首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
Coastal uses and other human activities have inevitably impinged on the Gulf environment; therefore, these regions require continuous monitoring. The investigated area covered the maximum fragments of Dubai coastal region in the Arabian Gulf. The determination of major oxides and trace metal concentrations in Dubai sediments revealed three heavily and moderately contaminated regions. One is in the far northeastern part at Al-Hamriya Sts 1–3 and contaminated by Fe, Cu, Pb, and Zn; the second is in the mid-northeastern part at Dry Docks and contaminated by Cu, Ni, Pb, and Zn; and finally, the third is in the near southwestern part at Dubal and contaminated by Fe, Mg, Cr, Ni, and Zn. Al-Hamriya St 3 represented the highest values of Cu, Pb, and Zn, whereas Dubal exhibited the maximum values of Fe, Mg, Ba, Cr, Mn, Ni, and V. The anthropogenic discharge and natural deposits are the main sources of contamination. In general, all trace and major elements showed the minimal levels at Jebel Ali Sanctuary (Sts 11, 12, 13) except for Sr and Ca, which showed their maximum values. The highest concentrations of Ca and Sr are mainly attributed to carbonate gravel sands and sands, which cover most stations. Each of V and Ni showed negative correlation with TPH, which may be indicated that the source of oil contamination in the region is not related to crude oil but mostly attributable to anthropogenic sources. The significant positive correlation, which was found between trace metals and TOC indicates that organic matter plays an important role in the accumulation of trace metals in case of Cu, Zn, and Pb.  相似文献   

2.
On March 10 and September 13, 2007 two earthquakes with moment magnitudes 3.66 and 3.94, respectively, occurred in the eastern part of the United Arab Emirates (UAE). The two events were widely felt in the northern Emirates and Oman and were accompanied by a few aftershocks. Ground motions from these events were well recorded by the broadband stations of Dubai (UAE) and Oman seismological networks and provide an excellent opportunity to study the tectonic process and present day stress field acting in this area. In this study, we report the focal mechanisms of the two main shocks by two methods: first motion polarities and regional waveform moment tensor inversion. Our results indicate nearly pure normal faulting mechanisms with a slight strike slip component. We associated the fault plane trending NNE–SSW with a suggested fault along the extension of the faults bounded Bani Hamid area. The seismicity distribution between two earthquake sequences reveals a noticeable gap that may be a site of a future event. The source parameters (seismic moment, moment magnitude, fault radius, stress drop and displacement across the fault) were also estimated from displacement spectra. The moment magnitudes were very consistent with waveform inversion. The recent deployment of seismic networks in Dubai and Oman reveals tectonic activity in the northern Oman Mountains that was previously unknown. Continued observation and analysis will allow for characterization of seismicity and assessment of seismic hazard in the region.  相似文献   

3.
Fifteen stations (st) were selected along Dubai coastal region to delineate the distribution and the source of total petroleum hydrocarbon (TPH), total organic carbon (TOC), total Kjeldhal nitrogen (TKN), polycyclic aromatic hydrocarbon (PAHs) and polychlorinated biphenyls. The concentrations of TPH fluctuated between 2 μg g −1 and 48018 μg g −1 and the values of TOC were in the range of 0.16–5.9 wt%, while TPAHs ranged from 0.09 μg g −1 to 161.72 μg g −1. On the other hand, TPCBs showed values between 0.8 μg kg−1 and 93.3 μg kg−1 and TKN values varied from 218 μg g−1 to 2457 μg g −1. Distribution of oil and organic compounds in Dubai sediments are safe compared with previous studies except for limited areas at the northeastern offshore. These readings are probably due to: (1) presence of commercial or industrial ports, dry docks and fishing harbours and (2) population centers mainly concentrated at the northern part of the study area. Results indicate that TOC can be used as indicator of oil pollution only in heavily oiled sediments. The highest values of TOC, TPH, TPAHs and TPCBs corresponded to the stations covered with fine sand, due to adsorption properties and larger surface area. The evaporation of low boiling point compounds from surface layers led to enrichment of sediments with the thick residual. Al-Hamriya St 3 exhibited the highest values of TPH, TOC, TPAHs and TPCBs and the second highest value of TKN.  相似文献   

4.
A moderate (M 5) earthquake struck the northeastern United Arab Emirates (UAE) and northern Oman on March 11, 2002. The event was felt over a wide area of the northern Emirates and was accompanied by smaller (felt) events before and after the March 11 main shock. The event was large enough to be detected and located by global networks at teleseismic distances. We estimated focal mechanism and depth from broadband complete regional waveform modeling. We report a normal mechanism with a slight right-lateral strike-slip component consistent with the large-scale tectonics. The normal component suggests relaxation of obducted crust of the Semail ophiolite (specifically, the Khor Fakkan Block) while the right-lateral strike-slip component of the mechanism is consistent with shear across the Oman Line. Felt earthquakes are rare in the region, however no regional seismic network exists in the UAE to determine local seismicity. This event offers a unique opportunity to study the active tectonics of the region as well as inform future studies of seismic hazard in the UAE and northern Oman.  相似文献   

5.
阿拉伯联合酋长国卡里法市B城是一座新规划城市,位于中东海湾沙漠海滩区,由于经三系,第四系地导台含有大量的石膏等萨布哈(Subkha)蒸发盐岩类,大范围发育有大量地下溶洞,其埋藏深度一般为5 m-15m,严重影响了城市建设及工业区开发,在该区采用了高密度电阻率法,克服了地表接地电阻大和溶洞与围岩电性差异小的困难,查明了地下20m深度范围内地下溶洞分布情况,经阿方技术专家验证评价,该次勘查成果可靠,达到了预期目的。  相似文献   

6.
The Early Maastrichtian (Late Cretaceous) Qahlah Formation is the oldest stratigraphical unit lying upon the eroded top of the obducted Semail Ophiolite, of Santonian–Campanian age, in the Northern Oman Mountains. It crops out as a series of low hills on the western flank of the mountains, which are located along the boundary between the United Arab Emirates and the Sultanate of Oman. This paper presents the results of an investigation into the bio- and lithofacies of the Qahlah Formation in the Jabal Huwayyah section (at the boundary between the Al Ain area of the United Arab Emirates and the Buraimi area of Oman). The data collected were used to determine the age and depositional environment of the rock unit studied. In addition, the section is lithostratigraphically correlated with other sections in the study area. Microfossils from Jabal Huwayyah are represented mainly by the larger benthic foraminifera Loftusia elongata, L. morgani, Pseudorbitolina marthae, Orbitoides media, Omphalocyclus macroporus and Lepidorbitoides minor. These foraminifera are reported for the first time from this section. The diversity and abundance of fauna, particularly within the calcareous siltstone bed near the top of the formation (unique to the Huwayyah area), reflect a shallow marine depositional environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号