首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The results of 2-year (2010–2012) measurements of the concentrations of organic carbon (OC) and elemental carbon (EC), which were taken at the Zotino Tall Tower Observatory (ZOTTO) Siberian background station (61° N, 89° E), are given. Despite the fact that this station is located far from populated areas and industrial zones, the concentrations of OC and EC in the atmosphere over boreal forests in central Siberia significantly exceed their background values. In winter and fall, high concentrations of atmospheric carbonaceous aerosol particles are caused by the long-range transport (~1000 km) of air masses that accumulate pollutants from large cities located in both southern and southwestern regions of Siberia. In spring and summer, the pollution level is also high due to regional forest fires and agricultural burning in the steppe zone of western Siberia in the Russian–Kazakh border region. Background concentrations of carbonaceous aerosol particles were observed within relatively short time intervals whose total duration was no more than 20% of the entire observation period. In summer, variations in the background concentrations of OC closely correlated with air temperature, which implies that the biogenic sources of organic-particle formation are dominating.  相似文献   

2.
《Ocean Modelling》2009,26(3-4):154-171
Ocean surface mixing and drift are influenced by the mixed layer depth, buoyancy fluxes and currents below the mixed layer. Drift and mixing are also functions of the surface Stokes drift Uss, volume Stokes transport TS, a wave breaking height scale Hswg, and the flux of energy from waves to ocean turbulence Φoc. Here we describe a global database of these parameters, estimated from a well-validated numerical wave model, that uses traditional forms of the wave generation and dissipation parameterizations, and covers the years 2003–2007. Compared to previous studies, the present work has the advantage of being consistent with the known physical processes that regulate the wave field and the air–sea fluxes, and also consistent with a very large number of in situ and satellite observations of wave parameters. Consequently, some of our estimates differ significantly from previous estimates. In particular, we find that the mean global integral of Φoc is 68 TW, and the yearly mean value of TS is typically 10–30% of the Ekman transport, except in well-defined regions where it can reach 60%. We also have refined our previous estimates of Uss by using a better treatment of the high frequency part of the wave spectrum. In the open ocean, Uss  0.013U10, where U10 is the wind speed at 10 m height.  相似文献   

3.
The results of the 1995–2008 observations of the concentrations of ozone and nitric oxides in the surface air over the Trans-Siberian Railway using a mobile laboratory (the TROICA experiments) are analyzed. The features of the spatial distribution and time variability of these gases over the continent within the latitudinal belt 48°–58° N are revealed individually for polluted and background conditions. The characteristic features of their distribution are a decrease in the concentration of nitric oxides and an increase in the concentration of ozone in an eastward direction. On the whole, the process of photochemical ozone formation over the territory of Siberia is slow. Noticeable increases in the concentration of ozone are associated with both forest and steppe fires and with the transboundary transport of pollution from the countries of eastern Asia. The dry precipitation of trace gases plays a significantly larger role in Siberia than in coastal and high-altitude unpolluted regions due to powerful and long temperature inversions.  相似文献   

4.
Achieving a reliable and accurate numerical prediction of the self-propulsion performance of a ship is still an open problem that poses some relevant issues. Several CFD methods, ranging from boundary element methods (BEM) to higher-fidelity viscous Reynolds averaged Navier–Stokes (RANS) based solvers, can be used to accurately analyze the separate problems, i.e. the open water propeller and the hull calm water resistance. However, when the fully-coupled self-propulsion problem is considered, i.e. the hull advancing at uniform speed propelled by its own propulsion system, several complexities rise up. Typical flow simplifications adopted to speed-up the simulations of the single analysis (hull and propeller separately) lose their validity requiring a more complex solver to tackle the fully-coupled problem. The complexity rises up further when considering a maneuver condition. This aspect increases the computational burden and, consequently, the required time which becomes prohibitive in a preliminary ship design stage.The majority of the simplified methods proposed in literature to include propeller effects, without directly solve the propeller flow, in a high-fidelity viscous solver are not able to provide all the commonly required self-propulsion coefficients. In this work, a new method to enrich the results from a body force based approach is proposed and investigated, with the aim to reduce as much as possible the computational burden without losing any useful result. This procedure is tested for validation on the KCS hull form in self-propulsion and maneuver conditions.  相似文献   

5.
Transport time scales are often offered by scientists, and accepted by ecologists, as qualitative indicators of the susceptibility of ecological components within an embayment. However, rigorous quantitative methods were never presented to confirm this intuition. Transport time scales in water bodies are classically based on their physical and chemical aspects rather than their ecological and biological character. The direct connection between a physical time scale and an ecological effect has to be investigated in order to quantitatively relate a transport time scale to ecology. This concept is presented here with some general guidelines and clarifying examples. To be able to relate physical time scales to biological processes, a simple tidal prism model is developed that calculates temporal changes in concentration and the related exposure. This approach provides a quick method to calculate the characteristic time for transport in a large number of embayments, which can also help in classification endeavors.  相似文献   

6.
一个两时间层分裂显格式海洋环流模式(MASNUM)及其检验   总被引:1,自引:0,他引:1  
A two-time-level, three-dimensional numerical ocean circulation model(named MASNUM) was established with a two-level, single-step Eulerian forward-backward time-differencing scheme. A mathematical model of large-scale oceanic motions was based on the terrain-following coordinated, Boussinesq, Reynolds-averaged primitive equations of ocean dynamics. A simple but very practical Eulerian forward-backward method was adopted to replace the most preferred leapfrog scheme as the time-differencing method for both barotropic and baroclinic modes. The forward-backward method is of second-order of accuracy, computationally efficient by requiring only one function evaluation per time step, and free of the computational mode inherent in the three-level schemes. This method is superior to the leapfrog scheme in that the maximum time step of stability is twice as large as that of the leapfrog scheme in staggered meshes thus the computational efficiency could be doubled. A spatial smoothing method was introduced to control the nonlinear instability in the numerical integration. An ideal numerical experiment simulating the propagation of the equatorial Rossby soliton was performed to test the amplitude and phase error of this new model. The performance of this circulation model was further verified with a regional(northwest Pacific) and a quasi-global(global ocean simulation with the Arctic Ocean excluded) simulation experiments. These two numerical experiments show fairly good agreement with the observations. The maximum time step of stability in these two experiments were also investigated and compared between this model and that model which adopts the leapfrog scheme.  相似文献   

7.
A new form of generalized Boussinesq equations for varying water depth   总被引:1,自引:0,他引:1  
M. Zhao  B. Teng  L. Cheng 《Ocean Engineering》2004,31(16):597-2072
A new set of equations of motion for wave propagation in water with varying depth is derived in this study. The equations expressed by the velocity potentials and the wave surface elevations include first-order non-linearity of waves and have the same dispersion characteristic to the extended Boussinesq equations. Compared to the extended Boussinesq equations, the equations have only two unknown scalars and do not contain spatial derivatives with an order higher than 2. The wave equations are solved by a finite element method. Fourth-order predictor–corrector method is applied in the time integration and a damping layer is applied at the open boundary for absorbing the outgoing waves. The model is applied to several examples of wave propagation in variable water depth. The computational results are compared with experimental data and other numerical results available in literature. The comparison demonstrates that the new form of the equations is capable of calculating wave transformation from relative deep water to shallow water.  相似文献   

8.
Satellite remote sensing offers new means of quantifying particulate organic carbon, POC, concentration over large oceanic areas. From SeaWiFS ocean color, we derived 10-year data of POC concentration in the surface waters of the global ocean. The 10-year time series of the global and basin scale average surface POC concentration do not display any significant long-term trends. The annual mean surface POC concentration and its seasonal amplitude are highest in the North Atlantic and lowest in the South Pacific, when compared to other ocean basins. POC anomalies in the North Atlantic, North Pacific, and global concentrations seem to be inversely correlated with El Niño index, but longer time series are needed to confirm this relationship. Quantitative estimates of POC reservoir in the oceanic surface layer depend on the choice of what should represent this layer. Global average POC biomass is 1.34 g m?2 if integrated over one optical depth, 3.62 g m?2 if integrated over mixed layer depth, and up to 6.41 g m?2 if integrated over 200-m layer depth (when assumed POC concentration below MLD is 20 mg m?3). The global estimate of total POC reservoir in the surface 200-m layer of the ocean is 228.61×1013 g. We expect that future estimates of POC reservoir may be even larger, when more precise calculations account for deep-water organic-matter maxima in oligotrophic regions, and POC biomass located just below the seasonal mixed layer in spring and summer in the temperate regions.  相似文献   

9.
The flexible riser top connection is a critical region for lifetime assessment due to large tension/curvature variations and modeling uncertainties. The bend stiffener polyurethane mechanical response not only presents a nonlinear loading rate and temperature dependency but is also subjected to weather ageing during operation, which may affect its mechanical behavior over time. The top tension, employed for riser local cross-section stress calculation, is usually obtained from global dynamic analyses performed under selected environmental conditions, if direct measurement is not available. As a consequence, both the bend stiffener effect on the curvature distribution and the top tension time series present inherent uncertainties for riser lifetime (re)assessment. In the present work, a proposed monitoring approach composed by gyrometers installed along flexible riser/bend stiffener top connection system length combined with an inverse problem methodology is numerically investigated to estimate the following parameters: (i) polyurethane hyperelastic response and (ii) effective top tension. The top connection system is modeled using a large deflection beam bending model and the parameters are estimated using a damped least-square minimization approach with the Levenberg–Marquardt algorithm. For the preliminary feasibility investigation, the gyrometer experimental data is numerically estimated through Monte Carlo simulations. A case study is carried out to investigate the influence that the number of sensors, sensors arrangement, loading conditions and top connection model have on the inverse parameters estimation. The results indicate that the proposed monitoring approach and inverse parameter estimation methodology may effectively reduce flexible riser lifetime calculation uncertainties.  相似文献   

10.
《Coastal Engineering》2005,52(1):43-62
A vertical two-dimensional (2D) numerical model for time dependent local scour below offshore pipelines subject to unidirectional steady flow is developed. The governing equations for the flow and sediment transport are solved by using finite difference method in a general curvilinear coordinate system. The performance of two turbulence models, the standard kɛ model and Smagorinsky subgrid scale (SGS) model, on modeling time dependent scour processes is examined. Both suspended load and bed load are considered in the scour model. The suspended-load model is verified against two channel sediment transport cases. The change of bed level is calculated from the continuity equation of total sediment transport. A new time marching scheme and a sand slide scheme are proposed for the scour calculation. It is found that the proposed time marching scheme and sand slide model work well for both clear-water and live-bed scour situations and the standard kɛ turbulence closure is more preferable than the SGS model in the 2D scour model developed in this study.  相似文献   

11.
By using the Euler-Lagrangian method, we examine water movements within the layer of minimum oxygen concentration and estimate local oxygen consumption rates for 15 regions of the global ocean. To do this, a number of labeled particles (which represent water parcels) are deployed at the center of a grid with 15 depth levels and tracked backward in time for 50 years in a three-dimensional velocity field. We assume that a particle picks up oxygen when it encounters the point of maximum oxygen concentration along the 50 years segment of its path. We introduce a contribution rate from waters distributed throughout the global ocean to the oxygen concentration of a local layer under consideration. Water parcels which are assumed to pick up oxygen within the oxygen minimum layer of an oceanic region under consideration make a very small contribution to the overall oxygen concentration of this layer. In addition, these parcels move out of the layer and water parcels from the upper layers take their place. The averaged Lagrangian local oxygen consumption rate is 0.033 ml/l/yr for the depth of the oxygen minimum layer, 0.20 ml/l/yr at 100 m depth (euphotic layer), 0.043 ml/l/yr for layers from 150 m to 800 m depth and 0.012 ml/l/yr for deep layers from 800 m to 3000 m. The present Lagrangian numerical experiment produces a maximum difference between observed and calculated concentrations of oxygen and, therefore, a maximum oxygen consumption rate. Although the present method has an ambiguity as to how oxygen is picked up, we nevertheless were able to identify regions in which the water parcels pick up oxygen of maximum concentration. We found that the South Equatorial Current (SEC) transports oxygen of higher concentration to the middle latitude regions of both the North Atlantic and the North Pacific across the equator.  相似文献   

12.
The use of an unsteady computational fluid dynamic analysis of the manoeuvring performance of a self-propelled ship requires a large computational resource that restricts its use as part of a ship design process. A method is presented that significantly reduces computational cost by coupling a blade element momentum theory (BEMT) propeller model with the solution of the Reynolds averaged Navier Stokes (RANS) equations. The approach allows the determination of manoeuvring coefficients for a self-propelled ship travelling straight ahead, at a drift angle and for differing rudder angles. The swept volume of the propeller is divided into discrete annuli for which the axial and tangential momentum changes of the fluid passing through the propeller are balanced with the blade element performance of each propeller section. Such an approach allows the interaction effects between hull, propeller and rudder to be captured. Results are presented for the fully appended model scale self-propelled KRISO very large crude carrier 2 (KVLCC2) hull form undergoing static rudder and static drift tests at a Reynolds number of 4.6×106 acting at the ship self-propulsion point. All computations were carried out on a typical workstation using a hybrid finite volume mesh size of 2.1×106 elements. The computational uncertainty is typically 2–3% for side force and yaw moment.  相似文献   

13.
季页  杨洋  梁湘三 《海洋学报》2022,44(9):23-37
基于一套涡分辨模式数据,本文利用一种新的泛函工具—多尺度子空间变换—将孟加拉湾(BOB)海域的环流系统分解到背景流(>96 d)、中尺度(24~96 d)和高频尺度(<24 d)3个子空间,并用正则传输理论探讨了3个尺度子空间之间内在的非线性相互作用。结果表明,BOB西北部边界和斯里兰卡岛东部是BOB海域多尺度相互作用最显著的区域,中部则较弱。前两个区域的背景流大多正压、斜压不稳定,动能和有效位能正则传输主要表现为正向级串;后者则以逆尺度动能级串为主。具体来说,在BOB西北部与斯里兰卡东部,中尺度涡动能(EKE)主要来源于正压能量路径(即背景流动能向EKE传输),其次来源于斜压能量路径(即背景流有效位能向中尺度有效位能传输,并进一步转换为EKE)。通过这两个能量路径得到的EKE向更高频的扰动传输能量,起到了耗散中尺度涡的作用。不同于此二者,BOB中部海域的EKE和高频尺度动能主要通过斜压路径获得,随后通过逆尺度级串将动能返还给背景流。苏门答腊岛的西北部也是中尺度和高频尺度扰动较强的海域,正压能量路径和斜压能量路径均是该海域扰动能的来源,但以斜压能量路径为主。  相似文献   

14.
In the course of two regional side-scan sonar surveys on the continental shelf off southern Vietnam after the winter monsoon seasons of 2003 and 2004, and covering a total distance of over 1,000 km, the widespread occurrence of large and very large subaqueous dunes was discovered. On the basis of their size, shape, depth of occurrence and orientation, the dunes were grouped into five spatially distinct regions. In each case, a different height/wavelength relationship is observed. With the exception of region no. 3 where dune dimensions follow the mean global trend, the dimensions in the other regions lie below the mean global trend. The most plausible explanation for this is sediment starvation and/or insufficient time for the larger dunes to fully adjust to changing flow conditions. A good correlation is observed between average dune height in each region and water depth, although this is not the case for dune length. The orientation of the dunes corresponds to the direction of the current pattern induced by the regional winter monsoon winds (NE to SW and S). The generally well-developed asymmetrical shapes and the large size of the dunes suggest that the wind-induced currents are strong enough to reactivate most of the dunes during the winter monsoon season, a conclusion supported also by theoretical calculations of critical current velocities. The largest dunes, which seem to have reached their maximum sizes for the local water depths, may not be reactivated regularly but rather only by exceptionally strong episodic flows.  相似文献   

15.
Climate models with biogeochemical components predict declines in oceanic dissolved oxygen with global warming. In coastal regimes oxygen deficits represent acute ecosystem perturbations. Here, we estimate dissolved oxygen differences across the global tropical and subtropical oceans within the oxygen minimum zone (200–700-dbar depth) between 1960–1974 (an early period with reliable data) and 1990–2008 (a recent period capturing ocean response to planetary warming). In most regions of the tropical Pacific, Atlantic, and Indian Oceans the oxygen content in the 200–700-dbar layer has declined. Furthermore, at 200 dbar, the area with O2 <70 μmol kg?1, where some large mobile macro-organisms are unable to abide, has increased by 4.5 million km2. The tropical low oxygen zones have expanded horizontally and vertically. Subsurface oxygen has decreased adjacent to most continental shelves. However, oxygen has increased in some regions in the subtropical gyres at the depths analyzed. According to literature discussed below, fishing pressure is strong in the open ocean, which may make it difficult to isolate the impact of declining oxygen on fisheries. At shallower depths we predict habitat compression will occur for hypoxia-intolerant taxa, with eventual loss of biodiversity. Should past trends in observed oxygen differences continue into the future, shifts in animal distributions and changes in ecosystem structure could accelerate.  相似文献   

16.
Samar Khatiwala   《Ocean Modelling》2008,23(3-4):121-129
A novel computational approach is introduced for the efficient computation of equilibrium solutions of seasonally forced ocean biogeochemical models. The essential idea is to formulate the problem as a large system of nonlinear algebraic equations to be solved with a class of methods known as matrix-free Newton–Krylov (MFNK). MFNK is a combination of Newton-type methods for superlinearly convergent solution of nonlinear equations, and Krylov subspace methods for solving the Newton correction equations. The basic link between the two methods is the Jacobian-vector product, which may be probed approximately without forming and storing the elements of the true Jacobian. To render this approach practical for global models with O(106) degrees of freedom, a flexible preconditioning strategy is developed. The result is an essentially “black-box” numerical scheme than can be applied to most existing biogeochemical models. The method is illustrated by applying it to find the equilibrium solutions of two realistic biogeochemical problems. Compared with the conventional approach of direct time integration, the preconditioned-MFNK scheme is shown to be roughly two orders of magnitude more efficient. Several potential refinements of the basic algorithm that may yield further performance gains are discussed. The numerical scheme described here addresses a fundamental challenge to using ocean biogeochemical models more effectively.  相似文献   

17.
Hong Zhao  Zhi Liu 《Marine Geodesy》2018,41(2):159-176
The published global ocean tide models show good agreement in deep oceans and exhibit differences in complex coastal areas, along with subsequent Ocean Tide Loading Displacement (OTLD) modeling differences. Meanwhile, OTLD parameters (amplitudes and phase lags) derived by Global Positioning System (GPS) Precise Point Positioning (PPP) approach need long time to converge to a stable state and show poor precision of S2, K1, and K2 constituents. Based on the fact that no constraint is imposed in the current kinematic solution, a new method is put forward, in which global ocean tide model predictions are taken as the priori information constraints to speed up the convergence rate and improve the accuracy of the GPS-derived OTLD parameters. First, the data of tide gauge from 01 January 2014 to 31 December 2016 are used to generate the harmonic parameters to evaluate the accuracy of six global ocean tide models and a regional ocean tide model (osu.chinesea.2010). Osu.chinesea.2010 model shows good agreement with the tide gauge results, while NAO99b model presents relatively large difference. The predictions from osu.chinesea.2010 and NAO99b model are employed as reference and the prior information, respectively. Second, continuous observations of 12 GPS sites during 2006–2013 in Hong Kong are collected to generate three dimensional OTLD amplitudes and phase lags of eight constituents using PPP with prior information constraints approach and harmonic analysis. Third, comparing the convergence time of eight constituents from PPP without and with priori information constraints approaches, the results show that the new method can significantly improve the convergence rate of OTLD amplitude estimates which obtain a certain level of stability seven years earlier than that derived by the PPP without priori information constraints. Precision of OTLD parameters derived by the new method is about 1 mm. By comparing with the precision of single PPP approach, the accuracy of eight constituents has been improved, especially for S2, K1, and K2 constituents. Finally, through comparing the different correction effects of OTLD estimates on the coordinates and their time series of the ground GPS stations, the results show that OTLD estimates derived by the new approach have similar influence as the osu.chinasea.2010 ocean tide model. The new method provides an effective means to improve the convergence and precision of the GPS-derived OTLD parameters, and achieve a similar correction as the high precision ocean tide model.  相似文献   

18.
19.
Quadrature-based approach for the efficient evaluation of surge hazard   总被引:3,自引:0,他引:3  
The Joint Probability Method (JPM) has been used for hurricane surge frequency analysis for over three decades, and remains the method of choice owing to the limitations of more direct historical methods. However, use of the JPM approach in conjunction with the modern generation of complex high-resolution numerical models (used to describe winds, waves, and surge) has become highly inefficient, owing to the large number of costly storm simulations that are typically required. This paper describes a new approach to the selection of the storm simulation set that permits reduction of the JPM computational effort by about an order of magnitude (compared to a more conventional approach) while maintaining good accuracy. The method uses an integration scheme called Bayesian or Gaussian-process quadrature (together with conventional integration methods) to evaluate the multi-dimensional joint probability integral over the space of storm parameters (pressure, radius, speed, heading, and any others found to be important) as a weighted summation over a relatively small set of optimally selected nodes (synthetic storms). Examples of an application of the method are shown, drawn from the recent post-Katrina study of coastal Mississippi.  相似文献   

20.
《Ocean Modelling》1999,1(2-4):71-80
Ocean general circulation models (OGCMs) which represent the governing equations on a finite difference grid require shorter time steps with increasing resolution. Thus, until now, in the absence of filtering, the time step length has been determined by the smallest grid spacing within the model domain. Here we present a method for reducing the time step length (and increasing the number of time steps taken) at selected points in the grid, so as to minimise the computational cost of integrating the OGCM, whilst achieving numerical stability throughout the model domain without filtering. This variable time stepping method can be used to overcome numerical constraints associated with the convergence of longitude–latitude grids at the poles, and also to allow efficient integration of model domains with variable resolution. Examples of the computational saving are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号