首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of genuinely zero-age or near-zero-age grains in modern-age and very young samples poses a problem for many existing burial dose estimation procedures used in optical (optically stimulated luminescence, OSL) dating. This difficulty currently necessitates consideration of relatively simplistic and statistically inferior age models. In this study, we investigate the potential for using modified versions of the statistical age models of Galbraith et al. [Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339–364.] to provide reliable equivalent dose (De) estimates for young and modern-age samples that display negative, zero or near-zero De estimates. For this purpose, we have revised the original versions of the central and minimum age models, which are based on log-transformed De values, so that they can be applied to un-logged De estimates and their associated absolute standard errors. The suitability of these ‘un-logged’ age models is tested using a series of known-age fluvial samples deposited within two arroyo systems from the American Southwest. The un-logged age models provide accurate burial doses and final OSL ages for roughly three-quarters of the total number of samples considered in this study. Sensitivity tests reveal that the un-logged versions of the central and minimum age models are capable of producing accurate burial dose estimates for modern-age and very young (<350 yr) fluvial samples that contain (i) more than 20% of well-bleached grains in their De distributions, or (ii) smaller sub-populations of well-bleached grains for which the De values are known with high precision. Our results indicate that the original (log-transformed) versions of the central and minimum age models are still preferable for most routine dating applications, since these age models are better suited to the statistical properties of typical single-grain and multi-grain single-aliquot De datasets. However, the unique error properties of modern-age samples, combined with the problems of calculating natural logarithms of negative or zero-Gy De values, mean that the un-logged versions of the central and minimum age models currently offer the most suitable means of deriving accurate burial dose estimates for very young and modern-age samples.  相似文献   

2.
A comparative study using quartz optically stimulated luminescence (OSL) and feldspar post-infrared infrared stimulated luminescence (post-IR IRSL) was undertaken on Quaternary fluvial sediments from an unnamed tributary of the Moopetsi River in South Africa. The aim is to assess whether the post-IR IRSL signal can be used to date incompletely bleached sediments. Several post-IR IRSL signals using varying stimulation and preheat temperatures were investigated; of these the post-IR IRSL225 signal was deemed most appropriate for dating because it bleached most rapidly. The feldspar post-IR IRSL225 equivalent dose (De) values from this site are consistently larger than those from quartz OSL, probably due to differences in the bleaching characteristics of the two signals. Additionally, the post-IR IRSL225 De values within a sample showed less variation in precision than the quartz De data, possibly due to greater averaging between grains in the feldspar small aliquots. The agreement between ages based on the OSL and post-IR IRSL225 signals was better for younger samples (<20 ka) than for older ones (>50 ka); the cause of this variation is unclear.  相似文献   

3.
Rapid sample preparation and measurement protocols for optically stimulated luminescence (OSL) dating have been investigated as a method of increasing the throughput of samples (e.g. Roberts et al. 2009). Here, we investigate the potential of dating samples treated using only hydrochloric acid (HCl) for providing accurate range-finder ages for quartz. The equivalent dose (De) is underestimated for older samples using a standard single-aliquot regenerative-dose (SAR) protocol, but measurement of the post-IR OSL signal (e.g. Roberts and Wintle, 2003) provides De estimates within 15% of the ‘target fully prepared De’ for two-thirds of samples. The application of a standardised growth curve (SGC) is also investigated. For these dune samples, the most efficient preparation and measurement procedure from which accurate De estimates can be obtained is treatment with HCl-only, measurement of the natural and regenerative post-IR OSL signal, and calculation using a region-independent SGC. A slightly longer protocol incorporating an additional preparation stage of heavy liquid density separation can be used to improve De estimates in samples where feldspar-contamination is thought to be particularly problematic. In practice, these time savings of days to weeks in the preparation and measurement protocols mean that a large number of samples can first be rapidly treated with HCl, the post-IR blue OSL signal measured using a shortened double-SAR protocol, and De calculated by applying an independent SGC before then deciding which samples require full preparation and measurement, rather than the inefficiency of committing time and resources to all samples if this is unnecessary for the context of a particular suite of samples. The potential of this rapid preparation and measurement protocol is discussed in relation to sand dune dating studies.  相似文献   

4.
The establishment of standardised growth curve (SGC) for equivalent dose (De) determination can substantially reduce the amount of instrument time required for OSL measurements. In this study, we investigated the applicability of SGC for the optically stimulated luminescence (OSL) signal from single grains and small aliquots of sedimentary quartz from Haua Fteah cave, in Libya. The samples exhibit large inter-grain and inter-aliquot variation in the shape of their single grain and small aliquot dose response curves (DRCs) constructed from a range of sensitivity-corrected regenerative dose signals (Lx/Tx), which prevents the establishment of a single common SGC among different grains or small aliquots. Instead, the DRCs for the small aliquots can be divided into a minimum of three groups using the Finite Mixture Model, with the DRC saturating at a different dose level for each group. In order to establish a common DRC, or SGC, for each group, we propose a new normalisation method, the so-called least-squares normalisation procedure (‘LS-normalisation’), which largely reduces the variation between aliquots within the same group and allows the establishment of a common DRC, or SGC, for each group. In order to apply the SGC method for these samples, two regenerative dose points are needed for each aliquot to attribute it to one of the groups based on the ratio of the Lx/Tx signals for two sensitivity-corrected regenerative dose points. Equivalent dose (De) values for each aliquot can be estimated using the fitting parameters calculated for the SGC of the relevant group to which it belongs, together with measurements of the natural signal (Ln), one regenerative dose signal (Lx1) and their corresponding test dose signals (Tn, Tx1). For the samples investigated from Haua Fteah, we found that De estimates obtained from the SGCs are consistent with those obtained using a full SAR procedure. Our results suggest that small single-aliquot and single-grain De values obtained from application of the SGC may be underestimated if there is a significant proportion of early-saturating grains present in the sample; such grains or aliquots are mostly rejected due to saturation when analysed using the full SAR procedure. In this case, it is necessary to calculate the De values based only on those grains or aliquots that have relatively high saturation levels.  相似文献   

5.
The standardised growth curve (SGC) technique has the potential to save instrument time for equivalent dose (De) determination when applying single-aliquot regenerative-dose (SAR) protocol during optically stimulated luminescence (OSL) measurements. In this study, we test the applicability of two commonly used SGC procedures for OSL signals of quartz grains from aqueous deposits of the Yangtze Delta in China, which have been reported for weak luminescence signals and suffering from partial bleaching. Multiple silt-sized and sand-sized fractions of quartz samples from eight cores are used to construct SGCs by test dose standardisation (TD-SGC) and least-squares normalisation (LS-SGC), respectively. Three strategies, i.e. region-specific (SGCR), region with core-specific (SGCR + C) and core-specific (SGCC), are adopted to categorise these normalised data into different SGC datasets. The large variability of dose response signals is substantially reduced by the SGC procedures for most of these datasets. Hence, common SGCs for a variety of samples from the Yangtze Delta can be established, irrespective of their distinctive particle sizes and luminescence characteristics. The De values are then estimated using both TD-SGC and LS-SGC procedures for samples from a specific core. Comparing to the full SAR protocol, the TD-SGC procedure roughly gives reproducible De estimates lower than ∼100 Gy while the LS-SGC procedure derives generally consistent De estimates of up to ∼230 Gy. Although LS-SGCC and LS-SGCR + C procedures replicate the most consistent De values, the LS-SGCR procedure performs better in efficiency with a slightly less accuracy. In addition to careful comparison of LS-SGC and full SAR procedures, we suggest that a synchronous ratio derived by the chosen regenerative dose and its response signal for re-normalisation can be used to predict the LS-SGC De reliability on samples from similar sedimentary environments.  相似文献   

6.
This study reports on the first investigation into the potential of quartz luminescence dating to establish formation ages of ferruginous duricrust deposits (ironstones) of the Xingu River in Eastern Amazonia, Brazil. The studied ironstones comprise sand and gravel cemented by goethite (FeO(OH)), occurring as sandstones and conglomerates in the riverbed of the Xingu River, a major tributary of the Amazon River. The Xingu ironstones have a cavernous morphology and give origin to particular habitat for benthic biota in an area that hosts the largest rapids in Amazonia. So far, the Xingu ironstones have uncertain formation ages and their sedimentary origin is still poorly understood. In this way, seven samples of ironstones distributed along the lower Xingu River were collected for optically stimulated luminescence (OSL) dating of their detrital quartz sand grains. Additionally, the organic content of some samples was dated by radiocarbon (14C) for comparison with quartz OSL ages. The luminescence ages of the sand-sized quartz grains extracted from the ironstones were obtained from medium (100–300 grains) and small (10–20 grains) aliquots using the single aliquot regenerative-dose (SAR) protocol. Equivalent doses (De) distributions have varied overdispersion (OD) both for medium size aliquots (OD = 19–58 %) and small size aliquots (OD = 29–76 %). No significant trend was observed between De and aliquot size. The studied ironstones grow over the riverbed, but stay below or above water throughout the year due to the seasonal water level variation of the Xingu River. However, the effect of water saturation in dose rates is reduced due to relatively low porosity of ironstones. Water saturated dose rates (dry sample dose rates) range from 2.70 ± 0.21 (2.79 ± 0.22) Gy/ka to 12.34 ± 0.97 (13.26 ± 1.12) Gy/ka, which are relatively high when compared to values reported for Brazilian sandy sediments elsewhere (∼1 Gy/ka). Samples with high overdispersion (>40 %) are mainly attributed to mixing of grains trapped in different time periods by goethite cementation. The obtained OSL ages for water saturated (dry) samples range from 3.4 ± 0.3 (3.3 ± 0.4) ka to 59.6 ± 6.0 (58.1 ± 6.4) ka, using De determined from medium size aliquots and dose response curves fitted by an exponential plus linear function. Radiocarbon ages of the bulk organic matter extracted from selected ironstone varied from ca. 4 cal ka BP to ca. 23 cal ka BP. Significant differences were observed between OSL and radiocarbon ages, suggesting asynchronous trapping of organic matter and detrital quartz within the ironstone matrix. These late Pleistocene to Holocene ages indicate that ironstones of the Xingu River result from an active surface geochemical system able to precipitate goethite and cement detrital sediments under transport. The obtained ages and differences between OSL and radiocarbon ages point out that the ironstones have multiphase and spatially heterogeneous growth across the Xingu riverbed. Our results also expand the application of luminescence dating to different sedimentary deposits.  相似文献   

7.
Coastal plain of Hangzhou Bay, to the south of the present Yangtze Estuary, is closely linked to the evolution of the Yangtze River delta. However, absolute age of Pre-Holocene sediments is limited, which hinders the understanding of this area's environmental evolution. In this study, using optically stimulated luminescence (OSL), single aliquots and single grains of quartz and K-feldspar were used to date the late Quaternary sediments in coastal plain on the southern Hangzhou Bay. The vertical difference in particle size composition render either silt- or sand-sized quartz for dating. Cross-checking of multiple OSL dating methods indicated that the upper ∼65 m recorded the Holocene part of the succession; sediment from a depth of 136.6 m was dated to ∼180 ka. It was found that the single-grain method was more reliable in comparison to single-aliquot age, the former minimized the effect of signal components. Single-grain quartz and K-feldspar luminescence yielded consistent ages at sample depth of 136.6 m (∼160–180 ka), while the latter gave robust age at depth of 115.5 m (∼150 ka). This chronology is in general in accordance with neighbouring cores and can constrain paleomagnetic dating results in those cores. Taking together, the study site has thickest Holocene deposits in comparison to the highland centered around Taihu Lake on the southern Yangtze delta. Moreover, the luminescence characteristics of quartz from different sample depths, behaved differently with respect to luminescence sensitivity, signal components and saturation level, perhaps reflecting varied provenance and weathering characteristics caused by climate change.  相似文献   

8.
Ocean Drilling Program Site 658 lies under the North African summer dust plume, and ought to be an ideal target for optically stimulated luminescence (OSL) dating, since the main clastic input is far-travelled Saharan dust. However, OSL ages for coarse silt-sized quartz (40–63 μm) are systematically lower than independent age estimates when dose rates are calculated using a model which assumes detrital 238U, 232Th and 40K and excess 230Th and 231Pa. Ages which are in good agreement with independent age control are obtained from the coarse silt samples when a correction for authigenic uranium uptake is incorporated into the dose rate model. Authigenic uranium uptake occurs under reducing conditions, which are common at the sediment–water interface, and some degree of authigenic uranium correction may be required for most marine sediments. Using this revised dose rate model, ages produced using fine silt-sized quartz (4–11 μm) are up to 100% older than both independent and coarse silt ages. In addition, the fine silt ages show a consistent pattern of age decrease with depth over 1.5 m of core. 230Th data from Site 658 indicate that this site receives 3 times more sediment laterally than vertically. It is concluded that the fine silt at Site 658 contains a substantial reworked component, making it unsuitable for dating. Conversely the coarse silt fraction, which settles through water at ∼40 times the rate of fine silt, appears to be derived from dust input over the site at the time of deposition. Since prominent nepheloid (cloudy) layers occur in various deep ocean basins, and the material suspended in these layers often consists of reworked fine silt-sized sediments, coarser material should be dated where possible.  相似文献   

9.
Linking the timing of glacial episodes and behaviour to climatic shifts that are documented in ice and marine sedimentary archives is key to understanding ocean-land interactions. In the NW Scottish Highlands a large number of closely spaced (‘hummocky’) moraines formed at retreating glacier margins. Independent age control on one palaeo-glacier limit is consistent with the timing of Younger Dryas (YD) glaciation in the area, but adjacent glacier lobes have remained undated due to the lack of sites and material for 14C dating. Direct dating of ice-marginal moraines using optically stimulated luminescence (OSL) techniques has never been attempted before in Scotland, but if successful, they may be the most appropriate methods for constraining the age of sediment deposition in the absence of organic material. Coarse-grained quartz and K-feldspar minerals from supraglacial sheet flow deposits and glacilacustrine sediments within ice-marginal moraines were analysed using the single-aliquot regenerative-dose (SAR) protocol. Independent age control and clear geomorphological relationships indicate that all samples should yield YD or post-Last Glacial Maximum (LGM) ages. Quartz OSL shine down curves showed low luminescence sensitivity, significant medium-to-slow components, a weak fast component, and scattered SAR data; Linearly Modulated-OSL (LM-OSL) measurements confirmed that the fast component was weak or absent. In contrast, feldspar infrared stimulated luminescence (IRSL) was highly sensitive with excellent SAR data. However, SAR data from 3 mm diameter aliquots of feldspar (200 grains) give higher than expected equivalent doses (De) by an order of magnitude. SAR measurements of small clusters of feldspar grains (ranging from 1–8) considerably broaden the apparent De distribution, but even the lowest value is about 2–3 times the expected De. Two possibilities arise to explain the quartz and feldspar data: (1) that glacial sequences in the NW Highlands re-work inherited (older) glacial deposits and that some of the pre-Devensian existing glacial landforms have only been modified during Devensian glaciation; or (2) that the sedimentary processes operating in these ice-marginal environments are not conducive to adequate bleaching of quartz and feldspar grains. Our study implies that ice-proximal supraglacial sediments from this region in NW Scotland reflect older ages of deposition, but dating YD sediments has not been possible.  相似文献   

10.
Sediments attributed to flooding events of River Danube concerning the bleaching of the optical stimulated luminescence (OSL) signal were investigated. It is demonstrated that the OSL signal in both quartz and feldspar is not completely but differentially bleached in the sediment grains. Partial bleaching of the samples is clearly indicated by the scatter of equivalent dose determined for several individual single aliquots. It is also shown that residual ages in feldspars are significantly higher than those calculated for quartz. It is furthermore demonstrated that analysing measurement-time dependent equivalent dose estimates is not a suitable method to identify partial bleaching in the investigated sediment grains. However, the transport and deposition process of the investigated samples was probably disturbed by an artificial input of sediment, and this case study may thus not be representative of undisturbed high flood events in the past.  相似文献   

11.
The properties of the quartz luminescence signal have been shown to be a useful tool for sediment provenance analysis. These provenance studies are based on the sensitivity of the fast optically stimulated luminescence (OSL) component, which is also used for sediment dating. Besides the widespread occurrence of quartz in terrigenous sediments, OSL sensitivity can be acquired using relatively fast and low-cost measurements compared to sediment provenance analysis methods based on accessory minerals or isotopes. Additionally, laboratories worldwide already have an extensive database of recorded quartz OSL signals primarily measured for dating studies, and these data could potentially be repurposed for provenance analysis of Quaternary sedimentary systems through OSL sensitivity calculation. Here, we investigate the use of OSL quartz signals measured in sediment dating surveys for OSL sensitivity calculation and evaluation of changes in sediment sources. The OSL sensitivity was calculated and expressed as %BOSLF, which corresponds to the percentage of the fast OSL component signal (blue stimulation) to the total OSL curve; such approach is advantageous as it does not require any normalisation of the measured signal intensity to dose or aliquot size (weight). Three sets of samples from Amazonian fluvial sediments are investigated: two sets of Holocene floodplain sediments representing different sediment sources to the Amazonian fluvial system, i.e. the Amazon craton and the Andes Mountain belt, and a set of samples from the Içá Formation, a paleo-fluvial system active during the Pleistocene whose provenance is not fully known. Results show that the quartz OSL signal derived from the first test doses (Tn) applied in dating protocols had the best performance for %BOSLF calculation when compared to results from a measurement protocol designed specifically for sediment provenance analysis. There is significant correlation (R2 = 88) between sensitivities derived from Tn and a specific OSL provenance analysis protocol. The proposed approach indicates to be appropriate for sediment provenance analysis since it is able to discriminate signal differences among samples from known sources: Brazilian cratonic quartz yield high sensitivity values (mean %BOSLF >70), in contrast to the relatively lower values from Andean quartz (mean %BOSLF <50). In general, quartz OSL sensitivities from the Içá Formation samples fall into the same range of modern sediments transported by the Içá and Japurá rivers draining the Andean Eastern Cordillera of Colombia and Ecuador. We also observe a decrease in quartz OSL sensitivity during the Holocene, notably after 4 ka, with younger deposits showing lower sensitivity. Sediment provenance variations are discussed in terms of watershed rearrangement and/or precipitation-driven changes during the Late Pleistocene and Holocene across Amazonia.  相似文献   

12.
Work to apply luminescence dating to archaeological sites in the Lower Mekong Delta has continued with a programme aimed at dating ancient canal sediments and brick monuments in the vicinity of ancient city of Angkor Borei. Following the successful application of OSL dating to the Paris 2 canal near Angkor Borei further fieldwork and analysis has been undertaken. The infill and substrate of the larger Paris 4 canal connecting Angkor Borei to Oc Eo, some 80 km to the south in Vietnam has been sampled and subjected to luminescence analysis. Field spectroscopy and underwater bleaching experiments were also conducted in the Baray and Angkor Borei in 2004. The results show that both illumination intensities and spectral distributions are severely altered by as little as 1.5 m of turbid water, and that OSL bleaching rates for both quartz and feldspars are reduced. Since quartz resetting is heavily dependant on the UV components in daylight, which have preferentially attenuated the effects of turbid water on OSL zeroing rates are especially marked. The new data from the Paris 4 canal, which has been dated by OSL to be between the first millenium BC and the late first millenium AD are significant to understanding the archaeological development of the Fu Nan state in the Lower Mekong Delta, and the sequence of development of the canal network linking inland agrarian sites and coastal trading centres.  相似文献   

13.
In optical dating, the last time that a sample of sediment was exposed to sunlight is determined by dividing its equivalent dose (De) by the dose rate. For single-grain dating, the sample De is based on the statistical analysis of the distribution of De values estimated for individual grains, whereas the dose rate is usually determined from measurements of the environmental radioactivity of the bulk sample, together with allowances for radiation sources internal to the grains and cosmic rays. Conventionally, the De and dose rate are measured and analysed separately to produce an estimate of the depositional age of a sample, but this approach may result in loss of information because distributions of single-grain De values are influenced by several factors. Existing statistical models do not incorporate all the key information contributing to age estimation, such as the pattern and scale of dispersion of single-grain De values and dose rates, the associated measurement uncertainties, the effect of natural variability among grains, and the outlier probabilities of De and dose rate estimates. Here we propose an empirical Bayesian hierarchical age model (BHAM) for optical dating of quartz samples that incorporates the above information to estimate their depositional ages. The BHAM is based on the implementation of standardised growth curve and LnTn methods to integrate information on the full distribution of single-grain De values, sources of measurement uncertainty, beta-dose heterogeneity (observed or modelled), and detection of outliers. We present the results of validation tests using data sets of optically stimulated luminescence measurements and dose rates obtained for quartz samples dated previously from Denisova Cave (Russia) and for simulated samples. We conclude that the BHAM represents a robust and flexible approach to dealing with data for single grains of quartz within a Bayesian hierarchical framework and is suitable for application to sediments deposited in a variety of depositional settings.  相似文献   

14.
Debris flows in the mountainous regions south west of Beijing, China occur frequently and often result in considerable mass movements with disastrous consequences for human life, infrastructure and agriculture. Obtaining chronological information on such events is important for the prediction of the return frequency of these debris flows, risk assessment and climate change research. In this project, we use quartz single-grain optically stimulated luminescence (OSL) methods to determine the burial ages of five debris flow samples from the Zhai Tang region ∼60 km west of Beijing. OSL characteristics were found to be acceptable despite the low inherent brightness of quartz extracted from these samples. Single-grain thermal transfer was determined to be negligible and beta dose recovery experiments were satisfactory. The quartz single-grain dose distributions strongly indicate that the samples were poorly bleached prior to deposition; relative over-dispersions are larger than 60%. Minimum age modelling indicates that all five samples were deposited within the past few hundred years, indicating that catastrophic debris flows are occurring under the historically-recent land-use pattern.  相似文献   

15.
A cliff outcrop called Kluckow, in the Baltic Sea area, with a (glacio-) fluvial to (glacio-) lacustrine succession, provides a unique opportunity to resolve uncertainties in the timing and extent of several poorly constrained Weichselian ice advances. Based on a detailed lithofacies analysis, we selected four sampling horizons for luminescence dating to determine a depositional chronology. We measured both coarse-grain quartz and potassium-rich feldspar for age determination using optically stimulated luminescence (OSL) and post-IR infrared stimulated luminescence (pIRIR). Furthermore we addressed potential problems such as incomplete bleaching and quartz saturation effects. The resulting luminescence-chronology, supported by one radiocarbon age, illustrates a depositional time interval of the investigated sequence between ∼62 and ∼22 ka. Within this sequence a mussel-bearing fluvial sand indicate interstadial climate conditions at approximately 46 ka. The upper part of the section is composed of a 4 m thick glaciolacustrine silty clay and an overlying glaciofluvial sand; the latter yielded an OSL age of ∼22 ka. Shortly after these sequences formed, the subsequent ice advance (indicated by the overlying till sheet) reached the study area. Based on our new chronology and lithofacies analysis, we conclude that the Scandinavian Ice Sheet did not reach the study area between ∼62 and ∼22 ka.  相似文献   

16.
This paper introduces a novel optically stimulated luminescence (OSL) sampling protocol, referred to as the minimum extraction technique (MET), which assists in the OSL dating of museum ceramics. Here we outline how to extract a sample using this technique, as well as offering a discussion on the preparation protocols used for the method, and the calculation of the internal and external dose rates. A major benefit of MET is the minute sample size required, resulting in minimal damage to the museum object.MET permits OSL dating of material which would otherwise be usually off-limits for conventional OSL dating, for example, those housed in museum collections. In particular, MET can be used on objects which originate from regions where scientific analysis is currently not permitted on archaeological material, often owing to heritage laws.  相似文献   

17.
The Qinghai-Tibetan Plateau is an important area for the study of Quaternary glaciation. Optically stimulated luminescence (OSL) dating has the potential to contribute to the chronology of glaciation in this region, but it is important to assess the accuracy of OSL dating of these glacial sediments. In this study, single grain quartz OSL signals are examined for five glacial samples collected from the moraines outside the Baiyu Valley, southeastern Tibet. The quartz grains exhibit poor luminescence characteristics, with a small proportion of grains passing the screening criteria. Grains which pass the screening criteria have relatively low signal intensity, leading to De values with large uncertainties. MAM and CAM were used to determine De values for these samples. The OSL ages are consistent with the sequence of events derived from the geomorphological relationship of the samples, and also with previous published radiocarbon ages. However, it is more difficult to reconcile the OSL ages and the terrestrial cosmogenic nuclide (TCN) 10Be ages. Analysis of both single grain quartz OSL data and TCN 10Be data is complex in this area. Further work is required to increase confidence in the OSL ages generated for the glacial sediments from this region.  相似文献   

18.
Many dating techniques include significant error terms which are not independent between samples to date. This is typically the case in Optically Stimulated Luminescence (OSL) dating where the conversion from characteristic equivalent doses to the corresponding ages using the annual dosimetry data includes error terms that are common to all produced datings. Dealing with these errors is essential to estimate ages from a set of datings whose chronological ordering is known. In this work, we propose and we study a Bayesian model to address this problem. For this purpose, we first consider a multivariate model with multiplicative Gaussian errors in a Bayesian framework. This model relates a set of characteristic equivalent doses to the corresponding ages while taking into account for the systematic and non-systematic errors associated to the dosimetry. It thus offers the opportunity to deal properly with stratigraphic constraints within OSL datings, but also with other datings possessing errors which are independent from systematic errors of OSL (e.g. radiocarbon). Then, we use this model to extend an existing Bayesian model for the assessment of characteristic equivalent doses from Single Aliquot and Regenerative (SAR) dose measurements. The overall Bayesian model leads to the joint estimation of all the variables (which include all the dose–response functions and characteristic equivalent doses) of a sequence of, possibly heterogeneous, datings. We also consider a more generic solution consisting in using directly the age model from a set of characteristic equivalent dose estimates and their associated standard errors. We finally give an example of application on a set of five OSL datings with stratigraphic constraints and observe a good adequacy between the two approaches.  相似文献   

19.
The discovery of a cryptotephra (nonvisible volcanic horizon) in a windblown sand archaeological site in Poland highlights how luminescence and tephrostratigraphy may combine to better refine the chronology of such sites. In this study we identify a cryptotephra horizon which on the basis of major and minor element geochemistry and an OSL age of 2.3 ± 0.1 ka is correlated to the Glen Garry tephra. The different methodological strengths of OSL and tephrostratigraphy may be harnessed to counter the limitations of a single approach to produce a more secure chronology. Although in this study the tephra deposition event is shown to post-date the archaeological activity, the methodological approach is clearly demonstrated. Further investigations will reveal if cryptotephra layers are commonly preserved in such environmental settings. If this is so then future applications of this approach may prove to be more widely applicable.  相似文献   

20.
In this study we test, for the first time, the potential of an elevated temperature post-IR IR (pIRIR290) SAR protocol for the dating of young heated artefacts. Seven heated stones and seven potshards were collected from three different archaeological sites in Denmark: one site from the early Pre-Roman Iron Age 200 BC to AD 100, and two from the Viking period between AD 800 and 1200.We first derive quartz OSL ages for these samples, to support the archaeological age control. The luminescence characteristics of the pIRIR290 signal are then investigated; in particular the dose recovery ratios are shown to be close to unity. The performance of the feldspar pIRIR290 protocol is then examined by comparing the pIRIR290 ages with those based on the quartz OSL signal; the average ratio of pIRIR290 to OSL ages is 1.14 ± 0.05 (n = 14) and there is some suggestion that the possible overestimation of the feldspar ages compared to quartz is only of significance for the heated stone samples. Nevertheless, there is no indication of incomplete heating of the stones; the ratios of De derived from the IR50 and pIRIR290 signals are independent of sample type, and consistent with complete resetting by heating. Comparison with the archaeological age control is not able to identify whether quartz or feldspar provides the most reliable dating signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号