首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Archean metasedimentary rocks occur as components of the Isua supracrustals, Akilia association and Malene supracrustals of southern West Greenland. Primary structures in these rocks have been destroyed by metamorphism and deformation. Their chemistry and mineralogy is consistent with a sedimentary origin, but other possible parents (e.g. acid volcanics, altered pyroclastic rocks) cannot be excluded for some of them. There is little difference in the composition of metasedimentary rocks from the early Archean Isua supracrustals and probable correlative Akilia association. Both have a wide range in rare earth element (REE) patterns with LaNYbN ranging from 0.61?5.8. The REE pattern of one Akilia sample, with low LaNYbN, compares favourably with that of associated tholeiites and it is likely that such samples were derived almost exclusively from basaltic sources. Other samples with very steep REE patterns are similar to felsic volcanic boulders found in a conglomeratic unit in the Isua supracrustals. Samples with intermediate REE patterns are best explained by mixing of basaltic and felsic end members. Metasedimentary rocks from the Malene supracrustals can be divided into low silica (≤55% SiO2) and high silica (>77% SiO2) varieties. These rocks also show much variation in LaNYbN (0.46?14.0) and their origin is explained by derivation from a mixture of mafic volcanics and felsic igneous rocks. The wide range in trace element characteristics of these metasedimentary rocks argues for inefficient mixing of the various source lithologies during sedimentation. Accordingly, these data do not rigorously test models of early Archean crustal composition and evolution. The systematic variability in trace element geochemistry provides evidence for the bimodal nature of the early Archean crust.  相似文献   

2.
The Archean Yellowknife Supergroup (Slave Structural Province. Canada) is composed of a thick sequence of supracrustal rocks, which differs from most Archean greenstone belts in that it contains a large proportion ( ~ 80%) of sedimentary rocks. Felsic volcanics of the Banting Formation are characterized by HREE depletion without Eu-anomalies, indicating an origin by small degrees of partial melting of a mafic source, with minor garnet in the residua. Granitic rocks include synkinematic granites [HREE-depleted; low (87Sr86Sr)I], post-kinematic granites [negative Eu-anomalies, high (87Sr86Sr)I] and granitic gneisses with REE patterns similar to the post-kinematic granites. Sedimentary rocks (turbidites) of the Burwash and Walsh Formations have similar chemical compositions and were derived from 20% mafic-intermediate volcanics, 55% felsic volcanics and 25% granitic rocks. Jackson Lake Formation lithic wackes can be divided into two groups with Group A derived from 50% mafic-intermediate volcanics and 50% felsic volcanics and Group B, characterized by HREE depletion, derived almost exclusively from felsic volcanics.REE patterns of Yellowknife sedimentary rocks are similar to other Archean sedimentary REE patterns, although they have higher LaNYbN. These patterns differ significantly from typical post-Archean sedimentary REE patterns, supporting the idea that Archean exposed crust had a different composition than the present day exposed crust.  相似文献   

3.
Major and rare earth element (REE) data for basalts from Holes 483, 483B, and 485A of DSDP Leg 65, East Pacific Rise, mouth of the Gulf of California, support a simple fractional crystallization model for the genesis of rocks from this suite. The petrography and mineral chemistry (presented in detail elsewhere) provide no evidence for magma mixing, but rather a simple multistage cooling process. Based on its lowest TiO2 content (0.88%), FeO1MgO ratio (0.95 with total Fe as FeO), and Mg# (100 MgMg + Fe″ = 70), sample 483-17-2-(78–83) has been selected as the most primitive primary magma of the samples analyzed. This is supported by the REE data which show this sample has the lowest total REE content, a LaSmcn (chondrite-normalized) = 0.36, and EuSmcn = 1.05. Because other samples analyzed have higher SiO2, lower Mg#, and a negative Eu anomaly (EuSmcn as low as 0.89), they are most likely derivative magmas. Wright-Doherty and trace element modelling support fractional crystallization of 14.1% plagioclase (An88), 6.7% olivine (Fo86), and 4.7% clinopyroxene (Wo41En49Fs10) from 483-17-2-(78–83) to form the least differentiated sample with Mg# = 63. The LaSmcn of this derivative magma is almost identical to the parent magma (0.35 to 0.36), but the other samples have higher LaSmcn (0.45 to 0.51), more total REE, and lower Mg# (60 to 56). Both Wright-Doherty and trace element modelling indicate that the primary magma chosen cannot produce these more evolved samples. For the major elements, the TiO2 and P2O5 are too low in the calculated versus the observed (1.38 to 1.90; 0.11 to 0.17, respectively, for example). Rayleigh fractionation calculates a lower LaSmcn and requires about 60% crystal removal versus 40% for the Wright-Doherty. These more evolved samples must be derived from a parent magma different from the one selected here and, unfortunately, not sampled in this study. A magma formed by a smaller degree of partial melting with slightly more residual clinopyroxene left in the mantle than for sample 483-17-2-(78–83) is required.  相似文献   

4.
A Luna 20 basaltic fragment contains 70 per cent pyroxene, 25 per cent plagioclase (An80) and 5 per cent ilmenite. There are two varieties of augite which differ markedly in their alumina content. The composition of this fragment, calculated from the analyses of the minerals, shows that the Al2O3FeO ratio is different from that of other lunar basalts.  相似文献   

5.
Archean clastic sedimentary rocks are well exposed in the Pilbara Block of Western Australia. Shales from turbidites in the Gorge Creek Group (ca. 3.4 Ae) and shales from the Whim Creek Group (ca. 2.7 Ae) have been examined. The Gorge Creek Group samples, characterized by muscovite-quartzchlorite mineralogy, are enriched in incompatible elements (K, Th, U, LREE) by factors of about two, when compared to younger Archean shales from the Yilgarn Block. Alkali and alkaline earth elements are depleted in a systematic fashion, according to size, when compared with an estimate of Archean upper crust abundances. This depletion is less notable in the Whim Creek Group. Such a pattern indicates the source of these rocks underwent a rather severe episode of weathering. The Gorge Creek Group also has fairly high B content (85 ± 29 ppm) which may indicate normal marine conditions during deposition.Rare earth element (REE) patterns for the Pilbara samples are characterized by light REE enrichment (LaNYbN ≥ 7.5) and no or very slight Eu depletion (EuEu1 = 0.82 – 0.99). A source comprised of about 80% felsic igneous rocks without large negative Eu-anomalies (felsic volcanics, tonalites, trondhjemites) and 20% mafic-ultramafic volcanics is indicated by the trace element data. Very high abundances of Cr and Ni cannot be explained by any reasonable provenance model and a secondary enrichment process is called for.  相似文献   

6.
Isotopic, major and trace element studies of loess deposits from America, China, Europe and New Zealand show general uniformity of composition. Silica, Zr and Hf are enriched relative to estimates of bulk composition of the upper continental crust. The REE data are indistinguishable from those of average shales, confirming the concept that these REE patterns (LaN/YbN = 9.5 Eu/Eu1 = 0.66) represent the upper crustal average. Sm-Nd model ages are variable but <1700 m.y. They reflect derivation from younger elevated erogenic areas subject to Pleistocene glaciation. Although Sm-Nd model ages vary by a factor of two, the REE patterns remain constant. This indicates that processes responsible for formation of the upper crust have produced no secular change in composition since the mid-Proterozoic.  相似文献   

7.
Differences in the chemical composition of metamorphic and igneous pyroxene minerals may be attributed to a transfer reaction, which determines the Ca content of the minerals, and an exchange reaction, which determines the relative Mg:Fe2+ ratios. Natural data for associated Ca pyroxene (Cpx) and orthopyroxene (Opx) or pigeonite are combined with experimental data for Fe-free pyroxenes, to produce the following equations for the Cpx slope of the solvus surface: > 1080°C: T = 1000(0.468 + 0.246XCpx ? 0.123 ln (1–2 [Ca]))< 1080°C: T = 1000(0.054 + 0.608XCpx ? 0.304 ln (1–2 [Ca])), and the following equation for the temperature-dependence of the Mg-Fe distribution coefficient: T = 1130(ln Kp + 0.505), where T is absolute temperature, X is Fe2+(Mg + Fe2+)), [Ca] is Ca(Ca + Mg + Fe2+) in Cpx, and KD is the distribution coefficient, defined as XOpx/(1 ? XOpx) ÷ XCpx/(1 ? Cpx).The transfer and exchange equations form useful temperature indicators, and when applied to 9 sets of well-studied rocks, yield pairs of temperatures that are in good agreement. For example, temperatures obtained for the Bushveld Complex are 1020°C (solvus equation) and 980°C (exchange equation), based on 7 specimens. The uncertainty in these numbers, due to precision and accuracy errors, is estimated to be ±60°.  相似文献   

8.
Diopside-melt and forsterite-melt rare earth (REE) and Ni partition coefficients have been determined as a function of bulk compositions of the melt. Available Raman spectroscopic data have been used to determine the structures of the melts coexisting with diopside and forsterite. The compositional dependence of the partition coefficients is then related to the structural changes of the melt.The melts in all experiments have a ratio of nonbridging oxygens to tetrahedral cations (NBOT) between 1 and 0. The quenched melts consist of structural units that have, on the average, 2 (chain), 1 (sheet) and 0 (three-dimensional network) nonbridging oxygens per tetrahedral cation. The proportions of these structural units in the melts, as well as the overall NBOT, change as a function of the bulk composition of the melt.It has been found that Ce, Sm, Tm and Ni crystal-liquid partition coefficients (Kcrystal?liqi = CcrystaliCliqi) decrease linearly with increasing NBOT. The values of the individual REE crystal-liquid trace element partition coefficients have different functional relations to NBOT, so that the degree of light REE enrichment of the melts would depend on their NBOT.The solution mechanisms of minor oxides such as CO2, H2O, TiO2, P2O5 and Fe2O3 in silicate melts are known. These data have been recast as changes of NBOT of the melts with regard to the type of oxide and its concentration in the melt. From such data the dependence of crystal-liquid partition coefficients on concentration and type of minor oxide in melt solution has been calculated.  相似文献   

9.
Direct Pco2 measurements on water samples from several CO2-charged warm springs are significantly higher than Pco2 values calculated from field pH and alkalinity (and other constituents). In addition, calcite saturation indices calculated from field pH and solution composition indicated supersaturation in samples which, on the basis of hydrogeologic concepts, should be near saturation or undersaturated. We attribute these discrepancies to uncertainties in field pH, resulting from CO2 outgassing during pH measurement. Because samples for direct Pco2 measurement can be taken with minimal disturbance to the water chemistry, we have used the measured Pco2 to back calculate an estimate of the field pH and the carbon isotopic composition of the water before outgassing. By reconstructing water chemistry in this way, we find generally consistent grouping of δ13C, pH, and degree of calcite saturation in samples taken from the same source at different times, an observation which we expect based on our understanding of the hydrogeology and geochemistry of the ground-water systems. This suggests that for very careful geochemical work, particularly on ground-waters much above ambient temperature, Pco2 measurements may provide more information on the system and a better estimate of its state of saturation with respect to carbonate minerals than can field measurements of pH.  相似文献   

10.
Electron microprobe analyses of the spinel mineral group, ilmenite and rutile have been carried out on part of the Luna 20 soil sample. The spinel group shows an almost continuous trend from MgAl8O4 to FeCr2O4 and a discontinuous trend from FeCr2O4 to Fe2TiO4. Well defined non-linear relationships exist within the spinel group for Fe-Mg substitution, for divalent (FeOFeO + MgO) versus trivalent (Cr2O3Cr2O3 + A12O3), and for divalent versus TiO2TiO2 + A12O3 + Cr2O3. For Cr-Al substitution the relationship is linear and is negative for Mg-rich spinel and positive for Fe-Ti rich spinel. In general a combination of aluminous-rich chromite and ulvöspinel in the Luna 16 samples, combined with the chromian-pleonaste in Apollo 14 define comparable major compositional trends to those observed in Luna 20. Ilmenite is present in trace amounts. It is exsolved from pleonaste and pyroxene, is present in subsolidusreduced ulvöspinel and has undergone reequilibration to produce oriented intergrowths of chromite + rutile. Primary ilmenite is among the most magnesian-rieh (6 wt.% MgO) yet found in the lunar samples. The high MgO, inferred high Cr2O3 concentrations and the iron content of rutile (2.5 wt.% FeO) suggest crystallization at high temperatures and pressures for some components of the Luna 20 soil.  相似文献   

11.
Instrumental neutron activation and X-ray fluorescence analyses of minettes from New Brunswick, Canada, indicate that these rocks are strongly enriched in REE, especially the LREE, and other incompatible elements as well as Cr and Co. The geochemistry of minettes precludes their formation by anatexis or assimilation of crustal rocks, contamination of mantle-derived basalts by non-crystalline residua of granite crystallization, or any process involving fractional crystallization of feldspar. Their peculiar geochemical characteristics must be a direct function of their origin in the mantle.Ultrapotassic rocks, kimberlites, and, to a lesser extent, carbonatites are strikingly similar to minettes in their rare earth and other trace element contents, suggesting genetic links among these rock types. It is difficult to explain the temporal and spatial constancy of this similarity by post-anatectic late enrichment of diversely produced magmas by volatile transport. We tentatively propose that the process best able to account for their unique geochemistry is limited partial melting of the subcontinental mantle following and dependent on the metasomatic introduction of K, Ti, Fe, REE, halogens, P, and other elements as well as H2O and/or CO2. If the enriched mantle is H2O-rich, minette magma is produced; if it is CO2-rich or has an intermediate CO2H2O ratio, carbonatitic-kimberlitic and/or ultrapotassic magmas result.  相似文献   

12.
The performance characteristics of PANURGE, a modified CAMECA IMS3F ion microprobe, have been studied at a mass resolving power of 5000 for the purpose of determining isotopic ratios at a precision level approaching that of counting statistics using beam switching. The techniques used for this type of measurement are described. Using this approach, the isotopic composition of Mg and Si and the atomic ratio of AlMg in minerals from the Allende inclusion WA and the Allende FUN inclusion Cl have been measured with the ion microprobe at high mass resolving power. Enrichments in 26Mg of up to 260%. have been found. Mg and AlMg measurements on cogenetic spinel inclusions and host plagioclase crystals yield Mg-Al isochrons in excellent agreement with precise mineral isochrons determined by thermal emission mass spectrometry. The measurements confirm the presence of substantial excess 26Mg in WA (26Mg127Al = 5 × 10?5) and its near absence in Cl (26Mg127Al < 4 × 10?6). In WA plagioclase, data for which 27Al24Mg = 300 to 1000 define a linear array with 26Mg127Al = 3 × 105 and with initial 26Mg24Mg composition 30%. greater than in high Mg phases. This suggests a metamorphic reequilibration of Mg in Allende plagioclase at least 0.6 my after WA formation. There were no variations in detected 26Mg127Al in WA plagioclase associated with concentration of 26Mg1 into isolated clusters. We have confirmed by ion probe measurements that the Mg composition in Allende Cl is highly fractionated and is uniform among pyroxene, melilite, plagioclase, spinel crystals and spinel included in melilite and plagioclase crystals. Likewise, the Si composition is mass fractionated and is the same in pyroxene, melilite and plagioclase.  相似文献   

13.
Analyses of Sr and REE in apatites from a variety of mantle-derived parageneses are used in conjunction with trace element data from the literature to investigate relationships between alkali basalts and apatite-rich materials in upper-mantle source regions. Despite difficulties in interpretation, positive P-anomalies in the hygromagmatophile element abundance patterns of some continental primary alkali basalts suggest either P-enrichment of their source or assimilation of P-rich material, or both. Amphibole- and apatite-rich xenoliths occur in several alkali-basalt provinces, and by virtue of the P and LREE enrichment represent a probable source of the P anomalies and part of the other trace element enrichments of these magmas. Incorporation of such apatite-rich materials by later primary magmas would be enhanced by the high P2O5 concentrations required to achieve apatite saturation in basaltic liquids.In the early stages of mantle diapirism an undersaturated magma, produced by slight partial melting of garnet peridotite, might fractionate as it rises to the range of amphibole stability. Hygromagmatophile element patterns of clinopyroxenite xenoliths indicate that clinopyroxene fractionation could produce P-enriched liquids which might subsequently crystallize amphibole- and apatite-rich materials now represented by xenoliths. During generation of later primary magma, apatite-rich materials might preferentially contaminate the liquids, to yield positive P-anomalies. This model requires that magmas undergo prolonged fractionation at considerable depth (~ 100 km), a process which is apparently most probable in subcontinental environments.An apatite- and zircon-bearing mica-clinopyroxenite xenolith from Matsoku provides a link between the S. African MARID suite and amphibole and apatite-rich xenoliths from various alkali basalt provinces. Unusual REE patterns (LaN < CeN < NdN, CeN/YN ?10) of apatites in this xenolith suggest a link between the MARID suite xenoliths and postulated pre-Karroo mantle metasomatism.  相似文献   

14.
HD Fractionation factors between epidote minerals and water, and between the AlO(OH) dimorphs boehmite and diaspore and water, have been determined between 150 and 650°C. Small water mineral ratios were used to minimise the effect of incongruent dissolution of epidote minerals. Waters were extracted and analysed directly by puncturing capsules under vacuum. Hydrogen diffusion effects were eliminated by using thick-walled capsules.HD Exchange rates are very fast between epidote and water (and between boehmite and water), complete exchange taking only minutes above 450°C but several months at 250°C. Exchange between zoisite and water (and between diaspore and water) is very much slower, and an interpolation method was necessary to determine fractionation factors at 450 and below.For the temperature range 300–650°C, the HD equilibrium fractionation factor (αe) between epidote and water is independent of temperature and Fe content of the epidote, and is given by 1000 In αepidote-H2Oe = ?35.9 ± 2.5, while below 300°C 1000 In αepidote-H2Oe = 29.2(106T2) ? 138.8, with a ‘cross-over’ estimated to occur at around 185°C. By contrast, zoisite-water fractionations fit the relationship 1000 In αzoisite-H2Oe = ? 15.07 (106T2) ? 27.73.All studied minerals have hydrogen bonding. Fractionations are consistent with the general relationship: the shorter the O-H -- O bridge, the more depleted is the mineral in D.On account of rapid exchange rates, natural epidotes probably acquired their H-isotope compositions at or below 200°C, where fractionations are near or above 0%.; this is in accord with the observation that natural epidotes tend to concentrate D relative to other coexisting hydrous minerals.  相似文献   

15.
Compositional differences between granulite facies rocks and equivalent amphibolite facies rocks and the observation of CO2-rich fluid inclusions in granulites, have led to the suggestion that CO2 must play a role in modifying the composition of deep continental crust. How CO2 effects this change has remained unclear. Using the thermodynamic properties of aqueous ions in a fluid of evolving CO2H2O ratio, it is possible to model the incongruent dissolution of feldspars under conditions appropriate for granulite facies metamorphism. The results demonstrate that dissolution will be strongly enhanced at high CO2H2O ratios, with ion solubilities being Na+ >K+ ? Ca++. This enhancement is compatible with the reported compositional contrasts between granulite and amphibolite facies rock, but requires large fluid volumes.To test the dissolution model, a detailed field and petrologic study was conducted in a well exposed granulite facies terrane in West Greenland. Strong correlation between fluid composition and bulk rock chemistry can be documented; CO2-rich regions contain rocks which consistently have low aNa2OaCaO ratios, while H2O-rich regions consistently have high aNa2OaCaO ratios. Magnetite rims on sulfide grains are ubiquitous in high ?Co2 regions and are absent in high ?H2O regions, and they provide evidence that CO2 was introduced into the region. These correlations and observations are predictable from the properties of the dissolution process. These considerations, along with observations regarding graphite petrogenesis, provide strong arguments that the total fluid volume interacting with the rock during metamorphism was very large, in some cases equaling or exceeding total rock volume. Such large fluid volumes can lead to significant compositional modification of the crust, and will mask the original protolith chemistry. Such processes should lead to Ca- and Al-enriched, Na-, K-, S- and Si-depleted residues in the deep crust.  相似文献   

16.
High precision mass spectrometric determination of calcium isotope ratios allows the 40K → 40Ca radioactive decay to be used for dating a much broader range of geologic materials than is suggested by previous work. 40Ca42Ca is used to monitor enrichments in 40Ca and can be measured to ±0.01% (2σ) using an exponential mass discrimination correction (Russell et al., 1978) and large ion currents. The earth's mantle has such a low KCa (~0.01) that it has retained “primordial” 40Ca42Ca = 151.016 ± 0.011 (normalized to 42Ca44Ca = 0.31221), as determined by measurements on two meteorites, pyroxene from an ultramafic nodule, metabasalt, and carbonatite. 40Ca42Ca ratios can be conveniently expressed relative to this value as ?Ca in units of 10?4. To test the method for age dating, a mineral isochron has been obtained on a sample of Pikes Peak granite, which has been shown to have concordant KAr, RbSr, and UPb ages. Plagioclase, K-feldspar, biotite, and whole rock yield an age of 1041 ± 32 m.y. (2σ) in agreement with previous age determinations (λK = 0.5543 b.y.?1, λβ?λK = 0.8952, 40K = 0.01167%). The initial 40Ca42Ca of 151.024 ± 0.016 (?Ca = +0.5 ± 1.0), indicates that assimilation of high K/Ca crust was insufficient to affect calcium isotopes. Measurements on two-mica granite from eastern Nevada indicate that the magma sources had K/Ca ≈ 1, similar to intermediate-composition crustal rocks. These results show that the KCa system can be used as a precise geochromometer for common felsic igneous and metamorphic rocks, and may prove applicable to sedimentary rocks containing authigenic K minerals. The relatively short half-life of 40K, the non-volatile daughter, and the fact that potassium and calcium are stoichiometric constituents of many minerals, make the KCa system complementary to other dating methods, and potentially applicable to a variety of geologic problems.  相似文献   

17.
If the temperature of ground water is below 75°C and the partial pressure of CO2 in the aquifer is above 10?4 atm, a chemical steady-state between water and felsic rocks (rather than chemical equilibrium) may be maintained. The temperature of water in the aquifer may be estimated using a modified form of the Na-K-Ca geothermometer from, I = ?1.36 ?0.253 log Pco2. where the departure of the steady-state from equilibrium, I, is a function of Pco2: I = ?1.36 ?0.253 log Pco2.  相似文献   

18.
The cordierite-gedrite-cummingtonite rocks occur in the zone of sulphide mineralization. Field and petrographic evidences suggest formation of these rocks from the chlorite ± garnet schists which are associated with them. Time relations between crystallization and deformation, as evident by textural relations, suggest that this transformation constitutes a progressive sequence in time during prograde metamorphism in the area. Bulk chemical compositions of the cordierite-gedrite-cummingtonite rocks plot in the compositional range of the chlorite schists in the AKF, ACF and AFM diagrams. The AFM diagram shows a discontinuity in the topology as revealed by the intersection of the coexisting garnet-chlorite join with the three-phase field of cordierite-gedrite-garnet, suggesting the reaction: Al-chlorite+quartzgarnet) ? gedrite+cordierite+H2O. The reaction took place under conditions of PH2 < Ps, brought about by dilution of pore fluid by B, Cl, F, S, etc., which reduce the activity of water.  相似文献   

19.
Selective wettability and floatability of several inherently hydrophobic minerals have been investigated using aqueous methanol solutions of various surface tensions. The relationship between the critical surface tension of wetting, γc, and of floatability, γcf, of the samples is examined. Experimental evidence is provided to show that a flotation feed cannot be represented by an uniquely defined γcf value. It is appropriate to specify for an inherently hydrophobic solid a critical surface tension range of floatability with upper and lower limits, γcmf and γclf respectively. The particles which are predominated by cleavage or crystal faces determine the lower limit, while those with some threshold degree of ionic character determine the upper limit. Examples of separation tests presented demonstrate that in the case of equality between γc values of two inherently floatable solids (or their γclf values), a difference in γcmf values determines the efficiency of their separation. It is also shown that the interfacial tension of maximum separation efficiency may be predicted from the individual surface tension of floatability curves which may be represented by second-order functions.  相似文献   

20.
Sixty-nine analyses are given for NH4 in minerals of metamorphic and granitic rocks mostly from the Ryoke belt, Japan. The distribution of NH4 in coexisting minerals is quite systematic, suggesting that NH4 is one of the stable geochemical components in high temperature processes.Biotite has the highest content of NH4, followed by muscovite, K-feldspar and plagioclase. Pure quartz is almost free from NH4. Calcic plagioclase contains less NH4 than does sodic plagioclase. The partition coefficients DPlBi, DKfBi and DKfBi are, on the average, 0.11, 0.38 and 0.43 respectively. The fractionation of NH4 in these minerals is quite similar to that of Rb but much smaller than that of Cs.Distribution of NH4 as well as those of Rb and Cs appears to be explained by its ionic radius and the shortest cation-O distances in alkali positions of minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号