首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many studies illustrate that bioturbating animal species individually affect aquatic sediments through diverse mechanistic abilities, whereas assessments of joint effects of such species on sediments are relatively rare. Such joint effects have implications for real systems, in which different bioturbators coexist, but are difficult to predict for two reasons. First, they can be additive (being the sum of the individual effects of each species) or they can be positive or negative interactive (being greater or smaller than the sum of the individual effects). Second, if interactive, they can depend on biotic interactions that affect the bioturbating activities of the species and/or they can depend on physical interactions among bioturbator-induced sediment modifications. Using experimental streams, we assessed such joint effects on gravel–sand sediments for flow and sediment conditions preferred by barbel (Barbus barbus) but also used by gudgeon (Gobio gobio) and, in a second experiment, for flow and sediment conditions preferred by both male crayfish (Orconectes limosus) and gudgeon. These species have different mechanistic abilities to affect gravel and/or sand in stream beds. In each experiment, we measured (i) the transport of gravel and sand at baseflow (during 12 experimental days); (ii) four sediment surface characteristics (after 12 d); and (iii) the critical shear stress (τc) causing incipient gravel and sand motion during experimental floods (after 12 d). Gudgeon contributed differently to the joint effects in the two experiments, which related to its individual weight, prevailing baseflow shear stress, sediment particle weight, and sediment mixture (availability of surface sand). Overall, the species pairs had predominantly negative interactive joint effects on the sediment variables assessed by us. Both a literature survey and observations during the experiments provided no evidence for direct biotic interactions between barbel and gudgeon or crayfish and gudgeon, so one would reasonably associate their negative interactive effects on the sediments with physical interactions among bioturbator-induced sediment surface modifications. Individually, each species reduced the percentage of sand in the surface layer and the surface algal cover to relatively low values so that the species pairs could not accomplish much greater joint effects on these variables, explaining their negative interactive effects on them. As algal cover particularly affected the τc for gravel and sand, the negative interactive effects of the animals on this surface variable chained toward the τc for the sediments, on which the species pairs also had negative interactive effects. Such chained negative interactive effects on sediment variables are seemingly a general pattern of joint bioturbator effects on aquatic sediments, i.e., the many so far described single-species effects should be smaller than their sum if the species coexists in nature.  相似文献   

2.
S.S. Li  R.G. Millar  S. Islam   《Geomorphology》2008,95(3-4):206-222
A two-dimensional (2D) numerical hydrodynamic-morphological model is developed to investigate gravel transport and channel morphology in a large wandering gravel-bed river, the Fraser River Gravel Reach, in British Columbia, Canada. The model takes into count multi-fraction bedload transport, including the effects of surface coarsening, hiding and protrusion. Model outputs together with river discharge statistics were analyzed, producing distributed sediment budget and well-defined, localised zones of aggradation and degradation along the gravel reach. Long-term channel response to gravel extraction from aggrading zones as a flood hazard mitigation measure was also investigated numerically to assess the effectiveness of such an extraction. The total computed sediment budget agrees well with results based on field measurements of gravel transport available to us. This study points to the importance of a number of factors to bedload predictions: the gravel-to-sand ratio, the adequacy of resolving the wandering planform, and the distinction between bed shear stress driving bedload transport and bed resistance on the flow. These are in addition to the physical processes governing the flow field and gravel mobilization. The methodology presented in this paper can provide a scientific basis for gravel management including monitoring and extraction in order to maintain adequate flood protection and navigation, while preserving the ecosystem.  相似文献   

3.
A large number of rivers in Tuscany have channel planforms, which are neither straight nor what is usually understood as meandering. In the typical case, they consist of an almost straight, slightly incised main channel fringed with large lateral bars and lunate-shaped embayments eroded into the former flood plain. In the past, these rivers have not been recognised as an individual category and have often been considered to be either braided or meandering. It is suggested here that this type of river planform be termed pseudomeandering.A typical pseudomeandering river (the Cecina River) is described and analysed to investigate the main factors responsible for producing this channel pattern. A study reach (100×300 m) was surveyed in detail and related to data on discharge, channel changes after floods and grain-size distribution of bed sediments. During 18 months of topographic monitoring, the inner lateral bar in the study reach expanded and migrated towards the concave outer bank which, concurrently, retreated by as much as 25 m. A sediment balance was constructed to analyse bar growth and bank retreat in relation to sediment supply and channel morphology. The conditions necessary to maintain the pseudomeandering morphology of these rivers by preventing them from developing a meandering planform, are discussed and interpreted as a combination of a few main factors such as the flashy character of floods, sediment supply (influenced by both natural processes and human impact), the morphological effects of discharges with contrasting return intervals and the short duration of flood events. Finally, the channel response to floods with variable sediment transport capacity (represented by bed shear stress) is analysed using a simple model. It is demonstrated that bend migration is associated with moderate floods while major floods are responsible for the development of chute channels, which act to suppress bend growth and maintain the low sinuosity configuration of the river.  相似文献   

4.
The scarcity of grain-size data from gravel-bed rivers has traditionally hindered hydraulic, sediment transport and river habitat studies. A new remote sensing methodology to estimate grain-size distribution is presented. It combines textural digital images of the riverbed at 1 : 1000 and 1 : 40 scales with grain-size sampling. It was applied to a 12-km reach of the Isábena River (Central Pyrenees NE Spain). First, textural patterns for each grain-size range were obtained, selecting the most closely related texture variables, including the use of semivariograms. Second, multiple linear regression equations were derived from the textural variables to estimate each value of the grain-size distribution. The highest correlation values (r2) were obtained from the central part of the distribution (D50 with a RMS error of 12.7%). Finally, new multiple linear regression equations to estimate the D50 and D84 were obtained from 1 : 1000 images and four textural variables. These were used to derive D50 and D84 maps of the riverbed, re-sampled at a resolution of 1.5 m pixels, with RMS estimation errors of 26% and 32%, respectively. Downstream change in grain-size is also well reproduced by the method. The mean D50 of 72 and 32 mm were estimated in the upper and the lower reaches of the river, respectively. The methodology shows great potential for application, the relation between the spatial resolution of the images and the mean grain-size of the riverbed sediment being the main issue for future development.  相似文献   

5.
Three-dimensional morphological adjustment in a chute cutoff (breach) alluvial channel is quantified using Digital Elevation Model (DEM) analysis for a ca. 0.7 km reach of the River Coquet, Northumberland, UK. Following cutoff in January 1999, channel and bar topography was surveyed using a Total Station on five occasions between February 1999 and December 2000. Analysis of planform change coupled with DEM differencing elucidates channel and barform development following cutoff, and enables quantification of sediment transfers associated with morphological adjustment within the reach. This exercise indicates an initial phase of bed scour, followed by a period characterised by extensive bank erosion and lateral channel migration where erosion (including bed scour) totalled some 15,000 m3 of sediment. The channel in the post-cutoff, disequilibrium state is highly sensitive to relatively low-magnitude floods, and provision of accommodation space by bank erosion encouraged extensive lateral bar development. Bar development was further facilitated by infilling of channels abandoned by repeated within-reach avulsion and large-scale aggradation of sediment lobes deposited by higher magnitude floods. Calculations indicate that at least 6600 m3 of sediment was deposited on emerging bars within the reach over the survey period, and >2300 m3 deposited within the channel. Sediment losses from the reach may have exceeded 6500 m3.  相似文献   

6.
张家界甘溪砾石沉积物粒度的空间变化及其原因   总被引:1,自引:0,他引:1  
以往研究沉积物粒度分布规律时,主要局限于砂质沉积物,至多涉及细砾,对于卵砾、卵石、漂石等粗大砾石沉积物的粒度分布规律很少涉及。以张家界山地河流甘溪现代砾石沉积物为研究对象,样品的颗粒粒径介于23~663 mm,分析了河床、心滩和河岸沉积物样品的累积频率分布曲线。结果表明,这些河流砾石沉积物具有较好的统计规律和空间变化趋势,其分布特征可以用累积频率曲线来表达,一般呈现出清晰的两段式或三段式分布特征,是对不同水位洪水动力的响应。粒度参数反映出这些砾石沉积物具有较好的分选性和球度。河道砾石的中值粒径沿程变小,反映了河流水动力沿程变小的规律。岩壁崩塌的砂岩块体短期难以受到流水的充分改造,使河流沉积物的峰态呈现多样化;漂石及卵石缝隙间拦截了低水位洪水所携带的部分较细砾石,引起河道砾石沉积物呈现负偏。该项研究对于山地河流巨大碎屑沉积物的定量研究具有启示作用。  相似文献   

7.
We examined the trends of grain sizes along the upper 414 km2 of the mountainous Rio Chagres drainage basin in Panama. Gravel bars were sampled along 40 km of the Rio Chagres and five major tributary streams using a transect pebble count of median diameter, lithology, and clast rounding. Although previous investigators have found that downstream fining can be obscured by inputs of colluvial sediment and other local controls in mountain drainages, we decided to examine the trends of grain sizes along a tropical mountain river where rapid weathering and high capability of transport might be capable of overriding the input effects of colluvium. Specifically, we tested the hypotheses that downstream fining would be present as a result of selective sorting, and that weak felsic particles would decrease in size preferentially to strong mafic particles because of abrasion. Statistical analyses reveal a weak downstream decrease of sediment size on gravel bars along the study reach of the Rio Chagres, with a Sternberg diminution coefficient (α) for felsic and mafic grains of − 0.013 and − 0.017, respectively. Felsic clasts have thicker weathering rinds and become rounded downstream faster than mafic particles, but tumbling-mill tests of abrasion show no significant differences in rate of mass loss in relation to lithology, and downstream decreases in grain size are similar between lithologies. Dividing the study reach into six sub-reaches bounded by major tributary junctions, we further tested the hypothesis that downstream trends in fining might be obscured at the basin scale by sediment input from tributaries, but that trends in grain sizes might be more visible at the reach scale between tributaries. We did not find any consistent trends in grain size between tributaries. Stream width appears to assert a local control on grain size; coarse particles are associated with narrow channel reaches, whereas smaller particles are associated with wide channel reaches.  相似文献   

8.
Short-term channel dynamics of mountain stream reaches in the southern North Island of New Zealand were assessed over two successive 3-month periods using morphological budgeting. Response to floods varies between reaches, even when the catchments were located close to each other and had similar characteristics. The reaches on the Central Volcanic Plateau experienced least morphological change, while streams with steep catchments and migrating planform in the Tararua and Ruahine Ranges showed frequent channel adjustments. Channel response is conditioned by intrinsic variables rendering reaches responsive or robust to the effects of floods, and this is likely to reflect the degree of connectivity between slopes and channels, and reaches.  相似文献   

9.
Jan Hjort  Miska Luoto 《Geomorphology》2009,112(3-4):324-333
Vegetation is often considered to stabilize geomorphic processes. An increasing abundance of vegetation may cause negative feedbacks within a periglacial system. In this study, we explored the importance of vegetation on the occurrence of active cryoturbation-dominated feature fields in subarctic Finland on a landscape scale. The vegetation–cryoturbation interaction was studied across three altitudinal zones by applying hierarchical partitioning (HP) and variation partitioning (VP) methods that overcome collinearity problems in multivariate analysis. Firstly, our results showed that vegetation factors, especially the canopy cover of the field-layer vegetation and the total above ground biomass, were among the most important environmental variables affecting the occurrence of active cryoturbation features. Moreover, vegetation factors were for the most part positively associated with cryoturbation. Under the predicted global warming, the ‘greening’ of arctic and subarctic regions may, therefore, decrease and also increase the activity of the periglacial processes in sparsely vegetated terrain. Secondly, our analyses gave contrasting results of the environmental factors of the periglacial processes across altitudinal zones, although the relative importance of the vegetation group was rather constant throughout the zones. Thus, we stress the importance of the spatial study setting in geomorphic studies in topographically varying relief. We recommend either taking the altitudinal zonation of the landscape into consideration or studying the features within a predetermined zone to decrease misinterpretations in environment–process relationships. Methodologically, our results encourage wider applications of partitioning methods in multivariate settings in geomorphology.  相似文献   

10.
We present results of two studies on the (1) potential wood load in steep headwater streams and (2) properties of large wood (LW) transported in mountain rivers during the large August 2005 flood event in Switzerland. Ten headwater reaches of 1000 m length were surveyed in different regions of Switzerland. The potential wood load was estimated for in-channel deadwood, and possible driving factors were explored. Correlations were found with dead wood volume on hillslopes and mean channel width. We established size distributions of LW pieces and identified probable recruitment processes. Four reaches were resurveyed after an exceptionally severe flood in August 2005, showing limited LW transport in channels but considerable wood input by mass wasting processes. In addition, characteristics of deposits of LW along mountain rivers affected by the 2005 flood were investigated. Diameter and length distribution of transported and deposited pieces were comparable to those of LW from steep headwater streams, yet with considerably fewer long pieces in the deposits of mountain rivers. Most LW pieces were fresh wood, indicating that the portion of in-channel deadwood transported during the 2005 flood was limited. Findings of the study contribute to a better understanding of LW dynamics in Alpine mountain streams.  相似文献   

11.
Interrelated, biotic (flora and fauna) and abiotic (pedogenesis and hydrology) processes were examined at four sites (30, and approximately 1000–3000, 7000–12 000, and 125 000 years before present) in the northern Mojave Desert. Data collected at each included floral and faunal surveys; soil texture, structure, and morphology; and soil hydraulic properties. Separate measurements were made in shrub undercanopy and intercanopy microsites. At all sites, shrubs made up greater than 86 percent of total perennial cover, being least on the youngest site (4 percent) and most on the 7000–12 000-year-old site (31 percent). In the intercanopy, winter annual density was highest on the 1000- to 3000-year-old site (249 plants/m2) and lowest on the oldest site (4 plants/m2). Faunal activity, measured by burrow density, was highest on the 1000–3000- and 7000–12 000-year-old sites (0.21 burrows/m2) and density was twice as high in the undercanopy versus the intercanopy. Burrow density was lower at the two oldest sites, although density was not statistically greater in the undercanopy than intercanopy. At the older sites, the soil water balance was increasingly controlled by Av horizons in intercanopy soils in which saturated hydraulic conductivity (Ksat) decreased 95 percent from the youngest to the oldest site. No significant reduction in Ksat in undercanopy soils was observed. Decreases in the intercanopy sites correlated with decreases in annual plant density and bioturbation, suggesting these processes are interrelated with surface age.  相似文献   

12.
The vascular vegetation of alpine talus slopes between 2035 and 3095 m altitude was studied at Lassen Volcanic National Park (California) in the Cascade Range. Taluses show a diverse flora, with 79 plant species; growth forms include coniferous trees, shrubs, suffrutices, herbs, graminoids, and ferns. Spatial patterns of plant distribution were studied along 40 point-intercept transects. Plant cover was low (0-32.7%) on all slopes, spatially variable, and showed no consistent trends. Sedimentological characteristics were determined by photosieving next to 1500 plants; this census indicated preferential plant growth on blocks and cobbles, with 43.2% and 23.3% of the plants growing on these stones, respectively; fewer specimens were rooted on pebbles (13%) or on stone-free gravel areas (20.5%). Growth forms displayed different substrate preferences: 92.5% of the shrubs and 83% of the suffrutices colonized blocks or cobbles, but only 57.2% of the herbs and 59.8% of the graminoids grew on large stones. Plants are associated with large clasts because (1) coarse talus is more stable than fine sediment areas, which are more frequently disturbed by various geomorphic processes, and (2) large stones help conserve substrate water beneath them while moisture quickly evaporates from fine debris.Root patterns were studied for 30 plant species; 10 specimens for each species were excavated and inspected, and several root growth ratios calculated. All species exhibited pronounced root asymmetry, as roots for most plants grew upslope from their shoot base. For 23 species, all specimens had 100% of their roots growing upslope; for the other 7 species, 92.2-99.3% of below-ground biomass extended uphill. This uneven root distribution is ascribed to continual substrate instability and resulting talus shift; as cascading debris progressively buries roots and stems, plants are gradually pushed and/or stretched downhill. Various disturbance events affect root development. Slope erosion following rubble removal often exposes plant roots. Debris deposition can completely bury plants; some may survive sedimentation, producing new shoots that grow through accumulated debris. Shrubs may propagate by layering, as adventitious roots develop along buried stems; or produce new clones along their roots. Slope processes may damage and transport plant pieces downhill; some species can sprout from severed, displaced root or stem fragments. Vegetation interacts with several geomorphic processes, including debris flows, grain flows, rockfall, snow avalanches, frost creep, and runoff. Larger plants may alter local patterns of debris movement and deposition, damming cascading debris on their upslope side and deflecting sediments laterally to plant margins, where they form narrow elongated stone stripes.  相似文献   

13.
Evapotranspiration is one of the key components of hydrological processes. Assessing the impact of climate factors on evapotranspiration is helpful in understanding the impact of climate change on hydrological processes. In this paper, based on the daily meteorological data from 1960 to 2007 within and around the Aksu River Basin, reference evapotranspiration (RET) was estimated with the FAO Penman-Monteith method. The temporal and spatial variations of RET were analyzed by using ARCGIS and Mann-Kendall met...  相似文献   

14.
Evapotranspiration is one of the key components of hydrological processes. Assessing the impact of climate factors on evapotranspiration is helpful in understanding the impact of climate change on hydrological processes. In this paper, based on the daily meteorological data from 1960 to 2007 within and around the Aksu River Basin, reference evapotranspiration (RET) was estimated with the FAO Penman-Monteith method. The temporal and spatial variations of RET were analyzed by using ARCGIS and Mann-Kendall method. Multiple Regression Analysis was employed to attribute the effects of the variations of air temperature, solar radiation, relative humidity, vapour pressure and wind speed on RET. The results showed that average annual RET in the eastern plain area of the Aksu River Basin was about 1100 mm, which was nearly twice as much as that in the western mountainous area. The trend of annual RET had significant spatial variability. Annual RET was reduced significantly in the southeastern oasis area and southwestern plain area and increased slightly in the mountain areas. The amplitude of the change of RET reached the highest in summer, contributing most of the annual change of RET. Except in some high elevation areas where relative humidity predominated the change of the RET, the variations of wind velocity predominated the changes of RET almost throughout the basin. Taking Kuqa and Ulugqat stations as an example, the variations of wind velocity accounted for more than 50% of the changes of RET.  相似文献   

15.
Sand velocity in aeolian sand transport was measured using the laser Doppler technique of PDPA (Phase Doppler Particle Analyzer) in a wind tunnel. The sand velocity profile, probability distribution of particle velocity, particle velocity fluctuation and particle turbulence were analyzed in detail. The experimental results verified that the sand horizontal velocity profile can be expressed by a logarithmic function above 0.01 m, while a deviation occurs below 0.01 m. The mean vertical velocity of grains generally ranges from − 0.2 m/s to 0.2 m/s, and is downward at the lower height, upward at the higher height. The probability distributions of the horizontal velocity of ascending and descending particles have a typical peak and are right-skewed at a height of 4 mm in the lower part of saltation layer. The vertical profile of the horizontal RMS velocity fluctuation of particles shows a single peak. The horizontal RMS velocity fluctuation of sand particles is generally larger than the vertical RMS velocity fluctuation. The RMS velocity fluctuations of grains in both horizontal and vertical directions increase with wind velocity. The particle turbulence intensity decreases with height. The present investigation is helpful in understanding the sand movement mechanism in windblown sand transport and also provides a reference for the study of blowing sand velocity.  相似文献   

16.
The effects of the burrowing activity of river crabs on subsurface water movement and piping erosion were studied through a flume experiment. Cohesive field soil was used and constant fluvial head was applied. During the experiments with river crabs, burrows were excavated downwards under the groundwater level. At the outlet of each burrow, the crabs excavated pellets of soil and stacked them in piles, in the form of cone mounds. These mounds acted as effective dams for subsurface outflow, but they sometimes collapsed. The roofs of the burrows also caved in occasionally, whereby the crabs would excavate new burrows. The burrowing activity of the crabs led to marked erosion. In contrast, no marked erosion was observed in experiments without crabs, indicating that piping erosion occurs through the assistance of burrowing activity. It was observed that burrowing activity and piping erosion was pronounced when the hydraulic head was not significantly high (0.21–0.25). Analysis of the potential distribution of the soil mass indicated that the head loss close to the burrow was small in the case of experiments with crabs. This suggests that the burrow enhances rapid discharge of subsurface water. Consequently, burrowing activity was found to play an important role in piping erosion and rapid discharge of subsurface water.  相似文献   

17.
风沙活动威胁着龙羊峡水库的安全运营,查清沙害来源和入库量对于防治水患和沙害具有重要意义。基于1987、1995、2003、2013、2019年的Landsat卫星影像,利用COSI-Corr技术监测了龙羊峡库区不同时空的沙丘移动特征,并重新评估库区近32 a的潜在风沙入库量。结果显示:(1)1987—2019年龙羊峡库区沙丘平均移动速率为5.81 m·a-1,呈先加速(1987—2003年)后减速(2003—2013年)再加速(2013—2019年)趋势;沙丘移动方向在132.81°—165.82°范围内,与该区主风向一致。(2)近32 a向龙羊峡水库输送的潜在风沙量可达7.82×107 m3(1.20×108 t)。上风向塔拉滩潜在输送量为7.38×107 m3(1.14×108 t),下风向木格滩仅贡献了0.44×107 m3(0.68×107 t)。(3)库区内风沙输移受风况、气候、植被等多种因素的影响,在未来全球变暖条件下,青藏高原的风沙活动将会持续发展,风沙入库量的长期累计效应将对水库安全构成严重威胁,必须引起足够重视。  相似文献   

18.
数字流域及其在流域综合管理中的应用   总被引:8,自引:1,他引:8  
流域的治理需要从系统的角度出发 ,综合考虑流域的自然、经济和社会子系统 ,实行综合管理。本文从新近发展起来的数字地球的概念出发 ,建立了数字流域的基本模式 ,初步探讨了数字流域的数据采集、处理、集成、显示及其在流域综合管理中的应用。  相似文献   

19.
Nicholas J. Cox   《Geomorphology》2006,76(3-4):332-346
Commonly in geomorphology measurements by different methods are compared to see how far they agree (i.e. are equal), as are predictions from models and corresponding observations. Such assessment usually employs scatter plots, correlation and possibly regression. More appropriate and more effective methods include plotting differences versus means and summary by concordance correlation and other measures of agreement. These methods, some new to geomorphology, are explained and discussed with a variety of examples using fluvial, hillslope, glacial and coastal data.  相似文献   

20.
气候变化对渭河上游径流量和输沙量的影响   总被引:15,自引:2,他引:15  
利用渭河上游北道水文站的径流量和输沙量资料和渭河上游流域16个气象站的气象资料,分析了1951—2000年期间气候变化对渭河上游径流量和输沙量的影响。结果表明:渭河上游径流量变化总体呈下降趋势,跃变点发生在1967年,20世纪60年代径流量最大,90年代以后径流量最小。径流量的变化主要取决于流域降水量的变化。葫芦河支流流域的降水量对径流量变化的影响最为敏感,其次是榜沙河支流流域的降水量。输沙量的多少主要取决于上游降水量的多少和大雨的次数,其次是风速大小和大风次数的多少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号