首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas collections were made from a ~900°C vent both by conventional evacuated-bottle/wet-chemical techniques and by manual pumping of flowthrough bottles. The complete analyses suggest an equilibrium assemblage quenched at 1,010°C, about midway between fountain and vent temperatures. I suggest that the very low CS ratio is due to degassing of CO2 during storage of the magma in a shallow reservoir before eruption. The two sampling techniques yielded analytical data in mutual agreement.  相似文献   

2.
The stability of synthetic armalcolite of composition (Fe0.5Mg0.5Ti2O5 was studied as a function of total pressure up to 15 kbar and 1200°C and also as a function of oxygen fugacity (?O2) at 1200°C and 1 atm total pressure. The high pressure experiments were carried out in a piston-cylinder apparatus using silver-palladium containers. At 1200°C, armalcolite is stable as a single phase at 10 kbar. With increasing pressure, it breaks down (dTdP = 20°C/kbar), to rutile, a more magnesian armalcolite, and ilmenite solid solution. At 14 kbar, this three-phase assemblage gives way (dTdP = 30°C/kbar) to a two-phase assemblage of rutile plus ilmenite solid solution.A zirconian-armalcolite was synthesized and analyzed; 4 wt % ZrO2 appears to saturate armalcolite at 1200°C and 1 atm. The breakdown of Zr-armalcolite occurs at pressures of 1–2 kbar less than those required for the breakdown of Zr-free armalcolite. The zirconium partitions approximately equally between rutile and ilmenite phases.The stability of armalcolite as a function of ?O2 was determined thermogravimetrically at 1200°C and 1 atm by weighing sintered pellets in a controlled atmosphere furnace. Armalcolite, (Fe0.5Mg0.5)-Ti2O5, is stable over a range ?O2 from about 10?9.5to 10?10.5 atm. Below this range to at least 10?12.8 atm, ilmenite plus a reduced armalcolite are formed. These products were observed optically and by Mössbauer spectroscopy, and no metallic iron was detected; therefore, some of the titanium must have been reduced to Ti3+. This reduction may provide yet another mechanism to explain the common association of ilmenite rims around lunar armalcolites.  相似文献   

3.
The solvus in the system CO2-H2O-2.6 wt% NaCl-equivalent was determined by measuring temperature of homogenization in fluid inclusions which contained variable CO2H2O but the same amount of salt dissolved in the aqueous phase at room temperature. The critical point of the solvus is at 340 ± 5°C, at pressures between 1 and 2 kbar; this is about 65°C higher than for the pure CO2-H2O system. The solvus is assymetrical, with a steeper H2O-rich limb and with the critical point at mole fraction of water between 0.65 and 0.8.  相似文献   

4.
Calculations based on approximately 350 new measurements (CaT-PCO2) of the solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C indicate the following values for the log of the equilibrium constants KC, KA, and KV respectively, for the reaction CaCO3(s) = Ca2+ + CO2?3: Log KC = ?171.9065 ? 0.077993T + 2839.319T + 71.595 log TLog KA = ?171.9773 ? 0.077993T + 2903.293T +71.595 log TLog KV = ?172.1295 ? 0.077993T + 3074.688T + 71.595 log T where T is in oK. At 25°C the logarithms of the equilibrium constants are ?8.480 ± 0.020, ?8.336 ± 0.020 and ?7.913 ± 0.020 for calcite, aragonite and vaterite, respectively.The equilibrium constants are internally consistent with an aqueous model that includes the CaHCO+3 and CaCO03 ion pairs, revised analytical expressions for CO2-H2O equilibria, and extended Debye-Hückel individual ion activity coefficients. Using this aqueous model, the equilibrium constant of aragonite shows no PCO2-dependence if the CaHCO+3 association constant is Log KCahco+3 = 1209.120 + 0.31294T — 34765.05T ? 478.782 log T between 0 and 90°C, corresponding to the value logKCahco+3 = 1.11 ± 0.07 at 25°C. The CaCO03 association constant was measured potentiometrically to be log KCaCO03 = ?1228.732 ? 0.299444T + 35512.75T + 485.818 log T between 5 and 80°C, yielding logKCaCO03 = 3.22 ± 0.14 at 25°C.The CO2-H2O equilibria have been critically evaluated and new empirical expressions for the temperature dependence of KH, K1 and K2 are log KH = 108.3865 + 0.01985076T ? 6919.53T ? 40.45154 log T + 669365.T2, log K1 = ?356.3094 ? 0.06091964T + 21834.37T + 126.8339 log T — 1684915.T2 and logK2 = ?107.8871 ? 0.03252849T + 5151.79/T + 38.92561 logT ? 563713.9/T2 which may be used to at least 250°C. These expressions hold for 1 atm. total pressure between 0 and 100°C and follow the vapor pressure curve of water at higher temperatures.Extensive measurements of the pH of Ca-HCO3 solutions at 25°C and 0.956 atm PCO2 using different compositions of the reference electrode filling solution show that measured differences in pH are closely approximated by differences in liquid-junction potential as calculated by the Henderson equation. Liquid-junction corrected pH measurements agree with the calculated pH within 0.003-0.011 pH.Earlier arguments suggesting that the CaHCO+3 ion pair should not be included in the CaCO3-CO2-H2O aqueous model were based on less accurate calcite solubility data. The CaHCO+3 ion pair must be included in the aqueous model to account for the observed PCO2-dependence of aragonite solubility between 317 ppm CO2 and 100% CO2.Previous literature on the solubility of CaCO3 polymorphs have been critically evaluated using the aqueous model and the results are compared.  相似文献   

5.
Speciation of aqueous magnesium in the system MgO-SiO2-H2O-HCl in supercritical aqueous fluids has been investigated using standard rapid-quench hydrothermal techniques and a modification of the Ag + AgCl buffer method (Frantz and Eugster, 1973. Am. J. Sci.267, 268–286). A concentric double-capsule charge was utilized. The outer gold capsule contained the assemblage talc + quartz + Ag + AgCl + H2O-MgCl2 fluid; the inner platinum capsule, Ag + AgCl + H2O-HCl fluid. During the experiments, ?H2 and thus ?HCl equilibrated between the two capsules. After quenching, measurement of the chloride concentration in the fluid in the inner capsule and total magnesium in the fluid in the outer capsule defines the concentrations of HCl and Mg that coexist with talc + quartz in the outer capsule. Changes in the measured molality of HCl as a function of the total magnesium concentration at constant P and T were used to identify the predominant species of magnesium in the hydrothermal fluid. Experimental results showed that at 2000 bar, MgCl°2 is the predominant species above 550°C and Mg2+, below 400°C. Data at intermediate temperatures when combined with the dissociation constant for HCl were used to obtain the dissociation constant for MgCl°2. The results of these experiments were combined with results from experiments using Ag + AgCl in conjunction with the oxygen buffer, hematite-magnetite, to obtain the equilibrium constant for the reaction 13 Talc + 2HC1° H2O MgCl°2 + 43 Quartz + 43 H2O from which the difference in Gibbs free energy of MgCl°2 and HC1° was obtained as a function of temperature at 1000, 1500 and 2000 bar pressure, Solubility constants for brucite. forsterite, chrysotile, and talc were calculated.  相似文献   

6.
Heating and freezing studies on fluid inclusions in quartz from mineralized quartzfeldspar reef reveal the presence of type A CO2-H2O (H2O>50% by volume), type B CO2-H2O (H2O<50% by volume), type C pure CO2 and type D pure aqueous inclusions. Types A, B and C are primary and/or psuedo-secondary inclusions while type D are secondary. Types A and B homogenize on heating into different phases at similar temperatures ranging between 307 and 476°C, indicating entrapment from boiling hydrothermal solutions. Type D inclusions homogenize into a liquid phase at temperatures between 88 and 196°C. Boiling of hydrothermal solutions led to the formation of a CO2-rich phase of low density and salinity that coexisted with another dense and saline aqueous phase with very little CO2 dissolved in it. Ore and gangue mineral assemblage of primary ores indicate that ore deposition was characterized by logf O 2=?34.4 to ?30.2 atm, logf S 2=?11.6 to ?8.8 atm and pH=4.5 to 6.5.  相似文献   

7.
Megacrysts and polymineralic fragments of extraordinary diversity from a Tertiary monchiquitic dyke of Ubekendt Ejland comprise three groups: (1) Cr-diopside-fassaitic diopside + olivine, Fo90.5?81.5 + CrAl spinels. (II) Fassaitic salite-ferrisalite + KTi-pargasite-ferropargasite + apatite + AlTi-magnetite, (III) Scapolite + hyalophane + potassium feldspar + nepheline + analcime. By comparison with mineralogy and phase relations in the host rock and experimental data from alkaline rocks the megacrysts are related to a sequence of crystallization from primitive monchiquitic to potassic phonolitic magmas rich in H2O and CO2 at 5–11 kb. Group I megacrysts formed at temperatures of 1300-1150°C and group II between ? 1150–?800°C and fo2 < 10?9 bar at the latter temperature. High Pco2 may have stabilized the scapolite in the more evolved liquid and K-feldspar and nepheline began to crystallize at ca. 800°C possibly together with the ferrisalite.  相似文献   

8.
New data from geothermal wells in Iceland have permitted empirical calibration of the chalcedony and NaK geothermometers in the range of 25–180°C and 25–250°C respectively. The temperature functions are:
t°C=11124.91?log SiO2?273.15
t°C=9330.993+log Na/K?273.15
Concentrations are expressed in ppm. These temperature functions correspond well with the chalcedony solubility data of Fournier (1973) and the thermodynamic data for low-albite/microcline/solution equilibria of Heloeson (1969).A new CO2 geothermometer is proposed which is considered to be useful in estimating underground temperatures in fumarolic geothermal fields. Its application involves analysis of CO2 concentrations in the fumarole steam. The temperature function which applies in the range 180?300°C is: logCO2 = 37.43 + 73192/T- 11829· 103/T2 + 0.18923T- 86.187·logT where T is in °K and CO2 in moles per kg of steam.  相似文献   

9.
On the basis of recently reported data on the kinetics of carbon-13 exchange between CO2 and CH4 at temperatures above 500°C, first order rate constants log k = 11.16?10,190/T were derived allowing variations in Δ, the difference in the isotopic composition of coexisting CO2 and CH4, to be evaluated as a function of initial composition and cooling rate of the rising geothermal fluid. Observed Δ-values in geothermal discharges are likely to represent frozen in compositions attained after minimum residence times of 20 ka at 400°C or 10 Ma at 300°C. The carbon-13 contents of any biogenic gases are unlikely to have been affected by thermal re-equilibration at temperatures below 200°C. The chemical equilibrium involving CO2 and CH4 can be expected to proceed about a hundred times faster than isotopic equilibration.  相似文献   

10.
When quenched metastable wüstite (Fe.924O and Fe.947O) is held at 300°C at pressures up to 200 kbar in a diamond anvil cell, a mixture of magnetite, metallic iron and wüstite is found. We interpret this to indicate that magnetite plus metallic iron constitute the stable phase assemblage at pressures and temperatures below this boundary is stoichiometric FeO (a0 = 4.332 ± 0.001 A?) at pressures below 110 kbar at 300°C. However, just below the boundary in the pressure range 110 kbar to 200 kbar at 300°C, the residuál wüstite is non-stoichiometric (a0 < 4.332 A?). Data collected at pressures and temperatures above the boundary indicate that non-stoichiometric wüstite (FexO) plus metallic iron constitute the stable phase assemblage and that the value of x in FexO increases as pressure is increased isothermally to 100 kbar and then decreases as pressure is increased above 100 kbar.  相似文献   

11.
A thermodynamic model for concentrated brines has been developed which is capable of predicting the solubilities of many of the common evaporite minerals in chloro-sulfate brines at 25°C and 1 atm. The model assumes that the behaviour of the mean stoichiometric ionic activity coefficient in mixtures of aqueous electrolytes can be described by the Scatchard deviation function and Harned's Rule. In solutions consisting of one salt and H2O, the activity coefficient is described by the expression logλ4plusm;=-|z+z? √ 1/c1+a?B √ I) + 2(V+V?/v)Bi?l where a? and B? salt specific parameters obtained from data regression. In a mixture of n electrolytes and H2O, B? for the ith component is given by Bi?i=B i?i+σ αijyj where αij is a (constant) mixing parameter characterizing the interaction of the i and j components and yj is the ionic strength fraction of the jth component. The activity of H2O is obtained from a Gibbs-Duhem integration and does not require any additional parameters or assumptions. In this study, parameters have been obtained for the systems NaCl-KCl-MgCl2-CaCl2-H2O and NaCl-MgSO4-H2O at 25°C and 1 atm. Computed solubility curves and solution compositions predicted for invariant points in these systems agree well with the experimental data. The model is flexible and easily extended to other systems and to higher temperatures.  相似文献   

12.
An end member of the tourmaline series with a structural formula □(Mg2Al)Al6(BO3)3[Si6O18](OH)4 has been synthesized in the system MgO-Al2O3-B2O3-SiO2-H2O where it represents the only phase with a tourmaline structure. Our experiments provide no evidence for the substitutions Al → Mg + H, Mg → 2H, B + H → Si, and AlAl → MgSi and we were not able to synthesize a phase “Mg-aluminobuergerite” characterized by Mg in the (3a)-site and a strong (OH)-deficiency reported by Rosenberg and Foit (1975). The alkali-free tourmaline has a vacant (3a)-site and is related to dravite by the □ + Al for Na + Mg substitution. It is stable from at least 300°C to about 800°C at low fluid pressures and 100% excess B2O3, and can be synthesized up to a pressure of 20 kbars. At higher temperatures the tourmaline decomposes into grandidierite or a boron-bearing phase possibly related to mullite (“B-mullite”), quartz, and unidentified solid phases, or the tourmaline melts incongruently into corundum + liquid, depending on pressure. In the absence of excess B2O3 tourmaline stability is lowered by about 60°C. Tourmaline may coexist with the other MgO-Al2O3-B2O3-SiO2-H2O phases forsterite, enstatite, chlorite, talc, quartz, grandidierite, corundum, spinel, “B-mullite,” cordierite, and sinhalite depending on the prevailing PTX-conditions.The (3a)-vacant tourmaline has the space group R3m with a =15.90 A?, c = 7.115 A?, and V = 1557.0 A?3. However, these values vary at room temperature with the pressure-temperature conditions of synthesis by ±0.015 A? in a, ±0.010 A? in c, and ±4.0 A?3 in V, probably as a result of MgAl order/disorder relations in the octahedral positions. Despite these variations intensity calculations support the assumed structural formula. Refractive indices are no = 1.631(2), nE = 1.610(2), Δn = 0.021. The infrared spectrum is intermediate between those of dravite and elbaite. The common alkali and calcium deficiencies of natural tourmalines may at least partly be explained by miscibilities towards (3a)-vacant end members. The apparent absence of (3a)-vacant tourmaline in nature is probably due to the lack of fluids that carry boron but no Na or Ca.  相似文献   

13.
To simulate trapping of meteoritic noble gases by solids, 18 samples of Fe3O4 were synthesized in a noble gas atmosphere at 350–720 K by the reactions: 3Fe + 4H2O → Fe3O4 + 4H2 (Ne, Ar, Kr, Xe) 3Fe + 4CO → Fe3O3 + 4C + carbides (Xe only) Phases were separated by selective solvents (HgCl2, HCl). Noble gas contents were analyzed by mass spectrometry, or, in runs where 36 d Xe127 tracer was used, by γ-counting. Surface areas, as measured by the BET method, ranged from 1 to 400 m2/g. Isotopic fractionations were below the detection limit of 0.5%/m.u.Sorption of Xe on Fe3O4 and C obeys Henry's Law between 1 × 10?8 and 4 × 10?5 atm, but shows only a slight temperature dependence between 650 and 720 K (ΔHsol = ?4 ± 2 kcal/mole). The mean distribution coefficient KXe is 0.28 ± 0.09 cc STP/g atm for Fe3O4 and only a factor of 1.2 ± 0.4 greater for C; such similarity for two cogenetic phases was predicted by Lewis et al. (1977). Stepped heating and etching experiments show that 20–50% of the total Xe is physically adsorbed and about 20% is trapped in the solid. The rest is chemisorbed with ΔHs ? ?13 kcal/mole. The desorption or exchange half-time for the last two components is >102 yr at room temperature.Etching experiments showed a possible analogy to “Phase Q” in meteorites. A typical carbon + carbide sample, when etched with HNO3, lost 47% of its Xe but only 0.9% of its mass, corresponding to a ~0.6 Å layer. Though this etchable, surficial gas component was more thermolabile than Q (release T below 1000°C, compared to 1200–1600°C), another experiment shows that the proportion of chemisorbed Xe increases upon moderate heating (1 hr at 450°C). Apparently adsorbed gases can become “fixed” to the crystal, by processes not involving volume diffusion (recrystallization, chemical reaction, migration to traps, etc.). Such mechanisms may have acted in the solar nebula, to strengthen the binding of adsorbed gases.Adsorbed atmospheric noble gases are present in all samples, and dominate whenever the noble gas partial pressure in the atmosphere is greater than that in the synthesis. Many of the results of Lancet and Anders (1973) seem to have been dominated by such an atmospheric component; others are suspect for other reasons, whereas still others seem reliable. When the doubtful samples of Lancet and Anders are eliminated or corrected, the fractionation pattern—as in our samples—no longer peaks at Ar, but rises monotonically from Ne to Xe. No clear evidence remains for the strong temperature dependence claimed by these authors.  相似文献   

14.
Gold mineralization in the Velvet District occurs in an eastward dipping sequence of late Tertiary rhyolitic ash-flow tuffs, flows, and tuffaceous sediments in northwestern Nevada. Minor gold and silver concentrations are associated with irregular zones of brecciation, argillic alteration, and quartz veining along north-northeast trending normal faults. Reaction of mineralizing fluids with wallrock produced an argillic alteration assemblage of illite, mixed-layer clays, smectite, and kaolinite. Illite alteration and highest gold concentrations appear to be associated with zones of high water/rock ratios. Kaolinite, smectite, alunite, and opal are postulated to have formed during a steam-dominated episode of alteration.Fluid inclusion studies indicate that the quartz veins were deposited in the temperature range 230 to 280°C from fluids which had salinities equivalent to 0.2–0.8 weight percent NaCl. δ 18O of quartz veins varies from ?2.5 to +6.7 ‰ and indicates that the ore fluid must have been Tertiary meteroric water. Stable isotope data appear to define a zone of concentrated fluid flow and potential subsurface mineralization in the southeastern part of the district. Fluid inclusion and isotope studies can be used in combination with more standard geochemical, geophysical, and geological information to provide site-specific targets for epithermal metal concentrations.  相似文献   

15.
If the temperature of ground water is below 75°C and the partial pressure of CO2 in the aquifer is above 10?4 atm, a chemical steady-state between water and felsic rocks (rather than chemical equilibrium) may be maintained. The temperature of water in the aquifer may be estimated using a modified form of the Na-K-Ca geothermometer from, I = ?1.36 ?0.253 log Pco2. where the departure of the steady-state from equilibrium, I, is a function of Pco2: I = ?1.36 ?0.253 log Pco2.  相似文献   

16.
Metamorphic assemblages within Karoo basalt xenoliths, found within volcaniclastic kimberlite of the B/K9 pipe, Damtshaa, Botswana, constrain conditions of kimberlite alteration. Bultfonteinite and chlorite partially replace the original augite-plagioclase assemblage, driven by the serpentinisation of the kimberlite creating strong chemical potential gradients for Si and Mg. Hydrogarnet and serpentine replace these earlier metamorphic assemblages as the deposits cool. The bultfonteinite (ideally Ca2SiO2[OH,F]4) and hydrogarnet assemblages require a water-rich fluid containing F, and imply hydrothermal alteration dominated by external fluids rather than autometamorphism from deuteric fluids. Bultfonteinite and hydrogarnet are estimated to form at temperatures of ca. 350–250°C, which are similar to those for serpentinisation. Alteration within the B/K9 kimberlite predominantly occurs between 250 and 400°C. We attribute these conditions to increased efficiency of mass transfer and chemical reactions below the critical point of water and a consequence of volume-increasing serpentinisation and metasomatic reactions that take place over this temperature range. A comparison of the B/K9 kimberlite with kimberlites from Venetia, South Africa suggests that the composition and mineralogy of included xenoliths affects the alteration assemblages within kimberlite deposits.  相似文献   

17.
Plagioclase—melt equilibria   总被引:1,自引:0,他引:1  
The crystallization of plagioclase feldspar from magmatic liquid has been investigated experimentally under equilibrium conditions at 1 atm total pressure in the temperature range 1400-1095°C. Natural and synthetic melts of composition basalt to rhyolite were used, crystallizing plagioclase of composition An89-An32.The experimental results are analyzed initially in terms of elemental plagioclase/melt partition coefficients (D). DSi is always less than unity and is invariant with temperature. DA1 is always greater than unity and is relatively insensitive to temperature. DNa is less than unity above 1200°C and is strongly dependent upon temperature. DCa is greater than unity below 1430°C and is strongly dependent upon temperature.Analysis of the temperature-dependence of equilibrium constants for plagioclase-melt formation and exchange reactions in which several mixing models for the melt are considered, leads to the conclusion that, with appropriate choice of melt-components, the melt-components mix quasi-ideally. At fixed temperature in the absence of H2O, the equilibrium constant for the equilibrium of albite with the melt is insensitive to changes in melt-composition, and is insensitive to changes in pressure up to at least 10 kbars. As a consequence the composition of plagioclase crystallizing at known temperature and at low total pressure from a dry melt of known composition may be predicted [XAb(p) = XNaAlO2(l)·XSiO2(l)3· exp (6100T ? 2.29)]. However, the equilibrium constant is sensitive to changes in water pressure.The analysis further suggests that Na is intimately associated with tetrahedrally-coordinated Al in the melt, while Ca appears to be partitioned between at least two distinct melt-sites.  相似文献   

18.
The initial solid phase oxidation products formed during the oxidation of aqueous Mn(II) at 25°C were studied as a function of time. The analyses included morphology (TEM), mineralogy (x-ray diffraction), OMn ratio (iodometric method), oxidation state of manganese (XPS), and dissolved manganese. The initial solid formed under our conditions was Mn3O4 (hausmannite) which converted completely to γMnOOH (manganite) after eight months. βMnOOH (feitknechtite) appeared to be an intermediate in this transformation. The OMn ratio was initially 1.37 and increased to 1.49 over the same time span. Throughout the course of this study the XPS analyses showed that the surface of the solids (<50 Å) was dominated by Mn(III). The solution pH and dissolved manganese concentrations were consistent with disproportionation and oxidation reactions that favor the transformation of Mn3O4 to γMnOOH but not to γMnO2.  相似文献   

19.
The solubility of hematite in chloride-bearing hydrothermal fluids was determined in the temperature range 400–600°C and at 1000 and 2000 bars using double-capsule, rapid-quench hydrothermal techniques and a modification of the Ag + AgCl buffer method (Frantz and Popp, 1979). The changes in the molalities of associated hydrogen chloride (mHCl0) as a function of the molality of total iron in the fluid at constant temperature and pressure were used to identify the predominant species of iron in the hydrothermal fluid. The molality of associated HCl varied from 0.01 to 0.15. Associated FeCl20 was found to be the most abundant species in equilibrium with hematite. Determination of Cl/Fe in the fluid in equilibrium with hematite yields values approximately equal to 2.0 suggesting that ferrous iron is the dominant oxidation state.The equilibrium constant for the reaction Fe2O3 + 4HCl0 + H2 = 2FeCl20 + 3H2O was calculated and used to estimate the difference in Gibbs free energy between FeCl20 and HCl0 in the temperature range 400–600°C at 1000 and 2000 bars pressure.  相似文献   

20.
Experimentally reversed quartz solubilities at 250°C and at 250, 500 and 1000 bars yield values of the logarithm of the molality of aqueous silica of ?2.126, ?2.087 and ?2.038, respectively. Extrapolation of quartz solubility to the saturation pressure of water at 250°C results in a log molality of aqueous silica of-2.168. These solubility determinations and analyses of fluid pressures in geothermal systems indicate that pressure is significant when calculating quartz equilibrium temperatures from silica concentrations in waters of deep thermal reservoirs.The results of this investigation, combined with other reported quartz solubility measurements, yielded a pressure-sensitive “silica geothermometer” for fluids that have undergone adiabatic steam loss of t°C = 874 ? 0.156P(log mSi(OH)4 · 2H2O)2 + 411 log mSi(OH4 · 2H2O + 51 (log mSi(OH)4 · 2H2O)2 where P is the fluid pressure in bars and mSi(OH)4 · 2H2O represents the molality of aqueous silica measured in surface samples. The geothermometer is applicable to solutions in equilibrium with quartz from 180°C to 340°C and fluid pressures from H2O saturation to 500 bars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号