首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The newly discovered Chalukou giant porphyry Mo deposit, located in the northern Great Xing’an Range, is the biggest Mo deposit in northeast China. The Chalukou Mo deposit occurs in an intermediate-acid complex and Jurassic volcano-sedimentary rocks, of which granite porphyry, quartz porphyry, and fine-grained granite are closely associated with Mo mineralization. However, the ages of the igneous rocks and Mo mineralization are poorly constrained. In this paper, we report precise in situ LA-ICP-MS zircon U–Pb dates for the monzogranite, granite porphyry, quartz porphyry, fine grained granite, rhyolite porphyry, diorite porphyry, and andesite porphyry in the Chalukou deposit, corresponding with ages of 162 ± 2 Ma, 149 ± 5 Ma, 148 ± 2 Ma, 148 ± 1 Ma, 137 ± 3 Ma, 133 ± 2 Ma, and 132 ± 2 Ma, respectively. Analyses of six molybdenite samples yielded a Re–Os isochron age of 148 ± 1 Ma. These data indicate that the sequence of the magmatic activity in the Chalukou deposit ranges from Jurassic volcano-sedimentary rocks and monzogranite, through late Jurassic granite porphyry, quartz porphyry, and fine-grained granite, to early Cretaceous rhyolite porphyry, diorite porphyry, and andesite porphyry. The Chalukou porphyry Mo deposit was formed in the late Jurassic, and occurred in a transitional tectonic setting from compression to extension caused by subduction of the Paleo-Pacific oceanic plate.  相似文献   

2.
《International Geology Review》2012,54(14):1763-1785
Central Jilin Province lies along the eastern edge of the Xing–Meng orogenic belt of northeast China. At least 10 Mo deposits have been discovered in this area, making it the second-richest concentration of Mo resources in China. To better understand the formation and distribution of porphyry Mo deposits in the area, we investigated the geological characteristics of the deposits and applied zircon UPb and molybdenite Re–Os isotope dating to constrain the age of mineralization. Our new geochronological data show the following: the Jidetun Mo deposit yields molybdenite Re–Os model ages of 164.6–167.1 Ma, an isochron age of 168 ± 2.5 Ma, and a weighted mean model age of 165.9 ± 1.2 Ma; the Houdaomu Mo deposit yields molybdenite Re–Os model ages of 167.4–167.7 Ma, an isochron age of 168 ± 13 Ma, and a weighted mean model age of 167.5 ± 1.2 Ma; and the Chang’anpu Mo deposit yields a zircon U–Pb age for granodiorite porphyry of 166.9 ± 1.5 Ma (N = 16). These new age data, combined with existing molybdenite Re–Os dates, show that intense porphyry Mo mineralization was coeval with magmatism during the Middle Jurassic (167.8 ± 0.4 Ma, r > 0.999). The geotectonic mechanisms responsible for Mo mineralization were probably related to subduction of the Palaeo-Pacific plate beneath the Eurasian continent. Combining published molybdenite Re–Os and zircon U–Pb ages for northeast China, the Mo deposits are shown to have been formed during multiple events coinciding with periods of magmatic activity. We identified three phases of mineralization, two of which had several stages: the Caledonian (485–480 Ma); the Indosinian comprising the Early–Middle Triassic (248–236 Ma) and Late Triassic (226–208 Ma) stages; and the Yanshanian phase comprising the Early–Middle Jurassic (202–165 Ma), Late Jurassic–early Early Cretaceous (154–129 Ma), and Early Cretaceous (114–111 Ma) stages. Although Mo deposits formed during each phase/stage, most of the mineralization occurred during the Early–Middle Jurassic.  相似文献   

3.
The Central Asian metallogenic domain (CAMD) is a multi-core metallogenic system controlled by boundary strike-slip fault systems. The Balkhash metallogenic belt in Kazakhstan, in which occur many large and super-large porphyritic Cu–Mo deposits and some quartz vein- and greisen-type W–Mo deposits, is a well-known porphyritic Cu–Mo metallogenic belt in the CAMD. In this paper 11 molybdenite samples from the western segment of the Balkhash metallogenic belt are selected for Re–Os compositional analyses and Re–Os isotopic dating. Molybdenites from the Borly porphyry Cu deposit and the three quartz vein-greisen W–Mo deposits—East Kounrad, Akshatau and Zhanet—all have relatively high Re contents (2712–2772 μg/g for Borly and 2.267–31.50 μg/g for the other three W–Mo deposits), and lower common Os contents (0.670–2.696 ng/g for Borly and 0.0051–0.056 ng/g for the other three). The molybdenites from the Borly porphyry Cu–Mo deposit and the East Kounrad, Zhanet, and Akshatau quartz vein- and greisen-type W–Mo deposits give average model Re–Os ages of 315.9 Ma, 298.0 Ma, 295.0 Ma, and 289.3 Ma respectively. Meanwhile, molybdenites from the East Kounrad, Zhanet, and Akshatau W–Mo deposits give a Re–Os isochron age of 297.9 Ma, with an MSWD value of 0.97. Re–Os dating of the molybdenites indicates that Cu–W–Mo metallogenesis in the western Balkhash metallogenic belt occurred during Late Carboniferous to Early Permian (315.9–289.3 Ma), while the porphyry Cu–Mo deposits formed at 316 Ma, and the quartz vein-greisen W–Mo deposits formed at 298 Ma. The Re–Os model and isochron ages thus suggest that Late Carboniferous porphyry granitoid and pegmatite magmatism took place during the late Hercynian movement. Compared to the Junggar-East Tianshan porphyry Cu metallogenic belt in northwestern China, the formation of the Cu–Mo metallogenesis in the Balkhash metallogenic belt occurred between that of the Tuwu-Yandong in East Tianshan and the Baogutu porphyry Cu deposits in West Junggar. Collectively, the large-scale Late Carboniferous porphyry Cu–Mo metallogenesis in the Central Asian metallogenic domain is related to Hercynian tectono-magmatic activities.  相似文献   

4.
The Tudun deposit is a medium-sized Cu–Ni sulfide deposit, located at the westernmost edge of the Huangshan–Jing’erquan Belt in the northern part of Eastern Tianshan, NW China. Sulfide separates including pentlandite, pyrrhotite and chalcopyrite from the Tudun deposit, contain Re, common Os and 187Os ranging from 40.46 to 201.2, 0.8048 to 6.246 and 0.1709 to 0.9977 ppb, respectively. They have very low 187Os/188Os ratios of 1.224–2.352. The sulfides yield a Re–Os isochron age of 270.0 ± 7.5 Ma (MSWD = 1.3), consistent within uncertainty with the SHRIMP zircon U–Pb age for the Tudun mafic intrusion (gabbro) of 280.0 ± 3.0 Ma. The calculated initial 187Os/188Os ratio is 0.533 ± 0.022, and γOs values range from 283 to 307, with a mean of 297, indicating significant crustal contamination of the parent melt prior to sulfide saturation. The Tudun deposit shares the same age and Re–Os isotopic compositions with other orthomagmatic Cu–Ni sulfide deposits in Huangshan–Jing’erquan Belt, suggesting that they have formed in Early Permian.  相似文献   

5.
The Aolunhua porphyry Mo–Cu deposit is located in the northern margin of the North China Craton (NCC), and belongs to the northern part of the Xilamulun metallogenic belt. More than 90% of the mineralization occurs within the Aolunhua monzogranite-porphyry; a small part is hosted within quartz veins that crosscut Late Permian strata. The syenogranite, occurring as dikes and cutting through the Aolunhua monzogranite-porphyry, is radially distributed in the mining district. Zircon U–Pb ages show that the Aolunhua monzogranite-porphyry and the post-ore syenogranite have concordant 206Pb/238U ages of 138.7 ± 1.2 Ma and 131.4 ± 2.8 Ma, respectively. Based on analyses of major, trace elements and Hf-isotopes, the Aolunhua porphyry is characterized by high Sr low Y with high La/Yb and Sr/Y ratios typical of adakitic granites, whereas the post-ore syenogranite has lower Sr and higher Y values, showing apparently negative Eu anomalies (δEu = 0.26 to 0.31). The Hf isotopic composition of the Aolunhua porphyry [εHf(t) = + 3.6 to + 9.2] and the post-ore syenogranite [εHf(t) = + 3.6 to + 8.7] indicates that both juvenile crustal sources and depleted mantle contributed to their origin. The regional geological setting together with the discrepancy of geochemistry between the Aolunhua porphyry and the post-ore syenogranite probably indicates that they formed in different tectonic regimes. The Aolunhua porphyry is derived from partial melting of the thickened crust due to underplating of the basaltic magma under the transformation tectonic regime, while the post-ore syenogranite comes from the crustal root melting during the lithospheric delamination stage under the lithosphere thinning regime of northeast China.  相似文献   

6.
The Baishan Mo–Re deposit is located in the eastern section of the eastern Tianshan orogenic belt, NW China. The deposit has a grade of 0.06% Mo and a high content of rhenium of 1.4 g/t. Rhenium and osmium isotopes in sulfide minerals from the Baishan deposit are used to determine the age of mineralization. Rhenium concentrations in molybdenite samples are between 74 and 250 g/g. Analysis of eight molybdenite samples yields an isochron age of 224.8±4.5 Ma (2). Pyrite samples have rhenium and osmium concentrations varying in the range 33.4–330.6 ng/g and 0.08–0.81 ng/g, respectively. Isotope data on seven pyrite samples yield an isochron age of 225±12 Ma (2) on the 187Re/188Os versus 187Os/188Os plot and an age of 233±14 Ma (2) on the 187Os versus 187Re correlation diagram. The ages of molybdenite and pyrite are consistent within the analytical errors. Combined with field observations, the data indicate that Mo–Re mineralization in the Baishan deposit is produced by a magmatic-hydrothermal event in an intracontinental extensional setting after late Paleozoic orogeny. The initial 187Os/188Os ratio of pyrite is 0.3±0.07. The 34S values of molybdenite vary from +0.5 to +3.6. Both data indicate that mineralization is derived mainly from a mantle source.Editorial handling: J. Richards  相似文献   

7.
The Haisugou Mo deposit is located in the northern part of the Xilamulun Mo–Cu metallogenic belt in northeastern China. The Mo mineralization mainly occurs as quartz-molybdenite veins within the Haisugou granite, which was emplaced into rocks of the Early Permian Qingfengshan Formation. Zircon U–Pb dating by LA–ICP-MS of the granite yields a crystallization age of 137.6 ± 0.9 Ma, suggesting emplacement during the peak time of Mo mineralization in eastern China, broadly constrained to ca. 150–130 Ma, when tectonic stresses shifted from compression to extension. Whole-rock geochemical data suggest that the granite belongs to the high-K calc-alkaline series, and is characterized by relatively high LREE; low HREE; depletion of Ti, Ba, and Nb; and a moderate negative Eu anomaly. The zircon εHf(t) and whole-rock εNd(t) values for the intrusion range from +4.5 to +10.0 and +0.2 to +1.6, respectively, indicating that the magma originated from the juvenile lower crust source derived from depleted mantle, with some component of ancient continental crust. The granite is also characterized by initial (87Sr/86Sr)i ratios ranging from 0.7040 to 0.7074, which suggest some contamination by the upper crust during the ascent of the primitive magma. Moreover, it can be recognized from the whole-rock major and trace element data that significant fractional crystallization occurred during magmatic evolution, with the separation of plagioclase and K-feldspar. Because Mo is an incompatible element and tends to concentrate in the melt during crystallization, fractionation processes likely played an important role in the formation of the Haisugou Mo deposit.  相似文献   

8.
The geodynamic setting of Mesozoic magmatic rocks and associated mineralization in eastern Tianshan, Northwest China, are attracting increasing attention. The newly discovered giant Donggebi molybdenum deposit (0.508 Mt at 0.115% Mo) is located in the central part of eastern Tianshan, Xinjiang. The molybdenum mineralization was genetically associated with the Donggebi stock, comprised of porphyritic granite and granite porphyry. Secondary ion mass spectrometry (SIMS) zircon U–Pb dating constrains that the porphyritic granite and granite porphyry emplacement occurred at 233.8 ± 2.5 Ma and 231.7 ± 2.6 Ma, respectively. The Re–Os model ages of six molybdenite samples range from 235.2 to 237.0 Ma, with a weighted mean age of 236.1 ± 1.4 Ma, which is roughly consistent within errors with the zircon U–Pb ages, suggesting a Middle Triassic magmatic–mineralization event at Donggebi. Geochemically, the Donggebi granitoids are characterized by high SiO2 and K2O contents, with low MgO contents, belonging to high-K calc-alkaline granites. These rocks show pronounced enrichment in K, Rb, U, and Pb, and depletion in Sr, Ba, P, and Ti, with negative Eu anomalies (Eu/Eu* = 0.20–0.38). In situ Hf isotopic analyses of zircon from the porphyritic granite and granite porphyry yielded εHf(t) values ranging from +6.6 to +10.5, and from +5.5 to +10.1, respectively. The geochemical and isotopic data imply that the primary magmas of the Donggebi granitoids could have originated by partial melting of a juvenile lower crust that involved some mantle components. Combined with the regional geological history, geochemistry of the Donggebi granitoids, and new isotopic age data, we thus propose that the Donggebi molybdenum deposit was formed in the Middle Triassic, and occurred in an intracontinental extension setting in eastern Tianshan.  相似文献   

9.
10.
The Wunugetushan porphyry Cu–Mo deposit is located in the Manzhouli district of NE China, on the southern margin of the Mesozoic Mongol–Okhotsk Orogenic Belt. Concentric rings of hydrothermal alteration and Cu–Mo mineralization surround an Early–Middle Jurassic monzogranitic porphyry. The Cu–Mo mineralization is clearly related to the quartz–potassic and quartz–sericite alteration. Molybdenite Re–Os and groundmass 40Ar/39Ar of the host porphyry dates indicate that the ore-formation and porphyry-emplacement occurred at 177.6 ± 4.5 Ma and 179.0 ± 1.9 Ma, respectively. Geochemically, the host porphyry of the deposit is characterized by strong LREE/HREE fractionation, enrichment in LILE, Ba, Rb, U, Th and Pb, and depletion of HFSE, Nb, Ta, Ti and HREE. The Sr–Nd–Pb isotopic compositions of the porphyry display an varied initial (87Sr/86Sr)i ratio, a positive εNd(t) values and high 206Pb/204Pbt, 207Pb/204Pbt and 208Pb/204Pbt ratios. These data indicate that the magmatic source of the host porphyry comprised two end-members: lithospheric mantle metasomatized by fluids derived from the subducted slab; and continental crust. We infer that the primitive magma of the host porphyry was derived from crust–mantle transition zone. Based on regional geology and geochemistry of the host porphyry, the Wunugetushan deposit is suggested to form in a continental collision environment after closure of the Mongol–Okhotsk Ocean.  相似文献   

11.
The Donggebi Mo deposit located in NW China is a newly discovered, large, stockwork-type Mo deposit with ore reserves of 441 Mt @ 0.115% Mo. Ore bodies occur along faults and fractures at the external contact zone of a concealed porphyritic granite and volcaniclastic rocks of Gandun Formation, spatially associated with a fine-grained granite. Mo-bearing veins are mainly assemblages of volatile-rich K-feldspar-quartz-oxide, K-feldspar-quartz, polymetallic sulfides and calcite-quartz. Zircon LA-ICP-MS U–Pb dating yielded concordant ages of 234.6 ± 2.7 Ma and 231.8 ± 2.4 Ma for the porphyritic granite and the fine-grained granite, respectively; molybdenite Re–Os dating gave an isochron age of 234.0 ± 2.0 Ma. These ages further confirm an important and extensive magmatic-metallogenic event in Eastern Tianshan during the Triassic Indosinian orogeny. Whole-rock major and trace element analyses indicate that the granitic rocks associated with Mo mineralization are high in Si, K, Rb, Th, Nb, Ta, Ga and LREE, but low in P, Ti, Sr and Ba, belonging to high-K calc-alkaline granites with A-type features. Magma was likely derived from the re-melting of thickened lower crust in a post-collision compression environment in the Late Permian, experienced strong crystal fractionation and formed the large Donggebi Mo deposit under an intra-plate extension setting in the Early to Middle Triassic.  相似文献   

12.
The Tayuan (Cu–Mo)–Pb–Zn deposit is located in the northern part of Daxinganling, NE China. Lenticular ore body occurs in the skarn zone. The skarn minerals mainly include garnet, pyroxene, epidote and wollastonite. Electron microprobe analysis shows that the end member of garnet is mainly andradite (Ad62–97Gr11–45), the pyroxene is mainly diopside, and epidote is mainly clinozoisite. These characteristics indicate that the Tayuan polymetallic skarn deposit is mainly calcareous skarn. Sometimes the content zonation can be observed in garnets. With one garnet crystal, content is shifty from the core to the rim. In general, the iron content in the core is higher than in the edge. The content in the garnet shows that the garnet in the Tayuan deposit formed from weak oxidation in alkaline environment with the oxygen fugacity increasing, suggesting that the hydrothermal fluid evolved from an acidic to a slight alkaline state. In the Tayuan polymetallic deposit, the ratio of Mn/Fe in pyroxene is about 1.3, and of Mg/Fe, it is about 2. The components of garnet in the Tayuan deposit plot in the field of the typical skarn Zn, Cu, Mo deposits in the world.  相似文献   

13.
The Xitian tungsten–tin (W–Sn) polymetallic deposit, located in eastern Hunan Province, South China, is a recently explored region containing one of the largest W–Sn deposits in the Nanling W–Sn metallogenic province. The mineral zones in this deposit comprise skarn, greisen, structurally altered rock and quartz-vein types. The deposit is mainly hosted by Devonian dolomitic limestone at the contact with the Xitian granite complex. The Xitian granite complex consists of Indosinian (Late Triassic, 230–215 Ma) and Yanshanian (Late Jurassic–Early Cretaceous, 165–141 Ma) granites. Zircons from two samples of the Xitian granite dated using laser ablation-inductively coupled mass spectrometer (LA-ICPMS) U–Pb analysis yielded two ages of 225.6 ± 1.3 Ma and 151.8 ± 1.4 Ma, representing the emplacement ages of two episodic intrusions of the Xitian granite complex. Molybdenites separated from ore-bearing quartz-veins yielded a Re–Os isochron age of 149.7 ± 0.9 Ma, in excellent agreement with a weighted mean age of 150.3 ± 0.5 Ma. Two samples of muscovites from ore-bearing greisens yielded 40Ar/39Ar plateau ages of 149.5 ± 1.5 Ma and 149.4 ± 1.5 Ma, respectively. These isotopic ages obtained from hydrothermal minerals are slightly younger than the zircon U–Pb age of 151.8 ± 1.4 Ma of the Yanshanian granite in the Xitian area, indicating that the W–Sn mineralization is genetically related to the Late Jurassic magmatism. The Xitian deposit is a good example of the Early Yanshanian regional W–Sn ore-forming event (160–150 Ma) in the Nanling region. The relatively high Re contents (8.7 to 44.0 ppm, average of 30.5 ppm) in molybdenites suggest a mixture of mantle and crustal sources in the genesis of the ore-forming fluids and melts. Based upon previous geochemical studies of Early Yanshanian granite and regional geology, we argue that the Xitian W–Sn polymetallic deposit can be attributed to back-arc lithosphere extension in the region, which was probably triggered by the break-off of the flat-slab of the Palae-Pacific plate beneath the lithosphere.  相似文献   

14.
《International Geology Review》2012,54(10):1145-1160
Lanjiagou is a porphyry Mo deposit in terms of its alteration zonation and mineralization associated with granitic intrusions and predominance of quartz vein-hosted molybdenum mineralization. It is the largest Mo deposit in North China Craton (404,000 t). There is an intimate spatial/temporal association between all stages of mineralization and Early Jurassic granitic intrusions at Lanjiagou. Most of the molybdenum was emplaced during the principal hydrothermal (PH) stage (184.6 ± 1.3 – 185.6 ± 1.4 Ma), contemporaneously with intrusion of fine-grained porphyritic granite (188.9 ± 1.2 Ma) into a granite batholith (193 ± 3 Ma). The PH mineralization stage is mainly hosted by a quartz-dominated stockwork associated with phyllic alteration in the fine-grained porphyritic granite. This stage was followed by the late hydrothermal (LH) activity. Thick Mo-rich quartz veins were emplaced during the LH stage and cut the porphyry ore bodies. A ring breccia zone formed during the last hydrothermal stage and apparently cuts both the porphyry and the quartz vein ore bodies. The main hydrothermal vein stages have predominantly concentric and radial vein orientations centred on the ring breccia zone. Most of the concentric veins have shallow dips, whereas the radial veins are subvertical. The LH veins have predominantly NEE and NW orientations in the deposit and are moderately inclined. We surmise that the veining was controlled by the local stress regime generated by the intrusion of a large, deep pluton that we interpreted to be the source of the granites, the breccia zone, and the molybdenum mineralization. Resurgence within the magma chamber reactivated the steep concentric structures in a reverse sense, and accumulation of magmatic and/or fluid pressure resulted in explosive brecciation, producing the ring breccia zone. A predominantly late set of NW-trending, post-ore felsic dikes, associated with the regional structures, are a consequence of far-field stresses exceeding local stresses in the deposit.  相似文献   

15.
The Miocene porphyry Cu–(Mo) deposits in the Gangdese orogenic belt in southern Tibet were formed in a post-subduction collisional setting. They are closely related to the Miocene adakite-like porphyries which were probably derived from a thickened basaltic lower crust. Furthermore, mantle components have been considered to have played a crucial role in formation of these porphyry deposits (Hou et al. Ore Geol Rev 36: 25–51, 2009; Miner Deposita doi:10.1007/s00126-012-0415-6, 2012). In this study, we present zircon Hf isotopes and molybdenite Re–Os ages on the newly discovered Gangjiang porphyry Cu–Mo deposit in southern Tibet to constrain the magma source of the intrusions and the timing of mineralization. The Gangjiang porphyry Cu–Mo deposit is located in the Nimu ore field in the central Gangdese porphyry deposits belt, southern Tibet. The copper and molybdenum mineralization occur mainly as disseminations and veins in the overlapped part of the potassic and phyllic alteration zones, and are predominantly hosted in the quartz monzonite stock and in contact with the rhyodacite porphyry stock. SIMS zircon U–Pb dating of the pre-mineral quartz monzonite stock and late intra-mineral rhyodacite porphyry yielded ages of 14.73?±?0.13 Ma (2σ) and 12.01?±?0.29 Ma (2σ), respectively. These results indicate that the magmatism could have lasted as long as about 2.7 Ma for the Gangjiang deposit. The newly obtained Re–Os model ages vary from 12.51?±?0.19 Ma (2σ) to 12.85?±?0.18 Ma (2σ) for four molybdenite samples. These Re–Os ages are roughly coincident with the rhyodacite porphyry U–Pb zircon age, and indicate a relatively short-lived episode of ore deposition (ca. 0.3 Ma). In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS indicate that the ε Hf(t) values of zircons from a quartz monzonite sample vary from +2.25 to +4.57 with an average of +3.33, while zircons from a rhyodacite porphyry sample vary from +5.53 to +7.81 with an average of +6.64. The Hf data indicate that mantle components could be partly involved in the deposit formation, and that mantle contributions might have increased over time from ca. 14.7 to 12.0 Ma. Combined with previous works, it is proposed that the Gangjiang deposit could have resulted from the convective thinning of the lithospheric root, and the input of upper mantle components into the magma could have played a key role in the formation of the porphyry deposits in the Miocene Gangdese porphyry copper belt in the Tibetan Orogen.  相似文献   

16.
The Fujiawu porphyry Cu–Mo deposit is one of several porphyry Cu–Mo deposits in the Dexing district, Jiangxi Province, Southeast China. New zircon SHRIMP U–Pb data yield a weighted mean 206Pb/238U age of 172.0 ± 2.1 and 168.5 ± 1.4 Ma from weakly altered granodiorite porphyry and quartz diorite porphyry, respectively. Two hydrothermal biotites from granodiorite porphyry give an Ar–Ar step-heating plateau age of 169.9 ± 1.8 and 168.7 ± 1.8 Ma. Hydrothermal apatite exsolved from altered biotite yields an isotope dilution thermal ionization mass spectrometry isochron age of 164.4 ± 0.9 Ma. The apatite age is similar to the ages obtained from hydrothermal rutile (165.0 ± 1.1 and 164.8 ± 1.6 Ma) and indicates that the magmatism and hydrothermal activity in the Fujiawu deposit occurred in the Middle Jurassic. Hydrothermal fluid circulation related to multiple stages of magma emplacement resulted in Cu–Mo mineralization in the Fujiawu porphyry deposit. The zircon SHRIMP U–Pb ages and the published molybdenite Re–Os age (170.9 ± 1.5 Ma) represent the timing of magma crystallization and Mo mineralization, whereas the rutile and apatite U–Pb ages reflect the timing of Cu mineralization following quartz diorite emplacement. The data suggest slow cooling after emplacement of the quartz diorite porphyry.  相似文献   

17.
《International Geology Review》2012,54(15):1837-1851
The Taipingchuan Cu–Mo deposit is a recently discovered large porphyry deposit located in the north of the Derbugan metallogenic belt of northeastern China. The geochronological data of the deposit yielded a Late Triassic zircon U–Pb age of 202 ± 6 Ma from a granodiorite porphyry that hosts the Cu–Mo mineralization. Measured Re–Os isotopes of seven disseminated molybdenite samples yielded an isochron age of 200 ± 5 Ma with mean square of weighted deviates of 2.7, while those of seven veinlet molybdenite samples also produced an isochron age of 200.1 ± 2.5 Ma and mean square of weighted deviates of 3.3. These isochron ages show that a Cu–Mo mineralization event occurred at ca. 200 Ma. Based on regional tectonic evolution, we propose that the Late Triassic Cu–Mo mineralization of the host porphyry in the Derbugan metallogenic belt was mainly associated with the subduction of the Mongol–Okhotsk Ocean slab under the Ergun block, contrary to previous suggestion that it was related to the subduction of the Mesozoic Palaeo-Pacific plate.  相似文献   

18.
The Wangjiazhuang porphyry–breccia Cu(–Mo) deposit is located in the Zouping volcanic basin, western Shandong Province. Seven molybdenite samples yield a Re–Os weighted mean age of 127.8 ± 0.7 Ma (2σ), which is identical within error to the zircon weighted mean 206Pb/238U age of 128.3 ± 1.3 Ma (2σ) determined for quartz monzonite samples. The host rock is characterized by high concentrations of K2O (4.26–4.53 wt.%), Na2O (4.97–5.76 wt.%), LILEs and LREEs, and high Mg# (> 40), and low concentrations of HFSEs and HREEs, with K2O/Na2O ratios of 0.76–0.88. The quartz monzonite also has high Sr/Y (69.9–112.5) and (La/Yb)N (22.0–30.0) ratios, similar to adakitic rocks worldwide. Relatively low initial 87Sr/86Sr ratios (0.70549–0.70556), high εNd(t) values (2.58–3.06), high radiogenic Pb [(206Pb/204Pb)i = 18.3424–18.4606, (207Pb/204Pb)i = 15.5692–15.5985, (208Pb/204Pb)i = 38.1714–38.2734] and high zircon εHf(t) values (− 2.1 to + 4.3) indicate that the magma was likely derived from the partial melting of subducted oceanic crust which then reacted with the peridotitic mantle wedge. Both the breccia and porphyry ores have a narrow range of δ34S (− 4.8 to + 2.1‰) and Pb isotopic compositions (206Pb/204Pb = 18.295–18.402, 207Pb/204Pb = 15.551–15.573, and 208Pb/204Pb = 38.215–38.331), suggesting that the ore metals were extracted primarily from the quartz monzonite or similar source. Subduction of the Paleo-Pacific slab during the Early Cretaceous resulted in the formation of the Wangjiazhuang quartz monzonite and associated Cu(–Mo) deposit in western Shandong Province.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号