首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Poroelastic relaxation and aftershocks of the 2001 Bhuj earthquake, India   总被引:1,自引:0,他引:1  
We analyse aftershocks of the 26 January 2001 Bhuj earthquake, India, that were recorded for 10 weeks following the mainshock. We calculate undrained or instantaneous pore pressure and change in Coulomb stress due to the earthquake and their poroelastic relaxation in the following 10 weeks period. Almost all aftershocks occurred in the region of coseismic dilatation. In the subsequent period, pore pressure increased through relaxation in the dilatation region which further modified coseismic Coulomb stress. Maximum increase in pore pressure is estimated to be about 0.7 MPa in 60 days time following the mainshock. Correlation between the zones of increased pore pressure and postseismic Coulomb stress with that of aftershocks, suggests a definite role of fluid diffusion in their delayed triggering.  相似文献   

2.
Prabhas Pande 《Natural Hazards》2013,65(2):1045-1062
Of the intraplate seismic events, the January 26, 2001 Bhuj earthquake (Mw 7.7) would be remembered as one of the deadliest, in which 13,805 human lives were lost, 0.177 million injured and a total of 1,205,198 houses were fully or partly damaged in 16 districts of Gujarat state with an estimated overall loss of Rs. 284, 23 million. The brunt of the calamity was borne by five districts, namely Kachchh, Ahmadabad, Rajkot, Jamnagar and Surendranagar, where 99?% of the total casualties and damage occurred. In the neighbouring parts of Sindhh Province of Pakistan, 40 human casualties were reported, and some buildings cracked in the Karachi city as well. In the Kachchh district of Gujarat state, the telecommunication links and power supply were totally disrupted, road and rail links partially impaired and water supply snapped at many places. The Bhuj airbase had to be closed for some time due to damage to the infrastructure. The macroseismic survey carried out by the Geological Survey of India in an area as large as 1.2 million?sq?km indicated an epicentral intensity as high as X on the MSK scale in an area of 780?sq?km in the central part of Kachchh rift basin. Apart from damages to civil structures, the January 26 earthquake induced conspicuous terrain deformation in the form of liquefaction features, structural ground deformation and low-order slope failures that were mainly prevalent within the higher intensity isoseists. Liquefaction occurred in an area of about 50,000?sq?km. The extensive plains of Rann of Kachchh, the marshy tracts of the Little Rann and the shallow groundwater table zones of Banni Land provided the most conducive geotechnical environments for the development of seismites. The liquefaction activity was profuse in seismic intensity zones X and IX, widespread in intensity VIII, subdued in intensity VII and stray in intensity VI. The common forms of liquefaction were sand blows/boils, ground fissures, craters, lateral spreading and slumping. Ground deformation of tectonic origin was witnessed in the epicentral tract. Such features, though much less subdued in comparison with the 1819 large earthquake (Mw 7.8) in region, occurred along the Kachchh Mainland fault (KMF) and along a transverse lineament, referred to as Manfara?CKharoi fault. The manifestations were in the form of fractures, displacement of strata, linear subsidence, upheaval, formation of micro-basins/micro-ridges, ripping off of rock surface, and at places violent forms of liquefaction. The localities where coseismic deformations were observed include Bodhormora, Sikra, Vondh, Chobari, Manfara and Kharoi. The 2001 event has demonstrated the role of local geology in influencing the ground motion characteristics and, therefore, the hazard estimation.  相似文献   

3.
The Geological Survey of India (GSI) established a twelve-station temporary microearthquake (MEQ) network to monitor the aftershocks in the epicenter area of the Bhuj earthquake (M w7.5) of 26th January 2001. The main shock occurred in the Kutch rift basin with the epicenter to the north of Bhachao village, at an estimated depth of 25 km (IMD). About 3000 aftershocks (M d ≥ 1.0), were recorded by the GSI network over a monitoring period of about two and half months from 29th January 2001 to 15th April 2001. About 800 aftershocks (M d ≥ 2.0) are located in this study. The epicenters are clustered in an area 60 km × 30 km, between 23.3‡N and 23.6‡N and 70‡E and 70.6‡E. The main shock epicenter is also located within this zone. Two major aftershock trends are observed; one in the NE direction and other in the NW direction. Out of these two trends, the NE trend was more pronounced with depth. The major NE-SW trend is parallel to the Anjar-Rapar lineament. The other trend along NW-SE is parallel to the Bhachao lineament. The aftershocks at a shallower depth (<10km) are aligned only along the NW-SE direction. The depth slice at 10 km to 20 km shows both the NE-SW trend and the NW-SE trend. At greater depth (20 km–38 km) the NE-SW trend becomes more predominant. This observation suggests that the major rupture of the main shock took place at a depth level more than 20 km; it propagated along the NE-SW direction, and a conjugate rupture followed the NW-SE direction. A N-S depth section of the aftershocks shows that some aftershocks are clustered at shallower depth ≤ 10 km, but intense activity is observed at 15–38 km depth. There is almost an aseismic layer at 10–15 km depth. The activity is sparse below 38 km. The estimated depth of the main shock at 25 km is consistent with the cluster of maximum number of the aftershocks at 20–38 km. A NW-SE depth section of the aftershocks, perpendicular to the major NE-SW trend, indicates a SE dipping plane and a NE-SW depth section across the NW-SE trend shows a SW dipping plane. The epicentral map of the stronger aftershocksM ≥ 4.0 shows a prominent NE trend. Stronger aftershocks have followed the major rupture trend of the main shock. The depth section of these stronger aftershocks reveals that it occurred in the depth range of 20 to 38 km, and corroborates with a south dipping seismogenic plane.  相似文献   

4.
The Talala (Sasangir) area in the Saurashtra region of Gujarat, western India, is experiencing tremors since 2001. The swarm type of earthquake activity in 2001, 2004, and every year from 2007 onward has occurred after the monsoon and lasted 2?C3?months each time. In 2007 some 200 shocks (largest Mw 5.0) and in 2011 about 400 shocks down to M1 are well recorded with 1?C2?km location error. The focal depths are about 2?C10?km and shocks are accompanied by blast-like subterranean sounds. The epicenter (21.09?N 70.45E, focal depth: 5?km from location program, 3?km from MTS) of the October 20, 2011 mainshock occurred about 12-km WNW of Talala town or 8-km SSW of the 2007?M w 5.0 earthquake epicenter. The epicentral trends deciphered from local earthquake data indicate two ENE trends (Narmada trend) for about 50?km length and a conjugate 15-km-long NNW trend (Aravali trend). The focal mechanisms by moment-tensor analysis of full wave forms of two 2007 events of Mw 4.8 and 5.0 and the 2011 event of Mw 5.1 indicate rupture along either of the two trends. The ENE trends follow a gravity low between the gravity highs of Girnar mounts. Seismic reflections also indicate a fault in the area named Girnar Fault. Most of Saurashtra region including the Talala area is covered by Deccan Trap Basalt forming plateaus and conical ridges. There is no major fault within Saurashtra Peninsula though it is believed to have major faults along the boundaries that are non-seismic. The intensity of the October 20, 2011 Talala earthquake is estimated to be 6.5 in MM scale while isoseismals of 6, 5, and 4 and felt distance give Mw 5.1 based on Johnston??s 1994 empirical regressions. The source parameters of the 2011 Talala earthquake are estimated using data from 14 broadband seismograph stations. Estimated seismic moment, moment magnitude, stress drop, corner frequency, and source radius are found to be 1016.6 N-m, 5.1, 1.6?MPa, 1.3?Hz, and 2,300?m, respectively. The b and p values are obtained to be low, being 0.67 and 0.71, respectively. PGA of 35?cm/sec2 is noted and the decay rate of acceleration has been estimated from strong motion data recorded at 5 stations with epicentral distances ranging from 32 to 200?km.  相似文献   

5.
Kii Peninsula is located in the forearc region of southwest Japan and has distinct structural and tectonic features characterized by high seismicity in the crust and the subducting Philippine Sea slab, high surface heat flow, high 3He/4He isotopic ratio, and a local change in the geometry of the subducting slab. We have tried to determine detailed 3-D P and S wave velocity structures of this region using a large number of high-quality arrival time data recorded by dense seismic networks on the Japan Islands. From the obtained seismic velocities, we further estimated 3-D distributions of Poisson ratio, crack density, saturation rate and porosity parameter in the study area. Our results show significant heterogeneities in the crust and upper mantle wedge characterized by low seismic velocities, high Poisson ratio, high values of crack density, saturation rate and porosity. These results suggest the existence of fluids in the crust and mantle wedge resulting from the dehydration of the subducting Philippine Sea slab, which can explain the observed geophysical and geochemical features in Kii Peninsula.  相似文献   

6.
176 vertical-component, short period observations from aftershocks of the Mw 7.7, 26 January, 2001 Kachchh earthquake are used to estimate seismic wave attenuation in western India using uniform and two layer models. The magnitudes (Mw) of the earthquakes are less than 4.5, with depths less than 46 km and hypocentral distances up to 110 km. The studied frequencies are between 1 and 30 Hz. Two seismic wave attenuation factors, intrinsic absorption (Qi− 1) and scattering attenuation (Qs− 1) are estimated using the Multiple Lapse Time Window method which compares time integrated seismic wave energies with synthetic coda wave envelopes for a multiple isotropic scattering model. We first assume spatial uniformity of Qi− 1, Qs− 1 and S wave velocity (β). A second approach extends the multiple scattering hypothesis to media consisting of several layers characterized by vertically varying scattering coefficient (g), intrinsic absorption strength (h), density of the media (ρ) and shear wave velocity structure. The predicted coda envelopes are computed using Monte Carlo simulation. Results show that, under the assumption of spatial uniformity, scattering attenuation is greater than intrinsic absorption only for the lowest frequency band (1 to 2 Hz), whereas intrinsic absorption is predominant in the attenuation process at higher frequencies (2 to 30 Hz). The values of Q obtained range from Qt = 118, Qi = 246 and Qs = 227 at 1.5 Hz to Qt ≈ 4000, Qi ≈ 4600 and Qs ≈ 33,300 at 28 Hz center frequencies, being Qt− 1 a measure of total attenuation. Results also show that Qi− 1, Qs− 1 and Qt− 1 decrease proportional to fν. Two rates of decay are clearly observed for the low (1 to 6 Hz) and high (6 to 30 Hz) frequency ranges. Values of ν are estimated as 2.07 ± 0.05 and 0.44 ± 0.09 for total attenuation, 1.52 ± 0.21 and 0.48 ± 0.09 for intrinsic absorption and 3.63 ± 0.07 and 0.06 ± 0.08 for scattering attenuation for the low and high frequency ranges, respectively. Despite the lower resolution in deriving the attenuation parameters for a two layered crust, we find that scattering attenuation is comparable to or smaller than the intrinsic absorption in the crust whereas intrinsic absorption dominates in the mantle. Also, for a crustal layer of thickness 42 km, intrinsic absorption and scattering estimates in the crust are lower and greater than those of the mantle, respectively.  相似文献   

7.
The Latur earthquake (Mw 6.1) of 29 September 1993 is a rare stable continental region (SCR) earthquake that occurred on a previously unknown blind fault. In this study, we determined detailed three-dimensional (3-D) P- and S-wave velocity (Vp, Vs) and Poisson's ratio (σ) structures by inverting the first P- and S-wave high-quality arrival time data from 142 aftershocks that were recorded by a network of temporary seismic stations. The source zone of the Latur earthquake shows strong lateral heterogeneities in Vp, Vs and σ structures, extending in a volume of about 90 × 90 × 15 km3. The mainshock occurred within, but near the boundary, of a low-Vp, high-Vs and low-σ zone. This suggests that the structural asperities at the mainshock hypocenter are associated with a partially fluid-saturated fractured rock in a previously unknown source zone with intersecting fault surfaces. This might have triggered the 1993 Latur mainshock and its aftershock sequence. Our results are in good agreement with other geophysical studies that suggest high conductivity and high concentration of radiogenic helium gas beneath the source zone of the Latur earthquake. Our study provides an additional evidence for the presence of fluid related anomaly at the hidden source zone of the Latur earthquake in the SCR and helps us understand the genesis of damaging earthquakes in the SCR of the world.  相似文献   

8.
P. Mandal  S. Horton   《Tectonophysics》2007,429(1-2):61-78
The HYPODD relocation of 1172 aftershocks, recorded on 8–17 three-component digital seismographs, delineate a distinct south dipping E–W trending aftershock zone extending up to 35 km depth, which involves a crustal volume of 40 km × 60 km × 35 km. The relocated focal depths delineate the presence of three fault segments and variation in the brittle–ductile transition depths amongst the individual faults as the earthquake foci in the both western and eastern ends are confined up to 28 km depth whilst in the central aftershock zone they are limited up to 35 km depth. The FPFIT focal mechanism solutions of 444 aftershocks (using 8–12 first motions) suggest that the focal mechanisms ranged between pure reverse and pure strike slip except some pure dip slip solutions. Stress inversion performed using the P and T axes of the selected focal mechanisms reveals an N181°E oriented maximum principal stress with a very shallow dip (= 14°). The stress inversions of different depth bins of the P and T axes of selected aftershocks suggest a heterogeneous stress regime at 0–30 km depth range with a dominant consistent N–S orientation of the P-axes over the aftershock zone, which could be attributed to the existence of varied nature and orientation of fractures and faults as revealed by the relocated aftershocks.  相似文献   

9.
Large‐scale experiments generating ground‐hugging multiphase flows were carried out with the aim of modelling the rate of sedimentation, of pyroclastic density currents. The current was initiated by the impact on the ground of a dense gas‐particle fountain issuing from a vertical conduit. On impact, a thick massive deposit was formed. The grain size of the massive deposit was almost identical to that of the mixture feeding the fountain, suggesting that similar layers formed at the impact of a natural volcanic fountain should be representative of the parent grain‐size distribution of the eruption. The flow evolved laterally into a turbulent suspension current that sedimented a thin, tractive layer. A good correlation was found between the ratio of transported/sedimented load and the normalized Rouse number of the turbulent current. A model of the sedimentation rate was developed, which shows a relationship between grain size and flow runout. A current fed with coarser particles has a higher sedimentation rate, a larger grain‐size selectivity and runs shorter than a current fed with finer particles. Application of the model to pyroclastic deposits of Vesuvius and Campi Flegrei of Southern Italy resulted in sedimentation rates falling inside the range of experiments and allowed definition of the duration of pyroclastic density currents which add important information on the hazard of such dangerous flows. The model could possibly be extended, in the future, to other geological density currents as, for example, turbidity currents.  相似文献   

10.
Deep lower crustal intraplate earthquakes are infrequent and the mechanism of their occurrence is not well understood. The Narmada-Son-lineament region in central India has experienced two such events, the 1938 Satpura earthquake and the 1997 Jabalpur earthquake, having a focal depth of more than 35 km. We have estimated elastic stresses due to the crustal density and mechanical properties heterogeneities along the Hirapur-Mandla profile passing through the Jabalpur earthquake region to analyse conditions suitable for the concentration of shear stresses in the hypocentral region of this earthquake. Elastic stresses have been computed by a finite element method for a range of material parameters. The results indicate that the shear stresses generated by the density heterogeneities alone are not able to locally enhance the stress concentration in the hypocentral region. The role of mechanical properties of various crustal layers is important in achieving this localization of stresses. Among a range of material parameters analysed, the model with a mechanically strong lower crust overlying a relatively weak sub-Moho layer is able to enhance the stress concentration in the hypocentral region, implying a weaker mantle in comparison to the lower crust for this region of central India.  相似文献   

11.
We compiled available news and internet accounts of damage and other effects from the 26th January, 2001, Bhuj earthquake, and interpreted them to obtain modified Mercalli intensities at over 200 locations throughout the Indian subcontinent. These values are used to map the intensity distribution using a simple mathematical interpolation method. The maps reveal several interesting features. Within the Kachchh region, the most heavily damaged villages are concentrated towards the western edge of the inferred fault, consistent with western directivity. Significant sedimentinduced amplification is also suggested at a number of locations around the Gulf of Kachchh to the south of the epicenter. Away from the Kachchh region intensities were clearly amplified significantly in areas that are along rivers, within deltas, or on coastal alluvium such as mud flats and salt pans. In addition we use fault rupture parameters inferred from teleseismic data to predict shaking intensity at distances of 0–1000 km. We then convert the predicted hard rock ground motion parameters to MMI using a relationship (derived from internet-based intensity surveys) that assigns MMI based on the average effects in a region. The predicted MMIs are typically lower by 1–2 units than those estimated from news accounts. This discrepancy is generally consistent with the expected effect of sediment response, but it could also reflect other factors such as a tendency for media accounts to focus on the most dramatic damage, rather than the average effects. Our modeling results also suggest, however, that the Bhuj earthquake generated more high-frequency shaking than is expected for earthquakes of similar magnitude in California, and may therefore have been especially damaging.  相似文献   

12.
The rate of sedimentation and the source of sediments in the lake basins of Nainital region, Kumaun Himalaya, have been estimated employing210Pb and210Ra methods. This has yielded a rate of sedimentation of 11.5, 4.70, 3.72, and 3.00 mm/yr in Nainital, Bhimtal, Naukuchiyatal, and Sattal lakes, respectively. The higher rate of sedimentation in Nainital lake, compared to other lakes, is related to faster erosion in the catchment aided by greater anthropogenic activity, while the slowest rate in Sattal lake is due to less erosion and more input of soil-derived material involving a slow rate of accumulation.  相似文献   

13.
An earthquake of Mw 5.1 occurred on March 14, 2005, in the seismically active Koyna–Warna region in western India, the site known for the largest reservoir triggered seismicity (RTS) in the world. For more than four decades, earthquakes with M  4.0 have occurred in this region at regular intervals. Impoundment of reservoirs and changes in lake levels can trigger earthquakes by two processes of stress modifications, namely direct loading effect of the reservoir and diffusion through various faults and fractures. In this paper we analysed the reservoir water level data at Koyna and Warna reservoirs prior to the occurrence of the March 14, 2005 earthquake, to explain the dominant mechanism behind its occurrence and its correlation with the observed coseismic changes. We conclude that the diffusion process, not the reservoir load effect, is the dominating mechanism triggering earthquakes in the region. The coseismic changes in deep well water levels sensitive to earth tides are found to be to the order of 1–12 cm.  相似文献   

14.
Metal speciation study in combination with major element chemistry of deep sea sediments provided possible metal enrichment pathways in sediments collected from environmentally different locations of Central Indian Ocean Basin (CIB). Metal speciation study suggests that Fe–Mn oxyhydroxide phase was the major binding phase for Ni, Cu and Pb in the sediments. The second highest concentrations of all these metals were present within the structure of the sediments. Easily reducible oxide phase (within the Fe–Mn oxyhydroxide binding phases) was the major host for all the three metals in the studied sediments. Major element chemistry of these sediments revealed that there was an increased tendency of Cu and Ni to get incorporated into the deep sea sediment via the non-terrigenous Mn-oxyhydroxide fraction, whereas, Pb gets incorporated mostly via amorphous Fe-hydroxides into the sediment from the CIB. This is the first attempt to provide an insight into the mechanism of metal enrichment in sediment that host vast manganese nodule.  相似文献   

15.
Although no drilling has been carried out in the deep water area of the Baiyun sag in the Pearl River Mouth Basin, South China Sea, the successful exploration for natural gas in the shallow water area of the Panyu lower uplift allows an insight into the prospectivity of the adjacent deep water fan system of the Baiyun sag. The Paleogene gas kitchen in the Baiyun sag provided both oil-derived gas and coal-derived gas. Fluid inclusion measurements and 2D numeric modelling of formation pressure indicate four episodes of hydrocarbon charge since the third release of the overpressure system. Seismic wipeout zones manifest several types of gas chimney which could play a role in vertical migration conduits to feed the natural gases into the deep water fan system. There would be, therefore, a low risk for hydrocarbon exploration in the deep water fan system.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号