首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In-situ cosmogenic 36Cl production rates from spallation of Ca and K determined in several previously published calibration studies differ by up to 50%. In this study we compare whole rock 36Cl exposure ages with 36Cl exposure ages evaluated in Ca-rich plagioclase in the same 10 ± 3 ka lava sample taken from Mt. Etna (Sicily, 38° N). The exposure age of the sample was determined by K–Ar and corroborated by cosmogenic 3He measurements on cogenetic pyroxene phenocrysts. Sequential dissolution experiments showed that high Cl concentrations in plagioclase grains could be reduced from 450 ppm to less than 3 ppm after 16% dissolution. 36Cl exposure ages calculated from the successive dissolution steps of this leached plagioclase sample are in good agreement with K–Ar and 3He age. Stepwise dissolution of whole rock grains, on the other hand, is not as effective in reducing high Cl concentrations as it is for the plagioclase. 330 ppm Cl still remains after 85% dissolution. The 36Cl exposure ages derived are systematically about 30% higher than the ages calculated from the plagioclase. We could exclude contamination by atmospheric 36Cl as an explanation for this overestimate. Magmatic 36Cl was estimated by measuring a totally shielded sample, but was found to account for only an insignificant amount of 36Cl in the case of the 10 ka whole rock sample. We suspect that the overestimate of the whole rock exposure age is due to the difficulty in accurately assessing all the factors which control production of 36Cl by low-energy neutron capture on 35Cl, particularly variable water content and variable snow cover. We conclude that some of the published 36Cl spallation production rates might be overestimated due to high Cl concentrations in the calibration samples. The use of rigorously pretreated mineral separates reduces Cl concentrations, allowing better estimates of the spallation production rates.In the Appendix of this paper we document in detail the equations used. These equations are also incorporated into a 36Cl calculation spreadsheet made available in the supplementary data.  相似文献   

2.
Correct and precise age determination of prehistorical catastrophic rock‐slope failures prerequisites any hypotheses relating this type of mass wasting to past climatic regimes or palaeo‐seismic records. Despite good exposure, easy accessibility and a long tradition of absolute dating, the age of the 230 million m3 carbonate‐lithic Tschirgant rock avalanche event of the Eastern Alps (Austria) still is relatively poorly constrained. We herein review the age of mass‐wasting based on a total of 17 absolute ages produced with three different methods (14C, 36Cl, 234U/230Th). Chlorine‐36 (36Cl) cosmogenic surface exposure dating of five boulders of the rock avalanche deposit indicates a mean event age of 3.06 ± 0.62 ka. Uranium‐234/thorium‐230 (234U/230Th) dating of soda‐straw stalactites formed in microcaves beneath boulders indicate mean precipitation ages of three individual soda straws at 3.20 ± 0.26 ka, 3.04 ± 0.10 ka and 2.81 ± 0.15 ka; notwithstanding potential internal errors, these ages provide an ‘older‐than’ (ante quam) proxy for mass‐wasting. Based on radiocarbon ages (nine sites) only, it was previously suggested that the present rock avalanche deposit represents two successive failures (3.75 ± 0.19 ka bp , 3.15 ± 0.19 ka bp ). There is, however, no evidence for two events neither in surface outcrops nor in LiDAR derived imagery and drill logs. The temporal distribution of all absolute ages (14C, 36Cl, 234U/230Th) also does not necessarily indicate two successive events but suggest that a single catastrophic mass‐wasting took place between 3.4 and 2.4 ka bp . Taking into account the maximum age boundary given by reinterpreted radiocarbon datings and the minimum U/Th‐ages of calcite precipitations within the rock avalanche deposits, a most probable event age of 3.01 ± 0.10 ka bp can be proposed. Our results underscore the difficulty to accurately date catastrophic rock slope failures, but also the potential to increase the accuracy of age determination by combining methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
We have measured 36Cl in three rock surfaces of the Yenicekale building complex in Hattusha (Bo?azköy, Turkey). Hattusha was the capital of Hittite Empire which lasted from about 1650/1600 to 1200 BC. At Yenicekale, Hittite masons flattened the summit of an outcropping limestone knoll to form an artificial platform as the foundation for a building. Next they built a circuit wall along the lateral precipices of the flattened bedrock platform. We took one sample from the limestone bedrock platform and two samples from limestone building blocks of the circuit wall for cosmogenic 36Cl analysis. Calculated exposure ages are 20 ± 1 ka for the sample from the bedrock platform and 24 ± 1 ka and 52 ± 2 ka for the circuit wall blocks. These exposure ages are significantly older than the age expected based on the estimated time of construction between 3.2 ka and 3.7 ka. We conclude that the sampled surfaces contain significant inherited cosmogenic 36Cl. We cannot directly determine exposure ages for the building complex based on these three samples. On the other hand we may use the measured concentrations to determine how much of the rock was removed from the platform during flattening. To this end we modeled the variation of 36Cl production with depth at Yenicekale using the results from the bedrock sample. We conclude that the Hittite masons removed only around 3 m from top of the limestone block. This means that the volume of rock removed from the bedrock platform is significantly less than the volume in the circuit wall atop the platform. They did not gain enough rock from this flattening to make the building. In agreement with this, the first results of our detailed microfacies analysis indicate that many of the building blocks are not of the same facies as the underlying limestone and must have been quarried elsewhere. Although we were not able to exposure date the Yenicekale complex due to the presence of inherited 36Cl, our data suggest that Hittite masons excavated (most of) the building stones not at Yenicekale, but in quarries outside of Hattusha and then transported them to the construction site. These quarries have not yet been identified.  相似文献   

4.
Samples from three medieval rock avalanches from the French (Le Claps, Mont Granier) and Austrian Alps (Dobratsch) and a man-made structure, i.e. the Stephansdom in Vienna, have been analysed for in-situ produced 36Cl by accelerator mass spectrometry (AMS). All four sampling sites of independently known exposure duration turned out to be not appropriate as calibration sites for the determination of the 36Cl-production rate from Ca. Indeed, the determination of short exposure ages for dating rock avalanches and man-made structures by 36Cl is hindered dramatically by inheritance, especially for samples characterized by high natCl-concentrations. Generally, there are hints that the theoretical calculation of 36Cl-production from epithermal and thermal neutron-capture on 35Cl is highly underestimated in all existing models, thus, asking for particular precaution if working on high-Cl samples for any project. Hence, this work evidences that potential high inheritance, even for samples reasonably shielded before exhumation, has to be considered especially when dealing with recently exposed surfaces such as glacially polished rocks, alluvial terraces, fault scarps etc.  相似文献   

5.
Accurate determination of chlorine concentrations in terrestrial rocks is of importance for the interpretation of terrestrial in-situ cosmogenic 36Cl. Neutron capture by 35Cl, together with production from Ca and K, is one of the three major production pathways of 36Cl in rocks. Here, we present an inter-comparison of chlorine determinations by two procedures. The first approach is an independent Cl determination by prompt-gamma (neutron) activation analysis (PGAA). The second method is isotope-dilution based on isotopically enriched stable chlorine carrier added during chemical sample preparation for accelerator mass spectrometry (ID-AMS). Twenty-six (26) whole rock samples have been processed for PGAA and ID-AMS analysis. This study constitutes the first published inter-comparison for concentrations below 100 μgCl/g. Our results show no significant difference in Cl concentrations between methods. This agreement indicates good retention of chloride during the procedure we employ for whole rock sample dissolution. No significant loss of stable chlorine from either the spike or the sample occurs before isotopic equilibrium is reached, prior to AgCl precipitation. Uncertainties, which are <5% for both methods, affect the uncertainty of the total 36Cl production rate less than 2% for our samples.The Cl concentration measured by PGAA can be used to calculate the amount of isotopically enriched spike for AMS-ID sample preparation with the aim to optimize 36Cl analysis. Furthermore, PGAA offers an advance for the interpretation of 36Cl measurements. It allows measurement of concentrations of major, minor and trace elements including the elements for 36Cl production (Cl, K, Ca, Ti, and Fe), as well as of neutron absorbers and neutron moderators (H, B, Sm and Gd). These measurements are performed simultaneously and with a precision necessary for calculating the relative contributions to 36Cl production from the different mechanisms.  相似文献   

6.
We have evaluated all parameters for the calculation of cosmogenic 36Cl production rates and thus surface exposure ages in dolomite and limestone. We found that we can use either of both published negative muon stopping rates until more information is available. The largest uncertainty of the age estimation in the upper meter of rock comes from the 36Cl production rate from Ca spallation and, in the case of 50–100 ppm Cl content, from the production rate of epithermal neutrons, which we estimate at 760 ± 150 neutrons/g_air/yr (1σ). For a sample with representative amounts of Ca and Cl (20 wt% Ca and 50 ppm Cl, or 40 wt% Ca and 100 ppm Cl), the age can be calculated with a precision of 7–10% in the top 1.5 m of the depth profile. Further improvement of 36Cl calculations depends on new calibration of 36Cl production from Ca spallation, re-evaluation of 36Cl production by low-energy neutron capture on 35Cl, as well as of the muon flux and muon capture based on the most recent measurement data.  相似文献   

7.
Large rock–ice avalanches have attracted attention from scientists for decades and some of these events have caused high numbers of fatalities. A relation between rock slope instabilities in cold high mountain areas and climate change is currently becoming more evident and questions about possible consequences and hazard scenarios in densely populated high mountain regions leading beyond historical precedence are rising. To improve hazard assessment of potential rock–ice avalanches, their mobility is a critical factor. This contribution is an attempt to unravel driving factors for the mobility of large rock–ice avalanches by synthesizing results from physical laboratory experiments and empirical data from 64 rock–ice avalanches with volumes >1x106 m3 from glacierized high mountain regions around the world. The influence of avalanche volume, water and ice content, low‐friction surfaces, and topography on the apparent coefficient of friction (as a measure of mobility) is assessed. In laboratory experiments granular ice in the moving mass was found to reduce bulk friction up to 20% while water led to a reduction around 50% for completely saturated material compared with dry flows. Evidence for the effects of water as a key driving factor to enhance mobility was also found in the empirical data, while the influence of the ice content could not be confirmed to be of much relevance in nature. Besides liquefaction, it was confirmed that mobility increases with volumes and that frictional surface characteristics such as flow paths over glaciers are also dominant variables determining mass movement mobility. Effects of the topography along the flow path as well as channeling are assumed to be other critical factors. The results provide an empirical basis to roughly account for different path and flow characteristics of large rock–ice avalanches and to find appropriate ranges for friction parameters for scenario modeling and hazard assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Despite their significance for estimating hazards and forecasting future activity, dating young volcanic deposits and landforms (<50,000 yrs old) remains a challenge due to the limitations inherent to the different isotopic chronometers used. The Trans-Mexican Volcanic Belt is one of the most active and populated continental arcs worldwide, yet its temporal pattern of activity is poorly constrained. Such deficiency is particularly problematic for the Sierra Chichinautzin Volcanic Field (SCVF) that is located at the doorstep of Mexico City and Cuernavaca and is hence a major source of risk for these cities. Existing ages for this area derive mostly from either radiocarbon on charcoal, which is rare and may be contaminated, or 40Ar/39Ar on rock matrix, which is poorly precise for this time period and rock type. Here, we focus on the Pelado monogenetic volcano, which is located in the central part of the SCVF and erupted both explosively and effusively, producing a large lava shield and a widespread tephra blanket. This unique eruptive event was previously dated at ∼12 calibrated (cal) kyrs BP, using radiocarbon dating on charcoal from deposits related to the eruption. To test alternative dating approaches and confirm the age of this significant eruption, we applied two less conventional techniques, radiocarbon dating of bulk paleosol samples collected below the complete tephra sequence at nine sites around the shield, and in-situ 36Cl exposure dating of two samples of an aphyric lava from the base of the shield. Radiocarbon paleosol ages span a continuous time interval from 13.2 to 20.2 cal kyrs BP (2σ), except for one anomalously young sample. This wide age spread, along with the low organic contents of the paleosols, may be due to erosive conditions, related to the sloping topography of the sampling sites and the cool and relatively dry climate of the Younger Dryas (11.7–12.9 ka), during which the Pelado eruption probably occurred. The two 36Cl-dated lava samples have consistent ages at 1σ analytical errors of 15.5 ± 1.4 ka and 13.2 ± 1.2 ka, respectively, yielding an average age of 14.3 ± 1.6 ka for this lava flow. The high full uncertainty in 36Cl ages (24%) is due to high rock Cl content. We conclude that paleosol radiocarbon dating is useful if numerous samples are analyzed and climatic and relief conditions at the time of the eruption and at the sites of tephra deposition are considered. The 36Cl dating technique is an alternative method to date volcanic eruptions, as it gave consistent results, but in the specific case of Pelado volcano, the high Cl content in the analyzed rocks increases the age uncertainties.  相似文献   

9.
Cosmogenic chlorine-36 production rates in terrestrial rocks   总被引:2,自引:0,他引:2  
Chlorine-36 is produced in rocks exposed to cosmic rays at the earth surface through thermal neutron activation of 35Cl, spallation of 39K and 40Ca, and slow negative moun capture by 40Ca. We have measured the 36Cl content of 14C-dated glacial boulders from the White Mountains in eastern California and in a 14C-dated basalt flow from Utah. Effective, time-intergrated production parameters were calculated by simultaneous solution of the 36Cl production equations. The production rates due to spallation are 4160 ± 310 and 3050 ± 210 atoms 36Cl yr−1 mol−139K and 40Ca, respectively. The thermal neutron capture rate was calculated to be (3.07 ± 0.24) × 105 neutrons (kg of rock)−1 yr−1. The reported values are normalized to sea level and high geomagnetic latitudes. Production of 36Cl at different altitudes and latitudes can be estimated by appropriate scaling of the sea level rates. Chlorine-36 dating was performed on carbonate ejecta from Meteor Crater, Arizona, and late Pleistocene morainal boulders from the Sierra Nevada, California. Calculated 36Cl ages are in good agreement with previously reported ages obtained using independent methods.  相似文献   

10.
Rock avalanche is one of the most notable geological disasters in the mountain areas, such as the southeastern Tibetan Plateau. A typical one therein is the Luanshibao (LSB) rock avalanche that occurred in the Maoyaba basin. This rock avalanche has attracted a great deal of attentions, as it has a potential threat to the construction of Sichuan-Tibet Railway. It has been widely accepted that the LSB rock avalanche was caused by a seismic event. However, it is still an open question as to the timing of the earthquake-triggered rock avalanche. Here, we report twenty new 10Be exposure-ages obtained from the deposition zone. These tightly clustered exposure-ages, combined with geomorphic evidence, indicate that the LSB rock avalanche occurred during the mid-Holocene, possibly at 5.2 ± 0.2 ka. A comparison between the timing of rock avalanche and seismic events suggests a close correlation of the LSB rock avalanche with recurrent earthquakes around ∼5 ka BP. Such a correlation is well supported by the view from previous studies.  相似文献   

11.
Large rock slope failures from near‐vertical cliffs are an important geomorphic process driving the evolution of mountainous landscapes, particularly glacially steepened cliffs. The morphology and age of a 2·19 × 106 m3 rock avalanche deposit beneath El Capitan in Yosemite Valley indicates a massive prehistoric failure of a large expanse of the southeast face. Geologic mapping of the deposit and the cliff face constrains the rock avalanche source to an area near the summit of ~8·5 × 104 m2. The rock mass free fell ~650 m, reaching a maximum velocity of 100 m s?1, impacted the talus slope and spread across the valley floor, extending 670 m from the base of the cliff. Cosmogenic beryllium‐10 exposure ages from boulders in the deposit yield a mean age of 3·6 ± 0·2 ka. The ~13 kyr time lag between deglaciation and failure suggests that the rock avalanche did not occur as a direct result of glacial debuttressing. The ~3·6 ka age for the rock avalanche does coincide with estimated late Holocene rupture of the Owens Valley fault and/or White Mountain fault between 3·3 and 3·8 ka. The coincidence of ages, combined with the fact that the most recent (AD 1872) Owens Valley fault rupture triggered numerous large rock falls in Yosemite Valley, suggest that a large magnitude earthquake (≥M7.0) centered in the south‐eastern Sierra Nevada may have triggered the rock avalanche. If correct, the extreme hazard posed by rock avalanches in Yosemite Valley remains present and depends on local earthquake recurrence intervals. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

12.
Moraines that dam proglacial lakes pose an increasing hazard to communities in the Andes and other mountain ranges. The moraines are prone to failure through collapse, overtopping by lake waters or the effect of displacement waves resulting from ice and rock avalanches. Resulting floods have led to the loss of thousands of lives in the Cordillera Blanca mountains of Peru alone in the last 100 years. On 22 April 2002 a rock avalanche occurred immediately to the south‐west of Laguna Safuna Alta, in the Cordillera Blanca. The geomorphic evidence for the nature, magnitude and consequences of this event was investigated in August 2002. Field mapping indicated that the avalanche deposited 8–20 × 106 m3 of rock into the lake and onto the surface of the frontal region of Glaciar Pucajirca, which flows into the lake. Repeated bathymetric surveying indicated that ~5 × 106 m3 of this material was deposited directly into the lake. The immediate effect of this event was to create a displacement wave that gained in height as it travelled along the lake basin, overtopping the impounding moraine at the lake's northern end. To achieve overtopping, the maximum wave height must have been greater than 100 m. This, and subsequent seiche waves, caused extensive erosion of both the proximal and distal faces of the impounding terminal moraine. Further deep gullying of the distal face of this moraine resulted from the supply of pressurized water to the face via a relief overflow tunnel constructed in 1978. Two‐dimensional, steady‐state analysis of the stability of the post‐avalanche moraine rampart indicates that its proximal face remains susceptible to major large‐scale rotational failure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The meteoric input of36Cl due to cosmogenic or nuclear-weapon-produced36Cl cannot contribute significantly to the36Cl present in the saline groundwaters (up to 700 mg l−1 Cl) from the Stripa granite. The extent of in-situ production of36Cl has been estimated on the basis of the neutron fluxes within the granite and its surrounding leptite. The36Cl present in the groundwaters is attributed to either admixture of labelled Cl from the leptite with Cl from the granite or to the total derivation of groundwater chlorinity within the leptite followed by radiochemical ingrowth of36Cl during subsequent groundwater residence within the granite. The chloride derived from the leptite may be either matrix chloride or chloride from an external source which has had a long residence time within the leptite. The implications of36Cl in-situ production for the estimation of groundwater residence times and for the geochemical evolution of groundwater chlorinity are discussed.  相似文献   

14.
The meteoric input of36Cl due to cosmogenic or nuclear-weapon-produced36Cl cannot contribute significantly to the36Cl present in the saline groundwaters (up to 700 mg l−1 Cl) from the Stripa granite. The extent of in-situ production of36Cl has been estimated on the basis of the neutron fluxes within the granite and its surrounding leptite. The36Cl present in the groundwaters is attributed to either admixture of labelled Cl from the leptite with Cl from the granite or to the total derivation of groundwater chlorinity within the leptite followed by radiochemical ingrowth of36Cl during subsequent groundwater residence within the granite. The chloride derived from the leptite may be either matrix chloride or chloride from an external source which has had a long residence time within the leptite. The implications of36Cl in-situ production for the estimation of groundwater residence times and for the geochemical evolution of groundwater chlorinity are discussed.  相似文献   

15.
The ~0.2 km3 Eibsee rock avalanche impacted Paleolake Eibsee and completely displaced its waters. This study analyses the lake impact and the consequences, and the catchment response to the landslide. A quasi-3D seismic reflection survey, four sediment cores from modern Lake Eibsee, reaching far down into the rock avalanche mass, nine radiocarbon ages, and geomorphic analysis allow us to distinguish the main rock avalanche event from a secondary debris avalanche and debris flow. The highly fluidized debris avalanche formed a megaturbidite and multiple swashes that are recorded in the lake sediments. The new calibrated age for the Eibsee rock avalanche of ~4080–3970 cal yr BP indicates a coincidence with rockslides in the Fernpass cluster and subaquatic landslides in Lake Piburg and Lake Plansee, and raises the possibility that a large regional earthquake triggered these events. We document a complex history of erosion and sedimentation in Lake Eibsee, and demonstrate how the catchment response and rebirth of the lake are revealed through the complementary application of geophysics, sedimentology, radiocarbon dating, and geomorphology. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

16.
Two branches of Tangjiagou rock avalanche were triggered by Lushan earthquake in Sichuan Province, China on April 20th, 2013. The rock avalanche has transported about 1 500 000 m3 of sandstone from the source area. Based on discrete element modeling, this study simulates the deformation, failure and movement process of the rock avalanche. Under seismic loading, the mechanism and process of deformation, failure, and runout of the two branches are similar. In detail, the stress concentration occur firstly on the top of the mountain ridge, and accordingly, the tensile deformation appears. With the increase of seismic loading, the strain concentration zone extends in the forward and backward directions along the slipping surface, forming a locking segment. As a result, the slipping surface penetrates and the slide mass begin to slide down with high speed. Finally, the avalanche accumulates in the downstream and forms a small barrier lake. Modeling shows that a number of rocks on the surface exhibit patterns of horizontal throwing and vertical jumping under strong ground shaking. We suggest that the movement of the rock avalanche is a complicated process with multiple stages, including formation of the two branches, high-speed sliding, transformation into debris flows, further movement and collision, accumulation, and the final steady state. Topographic amplification effects are also revealed based on acceleration and velocity of special monitoring points. The horizontal and vertical runout distances of the surface materials are much greater than those of the internal materials. Besides, the sliding duration is also longer than that of the internal rock mass.  相似文献   

17.
The Tarim Basin, located in Xinjiang (Fig. 1), is the largest deposit basin with an area of about 560000 km2 in China. From late Triassic period to early Miocene, two huge subbasins developed, named the Kuqa sub-basin at the foot of the Tianshan Mountains in the north and the Shaqa subbasin at the foot of the Kunlun Mountains in the south of the Tarim Basin. During the late Cretaceous to early Tertiary period, the Paleo-me- diterranean seawater repetitively invaded into the Shaqa subbas…  相似文献   

18.
This study aims at determining the chlorine and chlorine-36 fallout rates in an experimental beech forest site located in NE France (48°31′55″ N, 5°16′8″ E). A monthly record of Cl and 36Cl concentrations in rainfall samples collected above the canopy was performed during two years, from March 2012 to February 2014. The results show that the Cl concentrations mainly originate from sea-spray while the 36Cl concentrations originate from the stratosphere and therefore present a seasonal dependency. Abrupt and important inputs of 36Cl from the stratosphere indeed yield sharp increases of the recorded concentrations during the spring-summer. We also show that a too short sampling period might bias the determined 36Cl fallout rate. To smooth the seasonal and sporadic bursts of 36Cl, a minimum of 6 months sampling period is required. A mean 36Cl fallout rate of (77 ± 21) atoms m−2 s−1 can be deduced from our study, which is 45% higher than the modelled value. This discrepancy suggests more studies aiming at measuring the 36Cl fallout rate worldwide are necessary.  相似文献   

19.
The Lavini di Marco rock avalanche deposit (“Marocca di Marco”) is located along the left side of the middle Adige Valley, south of the town of Rovereto (NE Italy). The deposit is estimated to have a volume of ∼2 × 108 m3 and cover an area of ∼6.8 km2. It comprises Jurassic Calcari Grigi limestones that detached from the western slope of Mt. Zugna Torta. The Lavini di Marco is composed of at least two different rock avalanche bodies, the main deposit known as Lavini di Marco (the principal) and the much smaller Costa Stenda deposit. Costa Stenda deposits overlie Lavini di Marco deposits. Samples for 36Cl exposure dating were collected from boulders within the deposits, from sliding plane bedrock and from the bedrock wall at the head scarp. Exposure ages range from 800 ± 210 to 21310 ± 1000 years. The latter age stands as a notable outlier suggesting that that Costa Stenda boulder was exposed for a considerable amount of time in the pre-slide bedrock. Lavini di Marco and Costa Stenda boulder ages are 2600 ± 200, 2700 ± 200, 3100 ± 300, 3300 ± 300, 3400 ± 300, 4400 ± 290, 5300 ± 300, and 5400 ± 300 years. The latter three are Costa Stenda boulders which we also interpret to contain inherited nuclide concentrations. The five remaining boulder ages cluster around 3000 years. We calculate a mean age for the Lavini di Marco and Costa Stenda rockslides of 3000 ± 400 years. Within the uncertainties of our data the two slides were simultaneous. For the bedrock sliding plane we obtained significantly younger ages, 1600 ± 100 and 1400 ± 100 years, and for the head scarp 800 ± 200 years. The sliding plane ages record small-scale reactivation which seems to overlap in time with a catastrophic flood event of the Adige River in Verona, as reported in the Fulda Annales, in 883 AD. Only the single age of 800 ± 210 years suggests activity at Lavini di Marco coincident with the well-known Verona earthquake (1117 AD).  相似文献   

20.
In this study, rapid topographic changes and increased erosion rates caused by massive slope failures in a glacierized and permafrost‐affected high‐mountain face were investigated with respect to the current climatic change. The study was conducted at one of the highest periglacial rock faces in the European Alps, the east face of Monte Rosa, Italy. Pronounced changes in ice cover and repeated rock and ice avalanche events have been documented in this rock wall since around 1990. The performed multi‐temporal comparison of high‐resolution digital terrain models (DTMs) complemented by detailed analyses of repeat photography represents a unique assessment of topographic changes and slope failures over half a century and reveals a total volume loss in bedrock and steep glaciers in the central part of the face of around 25 × 106 m3 between 1988 and 2007. The high rock and ice avalanche activity translates into an increase in erosion rates of about one order of magnitude during recent decades. The study indicates that changes in atmospheric temperatures and connected changes in ice cover can induce slope destabilization in high‐mountain faces. Analyses of temperature data show that the start of the intense mass movement activity coincided with increased mean annual temperatures in the region around 1990. However, once triggered, mass movement activity seems to be able to proceed in a self‐reinforcing cycle, whereby single mass movement events might be strongly influenced by short‐term extreme temperature events. The investigations suggest a strong stability coupling between steep glaciers and underlying bedrock, as most bedrock instabilities are located in areas where surface ice has disappeared recently and the failure zones are frequently spatially correlated and often develop from lower altitudes progressively upwards. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号