首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We tested the effectiveness of stable isotopes as recorders of physiological changes that occur during coral bleaching and recovery. Montipora capitata and Porites compressa fragments were bleached in outdoor tanks with seawater temperature raised to 30 °C (treatment corals) for one month. Additional fragments were maintained at 27 °C in separate tanks (control corals). After one month, (0 months recovery), buoyant weight was measured and a subset of fragments was frozen. Remaining fragments were returned to the reef for recovery. After 1.5, 4, and 8 months, fragments were collected, measured for buoyant weight, and frozen. Fragments were analyzed for stable carbon and oxygen isotopic compositions of the skeleton (δ13Cs; δ18Os) and nitrogen and carbon isotopic compositions of the host tissue (δ15Nh; δ13Ch) and zooxanthellae (δ15Nz; δ13Cz). δ13Cs decreased immediately after bleaching in M. capitata, but not in P. compressa. δ18Os of both species failed to record the warming event. During the remaining months of recovery, δ13Cs and δ18Os were more enriched in treatment than control corals due to decreases in calcification and metabolic fractionation during that time. Increased δ15Nh of treatment P. compressa may be due to expelled zooxanthellae during bleaching and recovery. Increased δ15Nz at 1.5 months in treatment fragments of both species reflects the increased incorporation of dissolved inorganic nitrogen to facilitate mitotic cell division and/or chl a/cell recovery. Changes in δ13Ch and δ13Cz at 1.5 months in treatment M. capitata indicated a large increase in heterotrophically acquired carbon relative to photosynthetically fixed carbon. We experimentally show that isotopes in coral skeleton, host tissue and zooxanthellae can be used to verify physiological changes during bleaching and recovery, but their use as a proxy for past bleaching events in the skeletal record is limited.  相似文献   

2.
3.
The distribution of δ13C values for organic seston and sediment was determined in three sounds in the Spartina marsh estuaries along the Georgia coast, which had high, moderate, and low inputs of freshwater. Organic matter in all three sounds had similar carbon isotope compositions, for the most part within the range of marine values (δ13C of ?18%. to ?24%.). It appears that river flow does not introduce significant quantities of particulate C3 plant material (δ13C of ?25%. to ?28%.) to Georgia estuaries. Evaluation of δ13C values of estuarine seston and three size fractions of sediment indicated that while Spartina carbon (δ13C of ?13%.) can be an important component of organic matter in intertidal sediments (mean δ13C of ?14.3%. to ?20.0%.), it is less so in subtidal sediments (mean δ13C of ?18.8%. to ?21.2%.), and it is hardly present at all in the seston (mean δ13C of ?24.5%.). δ13C values of dissolved inorganic carbon (DIC) in several water samples ranged between ?2.5%. and ?5.6%., suggesting that the isotope composition of estuarine DIC is influenced by respiratory CO2 derived from metabolism of 13C-depleted plant carbon. Phytoplankton production utilizing this comparatively light DIC could be a source of relatively negative δ13C carbon in the estuary. Additional origins of estuarine organic matter greatly depleted in 13C compared to Spartina carbon remain to be identified.  相似文献   

4.
Fourteen ureilites were analyzed for stable C isotopic composition using stepped combustion. The δ13C values over the temperature range 500 to 1000°C are fairly constant for any particular meteorite although there are differences between samples. The similarity in combustion temperatures of pure diamond (600–1000δC) and pure graphite (600–800°C) makes it difficult to ascertain the relative proportions of either component within each sample. However, the constant δ13C values observed over the range 500 to 1000°C strongly suggests that ureilite diamond and graphite have the same isotopic composition. This would seem to confirm that the diamond in ureilites formed from the graphite during a process, presumably an impact event, which did not fractionate C isotopes.There is a variation in C isotopic composition of graphite/diamond intergrowths among ureilites, which is not continuous—the samples fall into two groups, with δ13C values clustered around ?10%. and ?2%. PDB. These groups are also distinguishable on the basis of the Fe content of their olivines, which may reflect the existence of more than one ureilite parent body. The brecciated ureilite North Haig has a δ13C value of ?6.5%. and it is thus possible that this sample contains components from mixed parent materials.Nitrogen abundance and stable isotope measurements were made on five samples using stepped combustion analysis. Nitrogen concentrations range from 25 to 150 ppm and CN ratios are substantially less than for carbonaceous chondrites. Variation in N isotopic composition is wide and there is evidence of different ratios in diamond/graphite, silicate and metal.  相似文献   

5.
The skeletal oxygen isotope ratio of Porites corals is the most frequently used proxy of past seawater temperature and composition for tropical and subtropical oceans. However, field calibration of the proxy signals is often difficult owing to the dual dependence of skeletal oxygen isotope ratio on temperature and the oxygen isotope composition of water. We conducted tank experiments in which we grew Porites spp. colonies for 142 d in thermostated seawater at five temperature settings between 21°C and 29°C under moderate light intensity of 250 μmol m−2 s−1 with a 12:12 light:dark photoperiod. A skeletal isotope microprofiling technique applied along the major growth axis of each colony revealed that the oxygen isotope ratios of newly deposited skeleton in most colonies remained almost constant during tank incubation, thus providing an ideal situation for precise calibration of oxygen isotope ratio proxy signals. However, the oxygen isotope ratios displayed an unusually large intercolony variability (∼1‰) at each temperature setting although the mean slope (∼0.15‰ °C−1) obtained for the temperature-skeletal oxygen isotope ratio relationship was close to previous results. The intercolony variations in the oxygen isotope ratios were apparently caused by kinetic isotope effects related to variations in the skeletal growth rate rather than by species-specific variability or genetic differences within species. No correlation was found between skeletal carbon isotope ratios and temperature. The carbon isotope ratios showed significantly inverse correlation with linear growth rates, suggesting a kinetic isotope control at low growth rates. Observed intercolony variability in skeletal carbon isotope ratios (∼5‰) can be partly attributed to growth-rate-related kinetic isotope effects.  相似文献   

6.
All of the major deep-water sedimentary provinces of the Gulf of Mexico were sampled with 48 piston cores, representative of the late Quaternary. The amount (per cent) and δ5C13 of the organic carbon in the sediment was measured at intervals within each core.Graphs of δC13 versus depth for each core give an indication of the sedimentological history of the Gulf. They show the extent of terrestrial influence on the Gulf during the late Pleistocene.Changes in δC13 of up to 6.0%.(from ~ ?19%.to ?25%. vs NBS-20) were measured across the Pleistocene-Holocene boundary in cores from the abyssal plain. These changes are consistent with a model wherein varying amounts of land-derived organic carbon were transported to the Gulf basin during glacial periods.By comparing graphs for cores from different areas, it was concluded that the major parameter affecting the δC13 values of organic carbon from marine sediments is the relative amount of terrestrial material present in the sediment. The maximum possible effect of the Pleistocene-Holocene temperature change in the Gulf was determined to be ~1.0%, if such an effect occurs at all.  相似文献   

7.
δ13CPDB compositions for 39 samples of dissolved organic carbon (DOC) from the Gulf of Mexico-Caribbean Sea-Atlantic Ocean system, the South Pacific and Ross Sea are reported. Deep water values are similar with a mean of ?21.8%. attesting to the homogeneity of the oceanic DOC pool. In Antarctic waters, a 5%. difference between DOC and particulate organic carbon (POC), with POC having values similar to modern plankton (δ13CPDB approx ?27%.) supports the idea of the transient nature of POC as compared to DOC.Total, lipid, acid hydrolyzed, amino acid and residue fractions of POC are about 5, 3, 7, 5 and 3%. respectively, more negative in 2000 m water as compared to surface water samples from the Gulf of Mexico.  相似文献   

8.
The carbon isotopic composition of CO2 from fluid inclusions in granulite facies rocks has been determined. The “primary” carbonic fluid — most probably being of Upper Mantle origin — appears to have δ 13C-values around ?15%. or even lighter up to ?20%. During the late stages of retromorphosis an enrichment in the heavy carbon isotope seems to occur resulting in δ-values between ?5 and ?7%. which, on the basis of 13C/12C ratios of carbonatites, kimberlites and diamonds have been taken up till now as representative for juvenile carbon. The implications of these findings are discussed.  相似文献   

9.
DH and 13C12C ratios were measured for 114 petroleum samples and for several samples of related organic matter. δD of crude oil ranges from ?85 to ?181‰, except for one distillate (?250‰) from the Kenai gas field; δ13C of crude oil ranges from ?23.3 to ?32.5‰, Variation in δD and δ13C values of compound-grouped fractions of a crude oil is small, 3 and 1.1%., respectively, and the difference in δD and δ13C between oil and coeval wax is slight. Gas fractions are 53–70 and 22.6–23.2‰ depleted in D and 13C, respectively, relative to the coexisting oil fractions.The δD and δ13C values of the crude oils appear to be largely determined by the isotopic compositions of their organic precursors. The contribution of terrestrial organic debris to the organic precursors of most marine crude oils may be significant.  相似文献   

10.
The carbon stable isotopic value of dissolved inorganic carbon (δ13CDIC) was measured over several years at different depths in the water column in six carbonate-precipitating temperate lakes. δ13CDIC behavior in three of these lakes departed from the conventional model wherein epilimnetic waters are seasonally enriched relative to all hypolimnetic waters, and in general δ13CDIC values in the water column were not readily correlated to parameters such as lake stratification, algal productivity, hydraulic residence time, or water chemistry. Additionally, the processes implicated in generating the δ13CDIC values of individual lakes differ between lakes with similar δ13CDIC compositions. Each lake thus initially appears idiosyncratic, but when the effects of carbonate mineral equilibria, microbial activity, and lake residence time are viewed in terms of the magnitude of distinct DIC pools and fluxes in stratified lakes, generalizations can be made that allow lakes to be grouped by δ13CDIC behavior. We recognize three modes in the relationship between δ13CDIC values and DIC concentration ([DIC]) of individual lakes: (A) δ13CDIC values decreasing with increasing [DIC]; (B) δ13CDIC values increasing with increasing [DIC]; (C) δ13CDIC values decreasing with increasing [DIC] but increasing again at the highest [DIC]. This approach is useful both in understanding δ13CDIC dynamics in modern hardwater lakes and in reconstructing the environmental changes recorded by sedimentary δ13C components in the lacustrine paleorecord.  相似文献   

11.
Three hundred and thirty new 13C analyses of diamonds are presented, indicating, in conjunction with earlier published work, a range of about 30%. in the carbon isotopic composition of diamonds. The frequency distribution of diamond δ13C analyses shows a very pronounced mode at ?5 to ?6%.vs PDB, a large negative skewness, and a sharp boundary at about ?1%.. Analyses of diamonds from the Premier and Dan Carl mines, South Africa, demonstrate that: (1) differences in 13C content that can be related to diamond color and shape are smaller than 1%.; (2) the mean 13C content of kimberlite carbonates is 1–2%. lower than that of associated diamonds; (3) significant differences in 13C content exist between the mean isotopic compositions of diamonds from these two pipes; (4) the variability in δ13C differs from one mine to the other.Computations were carried out evaluating the effect on the 13C content of diamonds of: (i) various precipitation processes; (ii) the abundance of the species H2, H2O, CH4, CO, CO2 and O2 in the vapor; (iii) the initial isotopic composition variability of the source carbon; (iv) variations of the carbon isotope effects resulting from changes in pressure and temperature and (v) reservoir effects (Rayleigh fractionation). Fifty-eight genetic models were investigated for compatibility with the 13C distribution in diamonds and associated carbonate. The modeling does not permit an unambiguous answer to the question whether or not a vapor participated in diamond formation, although the presence of methane during diamond formation is compatible with the carbon isotopic composition data, possible oxygen fugacities in the mantle and with the composition of gases liberated from diamonds. In all probability carbon isotope effects in the diamond formation process were small, and the very large range in δ13C observed was inherited from the source carbon.  相似文献   

12.
The stable carbon isotope composition sedimentary organic carbon was determined in the sediments of seven coastal lagoons of the Gulf of Mexico, Mexico. For most of the lagoons the δ13C values for sediments ranged from ?20.1 to ?23.9%. Anomalously low values, ?26.8 to 29.3%. were determined in sediments of two of the studied lagoons, probably due to the presence of organic carbon from anthropogenic sources, naturally absent in these environments. The δ13C values determined in the tissues of oysters collected at the same time in the different lagoons were very similar to those recorded in the sediments.  相似文献   

13.
Carbon (POC, DOC) and carbon isotopes (δ13C) within two headwater tributaries to the Xi River Basin, southwest China were analyzed to document the geochemical characteristics and sources of organic carbon (C) within basins characterized by a monsoonal climate and karst landforms. δ13 C POC value and C/N ratio data indicate that suspended soil organic carbon (SOC) was an important source of POC in both the Nanpan and Beipan rivers (i.e., the studied tributaries). However, differences in C sources exist between the Nanpan and Beipan River Basins. Higher terrestrial plants supplied a portion of the POC within the Beipan River. In contrast, the Nanpan River was characterized by an inverse correlation between POC and DOC, and a positive relationship between the δ13C values. These trends indicate that DOC within the Nanpan River was partly derived from the degradation of soil C within the water column. In addition, the interception of C by hydrological projects (e.g., dams) positioned along the Nanpan River led to higher DOC/POC ratios. In contrast, within the Beipan River δ13C DOC values range from ?20 to ?25.2 and are consistent with ratios associated with soil C, suggesting that leaching of C from catchment soil was the dominant source of DOC. Organic C in tributaries to the Beipan River may also have been derived from intense upland soil erosion, a process that resulted in the lowest DOC/POC ratios. The collected data indicate that land-use changes have potentially influenced regional- to local-scale organic C budgets within subtropical basins subjected to karstification.  相似文献   

14.
Cryoturbated facies are found at the boundary between soil horizons and Cretaceous chalk. Several types of secondary calcite appear in soil horizons: orange coloured and rounded (partially dissolved) nodules, deeply coloured angular aggregates, transparent isolated rhombs and polycrystalline nodules, needles. The carbon and oxygen isotope compositions of these calcites are correlated: δ13C = 4.9δ18OPDB + 15.9End members of this correlation are the orange rounded nodules (δ13C ? + 8%., δ18O ? ?1.5‰) and the transparent angular polycrystalline nodules (δ13C ? ?13; δ18O ? ?6).Partially dissolved nodules have formed under periglacial climatic conditions. Crystallisation would have occurred under the following (equilibrium) environmental conditions: δ18OSMOW (soil solution) ?7, δ13C (gaseousCO2) ? ?5.2, t ? ?2°C. Soil solution was enriched in 18O by evaporation and atmospheric CO2 was enriched in 13C as compared to present day. Transparent polycrystalline nodules are compatible with present day environmental conditions: δ18O (soil solution) ranging from ?9 to ?4 and δ13C (soil CO2) ranging from ?24.5 to ?23. These nodules crystallize between May and October at soil temperatures ranging from 10 to 25°C, from evaporated soil solutions. Angular coloured aggregates may form under present day winter conditions for temperatures between 0 and 10°C. However they may also result from present accretion of fragments of periglacial nodules.All recent secondary calcite results from CO2 degassing and evaporation of soil solutions. Degassing is controlled by the gradient of CO2 partial pressure within the soil profile. During winter this gradient is low and the resulting calcite precipitation is not significant. During summer a large difference in pCO2 appears between the root zone and deep soil horizons. The degassing accounts for an increase of about 2‰ in δ13C of the total dissolved inorganic carbon and of the related solid carbonate. Evaporation is the main driving force for secondary calcite precipitation.  相似文献   

15.
《Organic Geochemistry》2012,42(12):1277-1284
Compound-specific isotope measurements of organic compounds are increasingly important in palaeoclimate reconstruction. Searching for more accurate peat-based palaeoenvironmental proxies, compound-specific fractionation of stable C, H and O isotopes of organic compounds synthesized by Sphagnum were determined in a greenhouse study. Three Sphagnum species were grown under controlled climate conditions. Stable isotope ratios of cellulose, bulk organic matter (OM) and C21–C25 n-alkanes were measured to explore whether fractionation in Sphagnum is species-specific, as a result of either environmental conditions or genetic variation. The oxygen isotopic composition (δ18O) of cellulose was equal for all species and all treatments. The hydrogen isotopic composition (δD) of the n-alkanes displayed an unexpected variation among the species, with values between −154‰ for Sphagnum rubellum and −184‰ for Sphagnum fallax for the C23 n-alkane, irrespective of groundwater level. The stable carbon isotopic composition (δ13C) of the latter also showed a species-specific pattern. The pattern was similar for the carbon isotope fractionation of bulk OM, although the C23 n-alkane was >10‰ more depleted than the bulk OM. The variation in H fractionation may originate in the lipid biosynthesis, whereas C fractionation is also related to humidity conditions. Our findings clearly emphasize the importance of species identification in palaeoclimate studies based on stable isotopes from peat cores.  相似文献   

16.
《Organic Geochemistry》2012,42(12):1269-1276
This study sought to characterize hydrogen isotopic fractionation during biosynthesis of leaf wax n-alkanes in succulent plants capable of crassulacean acid metabolism (CAM). The metabolic and physiological features of CAM represent crucial strategies for survival in hot and dry climates and have been hypothesized to impact hydrogen isotope fractionation. We measured the stable carbon and hydrogen isotopic compositions (δ13C and δD, respectively) of individual n-alkanes in 20 species of succulent plants from a global collection of the Huntington Botanical Gardens, San Marino, California. Greenhouse conditions and irrigation with water of constant δD value enabled determination of interspecies differences in net D/H fractionation between source water and leaf wax products. Carbon isotope ratios provide constraints on the extent of CAM vs. C3 photosynthesis and indicate a wide range of CAM use, with δ13C values ranging from −33.01‰ to −18.54‰ (C27–C33 n-alkanes) and −26.66‰ to −17.64‰ (bulk tissue). Despite the controlled growth environment, we observed ca. 90‰ interspecies range in δD values from −193‰ to −107‰. A positive correlation between δ13Cbulk and δDC31 values with R2 = 0.60 (δ13CC31 and δDC31 values with R2 = 0.41) implicates a metabolic isotope effect as the dominant cause of interspecies variation in the hydrogen isotopic composition of leaf wax n-alkanes in CAM-intermediate plants.  相似文献   

17.
High-resolution natural abundance stable carbon isotope analyses across annual growth rings in evergreen trees reveal a cyclic increase and decrease in the measured carbon isotopic composition (δ13C), but the causes of this pattern are poorly understood. We compiled new and published high-resolution δ13C data from across annual growth rings of 33 modern evergreen trees from 10 genera and 15 globally distributed sites to quantify the parameters that affect the observed δ13C pattern. Across a broad range of latitude, temperature, and precipitation regimes, we found that the average, measured seasonal change in δ13C (Δδ13Cmeas, ‰) within tree rings of evergreen species reflects changes in the carbon isotopic composition of atmospheric carbon dioxide (Δδ13CCO2) and changes in seasonal precipitation (ΔP) according to the following equation: Δδ13Cmeas = Δδ13CCO2 - 0.82(ΔP) + 0.73; R2 = 0.96. Seasonal changes in temperature, pCO2, and light levels were not found to significantly affect Δδ13Cmeas. We propose that this relationship can be used to quantify seasonal patterns in paleoprecipitation from intra-ring profiles of δ13C measured from non-permineralized, fossil wood.  相似文献   

18.
Orca Basin is a highly reducing basin on the slope of the Gulf of Mexico. Stable carbon isotope ratios and total organic carbon percentages were determined for two cores within the basin and one control core outside the basin. The results show that the organic carbon content of the basin cores is consistently 2–3 times greater than that of the control core. The Pleistocene-Holocene boundary, indicated by a break in the δ13C depth profile, occurs at a greater sediment depth in the basin cores than in the control core. A small sampling interval has made it possible to detect an unexplained fine structure in the δ13C profile not previously observed.  相似文献   

19.
This study investigated the geochemical features of the lower Paleozoic strata of Yaerdang Mountain outcrop along with the core samples from well TD2∈ in the eastern Tarim Basin,NW China.The total organic carbon abundance,hydrocarbon-generating precursor biospecies,and stable isotope ratios of organics and carbonate(δ~(13)C_(ker),δ~(13)C_(carb) and δ~(18)O_(carb)) were comprehensively studied for their possible correlative constraints during sedimentary evolution.The results revealed that the δ~(13)C_(ker)(VPDB) of Cambrian kerogens along the outcrop section varied from-34.6‰ to-28.4‰,indicating an increasing tendency from the lower Cambrian to the upper Cambrian.This was on the whole accompanied by the variation in the δ~(13)C_(carb) and δ~(18)O_(carb) along the profile,which might be associated with the changes in the sea level and also in the compositional variation of benthic and planktonic biomass.The large variation in the stable carbon isotope ratios up to 6‰ along the outcrop section reflected the heterogeneity of the Cambrian source rocks from the eastern Tarim Basin.Hence,the ~(13)C-enriched crude oils from well TD2∈might have been derived from a localized stratum of Cambrian source rocks.The results from this study showed the possibility of multiple source kitchens in the Cambrian-lower Ordovician portion of Tarim Basin.  相似文献   

20.
δ13C values of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate organic C (POC) together with δ18O and δ2H values of water, δ34S values of dissolved SO4, and major ion concentrations were measured in the Murray River and its tributaries between November 2005 and April 2007 to constrain the origins and behaviour of riverine C. δ13CDIC values in the Murray River vary between −9.5 and −4.7‰ with a range of <3‰ within any sampling round. δ13CDIC values of the tributaries are −11.0‰ to −5.1‰. DIC concentrations of the Murray River increase from ∼25 mg/L in the middle and upper reaches of the river to 45–55 mg/L in the lower reaches. However, the mass ratio of DIC as a proportion of the total dissolved solids (TDS) decreases from ∼0.6–0.7 in the headwaters to ∼0.2–0.3 in the lower reaches of the river, with similar downstream changes in DIC/Cl ratios. This precludes simple evaporative concentration of DIC and is interpreted as the river evading CO2; this interpretation is consistent with pCO2 values that are in the range 550–11,200 ppm volume (ppmv), which are far higher than those in equilibrium with the atmosphere (∼360 ppmv). The δ13CDIC values are similar to those that would be produced by the weathering of marine limestone (δ13C ∼ 0‰). However, the lack of marine limestones cropping out in the Murray–Darling Basin and the relatively uniform δ13CDIC values of the Murray River (even in upland reaches where the dominant rock types are metamorphosed silicates and granites) make this unlikely. Rather the high pCO2 values and δ13CDIC values are best explained by a combination of mineralisation of low δ13C organic C and evasion to the atmosphere. The rate of these two processes may attain near steady state and control both DIC concentrations and δ13C values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号