–Pb isotope dataset from ore sulfides in an attempt to constrain the source of the ore-forming fluids. Ten sulfide samples from middle stage of the Zhifang Mo deposit yield ISr(t) ratios of 0.710286–0.711943, with an average of 0.711004; εNd(t) values between − 19.5 and − 14.8, with an average of − 16.7; and (206Pb/204Pb)i, (207Pb/204Pb)i and (208Pb/204Pb)i ratios of 17.126–17.535, 15.374–15.466 and 37.485–37.848, with averages of 17.380, 15.410 and 37.631, respectively. One pyrite from the early stage yield ISr(t) of 0.722711–0.722855, with an average of 0.722783, which is higher than those of the middle stage sulfides and suggests equilibration with wallrocks. The εNd(t) values are in the range of − 17.3 to − 16.6 with a mean at − 17.0; and (206Pb/204Pb)i, (207Pb/204Pb)i and (208Pb/204Pb)i ratios are 17.386, 15.405 and 37.622, respectively. The ore sulfides show higher Pb-isotope ratios, higher εNd(t) and lower ISr(t) values than the host rocks. The results suggest that the ore-forming fluids had lower ISr(t), and higher εNd(t) values than the ore sulfides, and were possibly sourced from the Dengfeng Complex. The southward subduction of the North China Craton beneath the Huaxiong Block during the Triassic was possibly responsible for the formation of the Waifangshan orogenic Mo system. 相似文献
7.
Sharang is a low-fluorine, calc-alkaline porphyry Mo deposit hosted mainly in a granite porphyry of a multi-stage plutonic complex in the northern Gangdese metallogenic belt, largely with stockwork and ribbon-textured mineralization. The observed age estimates suggest that the formation of the magmatic host complex (52.9–51.6 Ma) and the ore deposit itself (52.3 Ma) occurred during the main stage of the India–Asia collision. The host rocks are characterized by lower zircon εHf(t) values than those of the pre-ore and post-ore rocks. This suggests that the Lhasa terrane basement might play an important role in the formation of Sharang ore-forming intrusions. In view of the framework of magmatic–metallogenic events we suggest that slab roll-back may have induced melting of juvenile crust and ancient continental complexes during the India–Asia collision. This proposal focuses exploration for additional molybdenum deposits on the collision zone. 相似文献
8.
We present new data on the highly fractionated Late Triassic I-type Liyuantang granite, which is located in the middle segment of the South Qinling Subzone of central China and is associated with molybdenum mineralization. Zircon U–Pb dating indicates that the granite was emplaced at 210.1 ± 1.9 Ma, with a single zircon containing an inherited core that yielded an age of 449.8 ± 7.1 Ma. Magmatic zircons from the granite have εHf(t) values of − 4.0 to + 1.5, whereas the inherited zircon core has a εHf(t) value of − 5.3. Calculated Hf model ages of crust formation are indicative of substantial contributions from melting of Proterozoic crust that ranges in age from 1501 to 1155 Ma. The granite contains high concentrations of Si, Al, Na, and K, is enriched in Rb, Th, and U, has elevated Rb/Sr and Ga/Al ratios, and is depleted in Ti, Fe, Mn, Mg, Ca, and P, with significantly negative Eu anomalies (δEu = 0.33–0.50), similar to other highly fractionated I-type granites. These data indicate that the magmas that formed the Liyuantang pluton were produced during partial melting of Proterozoic garnet-absent quartz amphibolites. The magmas then fractionated apatite, feldspar, Ti-bearing phases, biotite, and hornblende prior to emplacement.Re–Os isotope analysis of molybdenite from the study area yields a mineralization age of 200.9 ± 6.2 Ma, suggesting that the Liyuantang molybdenum deposit formed during a previously unrecognized mineralization event. The present results, together with previous data, demonstrate that highly fractionated I-type granites associated with the second pulse of magmatism in the South Qinling subzone should be considered highly prospective for mineral exploration, focusing on Triassic–Early Jurassic granitoids. 相似文献
9.
Chengbiao Leng Yuhui Wang Xingchun Zhang Jianfeng Gao Wei Zhang Xinying Xu 《中国地球化学学报》2018,37(1):47-59
The Kukaazi Pb–Zn–Cu–W polymetallic deposit, located in the Western Kunlun orogenic belt, is a newly discovered skarn-type deposit. Ore bodies mainly occur in the forms of lenses and veins along beddings of the Mesoproterozoic metamorphic rocks. Three ore blocks, KI, KII, and KIII, have been outlined in different parts of the Kukaazi deposit in terms of mineral assemblages. The KI ore block is mainly composed of chalcopyrite, scheelite, pyrrhotite, sphalerite, galena and minor pyrite, arsenopyrite, and molybdenite, whereas the other two ore blocks are made up of galena, sphalerite, magnetite and minor arsenopyrite and pyrite. In this study, we obtained a molybdenite isochron Re–Os age of 450.5 ± 6.4 Ma (2σ, MSWD = 0.057) and a scheelite Sm–Nd isochron age of 426 ± 59 Ma (2σ, MSWD = 0.49) for the KI ore block. They are broadly comparable to the ages of granitoid in the region. Scheelite grains from the KI ore block contain high abundances of rare earth elements (REE, 42.0–95.7 ppm) and are enriched in light REE compared to heavy REE, with negative Eu anomalies (δEu = 0.13–0.55). They display similar REE patterns and Sm/Nd ratios to those of the coeval granitoids in the region. Moreover, they also have similar Sr and Nd isotopes [87Sr/86Sr = 0.7107–0.7118; εNd(t) = ?4.1 to ?4.0] to those of such granitoids, implying that the tungsten-bearing fluids in the Kukaazi deposit probably originate from the granitic magmas. Our results first defined that the Early Paleozoic granitoids could lead to economic Mo–W–(Cu) mineralization at some favorable districts in the Western Kunlun orogenic belt and could be prospecting exploration targets. 相似文献
10.
David L. Huston Leon Vandenberg Andrew S. Wygralak Terrence P. Mernagh Leon Bagas Andrew Crispe Alexis Lambeck Andrew Cross Geoff Fraser Nick Williams Kurt Worden Tony Meixner Bruce Goleby Leonie Jones Pat Lyons David Maidment 《Mineralium Deposita》2007,42(1-2):175-204
The Tanami region of northern Australia has emerged over the last two decades as the largest gold-producing region in the Northern Territory. Gold is hosted by epigenetic quartz veins in sedimentary and mafic rocks, and by sulfide-rich replacement zones within iron formation. Although limited, geochronological data suggest that most mineralization occurred at about 1,805–1,790 Ma, during a period of extensive granite intrusion, although structural relationships suggest that some deposits predate this period. There are three main goldfields in the Tanami region: the Dead Bullock Soak goldfield, which hosts the world-class Callie deposit; The Granites goldfield; and the Tanami goldfield. In the Dead Bullock Soak goldfield, deposits are hosted by carbonaceous siltstone and iron formation where a late (D5) structural corridor intersects an early F1 anticlinorium. In The Granites goldfield, deposits are hosted by highly sheared iron formation and are interpreted to predate D5. The Tanami goldfield consists of a large number of small, mostly basalt-hosted deposits that probably formed at a high structural level during D5. The D5 structures that host most deposits formed in a convergent structural regime with σ 1 oriented between E–W and ENE–WSW. Structures active during D5 include NE-trending oblique thrust (dextral) faults and ESE-trending (sinistral) faults that curve into N- to NNW-trending reverse faults localized in supracrustal belts between and around granite complexes. Granite intrusions also locally perturbed the stress field, possibly localizing structures and deposits. Forward modeling and preliminary interpretations of reflection seismic data indicate that all faults extend into the mid-crust. In areas characterized by the N- to NW-trending faults, orebodies also tend to be N- to NW-trending, localized in dilational jogs or in fractured, competent rock units. In areas characterized by ESE-trending faults, the orebodies and veins tend to strike broadly east at an angle consistent with tensional fractures opened during E–W- to ENE–WSW-directed transpression. Many of these deposits are hosted by reactive rock units such as carbonaceous siltstone and iron formation. Ore deposition occurred at depths ranging from 1.5 to 11 km from generally low to moderate salinity carbonic fluids with temperatures from 200 to 430°C, similar to lode–gold fluids elsewhere in the world. These fluids are interpreted as the product of metamorphic dewatering caused by enhanced heat flow, although it is also possible that the fluids were derived from coeval granites. Lead isotope data suggest that lead in the ore fluids had multiple sources. Hydrogen and oxygen isotope data are consistent with both metamorphic and magmatic origins for ore fluids. Gold deposition is interpreted to be caused by fluid unmixing and sulfidation of host rocks. Fluid unmixing is caused by three different processes: (1) CO2 unmixing caused by interaction of ore fluids with carbonaceous siltstone; (2) depressurization caused by pressure cycling in shear zones; and (3) boiling as ore fluids move to shallow levels. Deposits in the Tanami region may illustrate the continuum model of lode–gold deposition suggested by Groves (Mineralium Deposita 28:366–374, 1993) for Archean districts. 相似文献
11.
Shenghong Yang Wenjun Qu Yulong Tian Jiangfeng Chen Gang Yang Andao Du 《Chemical Geology》2008,247(3-4):401-418
Apparent Re–Os ages of some magmatic sulfide ore deposits are older than the zircon and baddeleyite U–Pb ages which are interpreted as the formation age of the host intrusions. The Jinchuan Ni–Cu–PGE deposit of China, the world's third largest, is such a case. We report apparent Re–Os isochron ages of 1117 ± 67 Ma, 1074 ± 120 Ma and 867 ± 75 Ma with initial 187Os/188Os ratios of 0.120 ± 0.012, 0.162 ±0.017 and 0.235 ± 0.027 for disseminated ores, sulfides from the disseminated ores and massive ores from Jinchuan, respectively. Using these data and Re–Os ages from the literature, we find that the oldest apparent Re–Os age and lowest initial Os isotope ratio are from disseminated ores which contain small amounts of sulfide minerals, the highest initial Os isotope ratios and youngest apparent Re–Os ages, consistent with the zircon and baddeleyite U–Pb ages, are from massive ores containing 90–100 modal% sulfide, and net-textured ores with about 25 modal% sulfides yield apparent Re–Os ages and initial Os ratios intermediate between those of the disseminated and massive ores.Because Os diffusion between sulfides is inhibited by the intervening silicates even at high temperatures, re-equilibration did not occur in the disseminated ore and the samples retained the Os ratios of the contaminated magma, leading to geologically meaningless ages that are older than the formation age of the rocks. While Os-bearing sulfide minerals and magnetite show low closure temperatures of Os diffusion and the sulfide minerals in the massive ore are closely connected with each other, facilitating fast diffusion of Os, re-equilibration of Os was achieved during cooling of the ore from about 850 °C after the segregation to about 400 °C. Thus, an age corresponding to the formation time and an elevated initial Os ratio were yielded by the massive ore. Os isotopes in the net-textured ore behave in the way intermediate between the disseminated and massive ores. Pb isotope data support the Os results. Disseminated ores have heterogeneous Pb isotope ratios whereas Pb in the massive ores is more uniform, consistent with Pb isotopic equilibration in the massive ores, but not in the disseminated ores. 相似文献
12.
The recently discovered polymetallic Shazigou Mo–W–Pb–Zn ore field is located at the northern margin of the North China Craton. This integrated metallogenic system is comprised of quartz vein mineralization in three deposits: Shazigou Mo–W, Jindouzishan Pb–Zn and Mantougou Pb–Zn. The total reserves are estimated to be 50 kt Mo, 626 t WO3, 244 kt Pb and 150 kt Zn. Molybdenite Re–Os dating of five quartz vein-type ores yielded a mean model age of 243.8 ± 1.6 Ma (MSWD = 0.81) and hydrothermal zircons yielded a concordant U–Pb age of 245 ± 2.6 Ma (MSWD = 0.65). These results suggest that the mineralization was formed in the early Triassic and could be related to Paleo-Asian Ocean subduction. Microthermometry and quartz fluid inclusion compositions indicate that fluids related to the Mo–W mineralization were mainly derived from magmatic sources and precipitated under relatively high temperature (280–340 °C) and salinity conditions (6–9 wt% NaCl equiv.), whereas subsequent Pb–Zn mineralization-related fluids may have been modified by metamorphic and meteoric waters. The discovery of the Shazigou ore field suggests conditions may be favourable for more extensive mineralization in the western Xilamulun Mo metallogenic belt at the northern margin of the North China Craton. 相似文献
13.
《Chemie der Erde / Geochemistry》2014,74(4):601-613
The occurrence of Pb–Zn deposits of Jalta district (northern Tunisia) as open space fillings and cements and breccia in the contact zones between Triassic dolostones and Miocene conglomerates along or near major faults provides evidence of the relationship between the mineralization and tectonic processes. Pb isotopes in galena from the deposits yielded average 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of 18.821, 15.676 and 38.837, respectively, implying a well-mixed multi-source upper crustal reservoir of metals. Magmatism and compressional tectonism during the Alpine orogeny favored Pb–Zn mineralization in the Jalta district. The enrichment in Pb, Zn, Cd and Co of the Triassic carbonates and enrichments in Pb, Zn and Cd in Triassic clayey shales is associated with hydrothermal alteration around faults. Alunite in the deposit has δ34S values (−2.5 to −1.5‰ VCDT), which could have been formed at and above the water table in a kind of steam-heated environment, where fluids containing H2S mixed with fluids containing K and Al. The H2S could have been produced by TSR of sulfates at high temperature at depth and then leaked upward through deep-seated faults, whereas the K and Al could have been acid-leached from Miocene volcanic rocks. 相似文献
14.
This is a brief research report about the recently-discovered and currently being explored Dahutang tungsten deposit (or ore field) in northwestern Jiangxi, south-central China. The deposit is located south of the Middle–Lower Yangtze River valley Cu–Au–Mo–Fe porphyry–skarn belt (YRB). The mineralization is genetically associated with Cretaceous porphyritic biotite granite and fine-grained biotite granite and is mainly hosted within a Neoproterozoic biotite granodiorite batholith. The Dahutang ore field comprises veinlets-disseminated (~ 95% of the total reserve), breccia (~ 4%) and wolframite–scheelite quartz vein (~ 1%) ore styles. The mineralization and alteration are close to the pegmatite shell between the Cretaceous porphyritic biotite granite and Neoproterozoic biotite granodiorite and the three styles of ore bodies mentioned above are related to zoned hydrothermal alteration that includes greisenization, K-feldspar alteration, silicification, carbonatization, chloritization and fluoritization arranged in time (early to late) and space (bottom to top).Five samples of molybdenite from the three types of ores have been collected for Re/Os dating. The results show Re/Os model ages ranging from 138.4 Ma to 143.8 Ma, with an isochron age of 139.18 ± 0.97 Ma (MSWD = 2.9). The quite low Re content in molybdenite falls between 0.5 ppm and 7.8 ppm that is indicative of the upper crustal source. This is quite different from molybdenites in the YRB Cu–Au–Mo–Fe porphyry–skarn deposits that contain between 53 ppm and 1169 ppm Re, indicating a mantle source.The Dahutang tungsten system is sub-parallel with the YRB porphyry–skarn Cu–Au–Mo–Fe system. Both are situated in the north margin of the Yangtze Craton and have a close spatial–temporal relationship. This possibly indicates a comparable tectonic setting but different metal sources. Both systems are related to subduction of the Paleo-Pacific plate beneath the Eurasian continent in Early Cretaceous. The Cu–Au–Mo–Fe porphyry–skarn ores are believed genetically related to granitoids derived from the subducting slab, whereas the porphyry W deposits are associated with S-type granitoids produced by remelting of the upper crust by heat from upwelling asthenoshere. 相似文献
15.
The black shale series that formed in the Ediacaran–Cambrian transition are important stratigraphic records of the co-evolution of the paleo-ocean, -climate, and -biology. In this study, we measured Re–Os isotopic compositions of the black shale in the Niutitang Formation from the Gezhongwu section in Zhijin, Guizhou Province. The samples had high Re and Os contents, with Re ranging from 21.27 to 312.78 ng/g and Os ranging from 0.455 to 7.789 ng/g. The Re–Os isotope isochron age of 522.9 ± 8.6 Ma implies deposition of the Niutitang black shale predated the Chengjiang Fauna, providing an age constraint for the expansion of oceanic anoxia in the study area. The initial 187Os/188Os ratio of 0.826 ± 0.026 indicates that enhanced continental weathering might have triggered the expansion of the oceanic anoxia. 相似文献
16.
The absolute timing of epigenetic mineralization, including most types of gold deposits, is difficult to resolve due to the
absence of suitable minerals in veins and replacement zones. However, gold is commonly closely associated with pyrite and
arsenopyrite, which may be amenable to Re–Os geochronology, providing sufficient Re and Os are present within them. This short
paper outlines the use of this method to date two gold deposits in Newfoundland using pyrite. Although the Os contents of
the pyrites are extremely low (≪0.1 ppb), the Os is almost exclusively radiogenic 187Os, and data are amenable to model age calculations, as used in Re–Os molybdenite dating. The pyrites from these deposits
correspond to low-level highly radiogenic sulphides, as defined by other studies. The Stog’er Tight and Pine Cove gold deposits
yield mean Re–Os model ages of 411 ± 7 Ma (n = 4) and 420 ± 7 Ma (n = 5), respectively, which agree with isochron regression of 187Os against 187Re. The Re–Os age for Stog’er Tight is within uncertainty of a previous U–Pb age from ‘hydrothermal’ zircon (420 ± 5 Ma) in
spatially related alteration. A latest Silurian–earliest Devonian age for the mineralization is consistent with indirect age
constraints from some other gold deposits in central Newfoundland and suggests a broad temporal link to the mid-Silurian Salinic
Orogeny. However, the gold mineralization appears to be younger than most plutonic activity associated with this event. The
results illustrate the potential value of Re–Os pyrite geochronology in understanding the temporal framework of epigenetic
mineralization, especially if future improvements in analytical precision and reductions in procedural blanks allow wider
application to material with similarly low Re and Os concentrations. 相似文献
17.
Jian-Wei Li Xin-Fu Zhao Mei-Fu Zhou Chang-Qian Ma Zorano Sérgio de Souza Paulo Vasconcelos 《Contributions to Mineralogy and Petrology》2009,157(3):383-409
Late Mesozoic dioritic and quartz dioritic plutons are widespread in the Daye region, eastern Yangtze craton, eastern China.
Detailed geochronological, geochemical, and Sr–Nd isotopic studies have been undertaken for most of these plutons, in an attempt
to provide a comprehensive understanding in the age, genesis and geodynamical control of the extensive magmatism. SHRIMP and
LA-ICP-MS zircon U–Pb dating indicate that the plutons were emplaced in the range of latest Jurassic (ca. 152 Ma) to early
Cretaceous (ca. 132 Ma), which was followed by dyke emplacement between 127 and 121 Ma and volcanism during the 130–113 Ma
interval. Both diorites and quartz diorites are sodic, metaluminous, high-K calc-alkaline, and characterized by strongly fractionated,
sub-parallel REE patterns without obvious Eu anomalies. The rocks are enriched in highly incompatible elements and large ion
lithophile elements, but depleted in high field strength elements. Samples of diorite and quartz diorite have similar Sr–Nd
isotopic compositions that are consistent with the early Cretaceous basalts and mafic intrusions throughout the eastern Yangtze
craton. The geochemical and isotopic data, together with results of geochemical modeling, indicate an enriched mantle source
for the plutonic rocks. The quartz diorites have geochemical signatures resembling adakites, such as high Al2O3 (15–19 wt.%), Sr (630–2,080 ppm), Na2O (>3.5 wt.%), negative Nb–Ta anomalies, low Y (7–19 ppm), Yb (0.5–1.8 ppm), Sc (5–15 ppm), and resultant high Sr/Y (45–200)
and La/Yb (31–63) ratios. Genesis of the adakitic quartz diorites is best explained in terms of low-pressure intracrustal
fractional crystallization of cumulates consisting of hornblende, plagioclase, K-feldspar, magnetite, and apatite from mantle-derived
dioritic magmas. Mantle-derived magmatism broadly coeval with that of the Daye region also is widespread in other regions
of the eastern Yangtze craton, reflecting large-scale melting of the lithospheric mantle during the Late Mesozoic. The large-scale
magmatism was most likely driven by lithospheric extension associated with thinning of lithospheric mantle beneath the eastern
China continent. 相似文献
18.
The Yushui Cu-polymetallic deposit, which is associated with Ag, Pb, and Zn, is located in the middle part of the Yongan–Meixian Late Paleozoic Hercynian depression. It was discovered in eastern Guangdong Province in the late 1980s and is one of the richest copper deposits in China with high-grade copper averaging 3.25% and locally reaching 50–60%. The main ore body is located along the unconformity between the Upper Carboniferous Hutian Group limestone and the Lower Carboniferous Zhongxin Formation quartz sandstone with a bedded and lenticular morphology. The ores exhibit massive textures dominated by chalcopyrite, bornite, chalcocite, pyrite, sphalerite, galena, and a trace amount of argentite. Although researchers began studying the Yushui deposit in the early 1990s, the ore genesis remains controversial because of the lack of precise mineralisation age constraints. In this study, direct Re–Os dating of Cu sulphides aided in facilitating a better understanding of the timing of formation of the Yushui deposit. This study is the first attempt to use the Re–Os isotopic system for directly dating chalcopyrite and bornite ores for the Yushui deposit. The contents of Re, common Os, 187Re and 187Os in nine sulphides are 1.68–219.35 ppb, 0.003–0.427 ppb, 1.05–137.31 ppb, and 0.045–0.734 ppb, respectively. The isotope data yielded an isochron age of 308 ± 15 Ma (mean square weighted deviates = 2.4) using the 87Re/188Os–187Os/188Os plot, which is interpreted to represent the age of formation for these sulphides, suggesting that the mineralisation age of the Yushui deposit is close to the age of the host rocks. The 187Os/188Os initial value obtained from the Re–Os isochron is 1.81 ± 0.34, which corresponds to the γOs value of + 1349. This value indicates that the ore-forming materials were derived from the crust without mixing with materials from the mantle, and that the Yushui massive sulphide deposit may be of sedimentary exhalative origin. 相似文献
19.
B. K. Davis R. A. Henderson M. Lindsay R. Wysoczanski 《Australian Journal of Earth Sciences》2013,60(5):775-785
Granite plutons of the Whypalla Supersuite in the Butchers Hill — Helenvale region of north Queensland were intruded into the upper crust of the Hodgkinson Formation during contractional deformation associated with the Permian‐Triassic Hunter‐Bowen Orogeny. A four‐stage structural history has been resolved for the area, with fabric overprinting relationships, porphyroblast‐matrix microstructural geometries and isotopic ages being consistent with granite emplacement during D4 shortening at ca 274 Ma. Microstructural relationships suggest the possibility of a minor syn‐D3 phase of granite emplacement. The deformation‐emplacement history of the Butchers Hill — Helenvale area is consistent with that recognised regionally for the Hodgkinson Province, indicating province‐wide synchronous syntectonic granite intrusion during a major phase of contractional deformation. Intense syn‐emplacement deformation partitioning was ongoing in the country rocks during progressive D4 and was associated with upward translation of country rock from the microscale to the macroscale along D4 cleavages and shears. Kinematic indicators show that this progressive uplift, at the scale of the area examined, was east‐side‐up. 相似文献
20.
Please refer to the attachment(s) for more details 相似文献