首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The basement gneiss of the Shillong plateau and the overlying rocks of the Shillong basin have been dissected by a number of mafic dyke swarms represented by older Proterozoic dolerite dykes and sills named as Khasi greenstone and the younger set of Cretaceous dykes. The older dolerites dykes of Shillong basin are partly metamorphosed and have undergone low-grade metamorphism compared to the fresh unmetamorphosed Cretaceous dykes dominantly exposed in the BGC of West Garo hills region. The Khasi greenstones are tholeiitic in composition and range from basalt to basaltic andesite. Most of the metamorphosed mafic dykes indicate continental nature with some amount of overlapping oceanic tectonic setting. Palaeomagnetic study of the metadolerite dykes show a direction of magnetization of Dm=29, Im=38 (α95 = 28.84; k = 48.33; N = 2) with a palaeolatitude of 21.3° N to the Indian sub-continent that clearly support the Proterozoic dyke/dyke swarm emplacement in the region. The magnetic carrier as inferred from IRM studies is magnetite in the range of psuedosingle to multi domain (MD) states with minor contribution from hematite.  相似文献   

2.
The mafic dyke swarms are important feature of the Proterozoic and in parts of some stabilised cratonic areas. The early Proterozoic Bundelkhand massif of Central India is extensively intruded by suites of NW-SE and NE-SW trending mafic and ultramafic dykes. These dykes are mostly dolerites with subordinate pyroxenite, or lamproites, moreover, geochemical signatures of the two compositional types are different for the NW-SE and NE-SW trending suites. 40Ar/39Ar age determinations of the dolerite dykes suggest two phases of dyke activity at c.2150Ma and c.2000 Ma in this region. The dolerites are typically tholeiites and quartz normative types represented by Group I and Group II, whilst the ultramafics are komatiite or basaltic komatiite in composition and show an olivine-normative character. Rare earth element (REE) patterns show some enrichment of LREE and exhibit both positive and negative Eu anomalies. Most of the tholeiites display incompatible elements patterns indicative of an enriched mantle source, whilst those of the ultramafics indicate a depleted source. The 2 Ga event is a global event and well documented in various parts of Singhbhum, Aravalli terrane, Tamilnadu, Andhra Pradesh and Kerala regions of Indian Peninsular Shield and many parts of globe. The genesis of these dyke swarms clearly constitutes a major thermal event affecting the Earth's mantle during that period.  相似文献   

3.
大陆克拉通广泛发育元古代镁铁质岩墙群,其形成时限短,侵位机制复杂,可以侵位于不同的地壳层次,岩墙群的岩浆可能有多种来源,但主要来自陆下软流圈或地幔岩石圈,很少经历结晶分异与地壳混染,岩墙群的总体化学成分量富集型的,从古元古代到新元古代,其碱性组分逐渐增多,反映地幔演化特征,板块构造理论可应用于晚太古代-古元古代的构造研究,元古代以超级大陆的聚合及裂解为特征,岩墙群的形成普遍与伸展体制相联系,是超级大陆开始裂解或地幔柱活动的重要标志。华北克拉通区广泛发育中元古代镁铁质岩墙群,对其进行多学科的研究,将为确定华北克拉通在中元古代超级大陆中的构造位置及其古板块再造提供重要依据。  相似文献   

4.
The Archaean gneissic basement of Shillong plateau has been traversed by number of mafic dyke swarms. At least two suites of dykes are identified in the region represented by Proterozoic Khasi greenstone related dolerites and younger Cretaceous dolerite dykes in addition to mafic alkaline dykes. The older Khasi greenstone dolerites are altered and have undergone low-grade metamorphism compared to fresh Cretaceous dykes, which are well exposed in the West Garo Hills region. All the Khasi greenstone dolerites are tholeiite in composition and range from basalt to basaltic andesite in composition and show olivine or quartz normative character. Most of the dykes show continental nature of emplacement with some overlapping oceanic tectonic setting of origin. Petrochemical study suggests that they were derived from picrites that subsequently undergone low-pressure fractionation. Palaeomagnetic study of the older Khasi greenstone related dolerites show a direction of magnetization of Dm=17, Im= +57 (α95= 23.34; K=31.5; N=24) with a palaeolatitude of 29.7°N to the Indian subcontinent that clearly support the Proterozoic dyke/dyke swarm emplacement in the region. The magnetic carrier as inferred from K-T studies is in multi domain (MD) size and cation deficient (CD) domain states.  相似文献   

5.
Approximately 1650-Ma-old NW/SE and NE/SW-trending dolerite dykes in the Tiruvannamalai (TNM) area and approximately 1800-Ma-old NW/SE-trending dolerite dykes in the Dharmapuri (DP) area constitute major Proterozoic dyke swarms in the high-grade granulite region of Tamil nadu, southern India. The NW- and NE-trending TNM dykes are compositionally very similar and can be regarded as having been formed during a single magmatic episode. The DP dykes may relate to an earlier similar magmatic episode. The dolerites are Fe-rich tholeiites and most of the elemental variations can be explained in terms of fractional crystallisation. Clinopyroxene and olivine are the inferred ferromagnesian fractionation phases followed by plagioclase during the late fractionation stages. All the studied dykes have, similar to many continental flood basalts (CFB), large-ion lithophile element (LILE) and light rare-earth element (LREE) enrichment and Nb and Ta depletion. The incompatible element abundance patterns are comparable to the patterns of many other Proterozoic dykes in India and Antarctica, to the late Archaean (~2.72 Ga) Dominion volcanics in South Africa and to the early Proterozoic (~2.0 Ga) Scourie dykes of Scotland. The geochemical characteristics of the TNM and DP dykes cannot be explained by crustal contamination alone. Instead, they are consistent with derivation from an enriched lithospheric mantle source which appears to have been developed much earlier than the dyke intrusions during a major crustal building event in the Archaean. The dyke magmas may have been formed by dehydration melting induced by decompression and lithospheric attenuation or plume impingement at the base of the lithosphere. These magmas, compared with CFB, appear to be the minor partial melts from plume heads of smaller diameter and of shallow origin (650 km). Therefore, the Proterozoic thermal events could induce crustal attenuation and dyke intrusions in contrast to the extensive CFB volcanism and continental rifting generally associated with the Phanerozoic plumes of larger head diameter (>1000 km) and of deeper origin (at crust mantle boundary).  相似文献   

6.
Age-determinations on a complex array of mafic dykes across the eastern Kaapvaal craton (Olsson et al., 2010) are complemented herein by field evidence, dyke trend analysis, and petrological characterization of 58 dyke samples. ∼2.95 Ga SE-trending, a ∼2.65 Ga E- to SE-radiating, and ∼1.90 Ga NE-trending swarms can be distinguished. Prominent Archean (∼2.95 and ∼2.65 Ga) dyke ridges contain basement xenoliths, and have a more quartz-oversaturated, andesitic and calc-alkaline character. Proterozoic (∼1.90 Ga) dykes are, on the other hand, more aeromagnetically prominent tholeiitic basalts with higher modal (Fe, Ti)-oxide contents. Multi-elemental statistics indicate that the best geochemical discrimination is found between Archean high-Sr/V and La/Yb and Proterozoic low-Sr/V and La/Yb dyke swarms. The calc-alkaline character of Archean dyke swarms is augmented by LILE-enriched spider-element patterns with steeper REE-slopes as compared to the Proterozoic swarm. Geochemical similarities are roughly consistent with the ∼2.95 and ∼2.65 Ga dykes having fed coeval lavas within the Nsuze Group and Allanridge Formation (upper Ventersdorp Supergroup), respectively. ∼1.90 Ga dykes match coeval sills on both the Zimbabwe and Kaapvaal cratons, and are presumed feeders to Soutpansberg Group lavas. This new information provided by dated feeder dyke swarms leads to a re-evaluation of petrotectonic settings, ranging from continental back-arc to radiating swarms emanating from igneous (plume?) centers.  相似文献   

7.
The Indian Shield is cross-cut by a number of distinct Paleoproterozoic mafic dyke swarms. The density of dykes in the Dharwar and Bastar Cratons is amongst the highest on Earth. Globally, boninitic dyke swarms are rare compared to tholeiitic dyke swarms and yet they are common within the Southern Indian Shield. Geochronology and geochemistry are used to constrain the petrogenesis and relationship of the boninitic dykes (SiO2 = 51.5 to 55.7 wt%, MgO = 5.8 to 18.7 wt%, and TiO2 = 0.30 wt% to 0.77 wt%) from the central Bastar Craton (Bhanupratappur) and the NE Dharwar Craton (Karimnagar). A single U-Pb baddeleyite age from a boninitic dyke near Bhanupratappur yielded a weighted-mean 207Pb/206Pb age of 2365.6 ± 0.9 Ma that is within error of boninitic dykes from the Dharwar Craton near Karimnagar (2368.5 ± 2.6 Ma) and farther south near Bangalore (2365.4 ± 1.0 Ma to 2368.6 ± 1.3 Ma). Rhyolite-MELTS modeling indicates that fractional crystallization is the likely cause of major element variability of the boninitic dykes from Bhanupratappur whereas trace element modeling indicates that the primary melt may be derived from a pyroxenite mantle source near the spinel-garnet transition zone. The Nd isotopes (εNd(t) = −6.4 to +4.5) of the Bhanupratappur dykes are more variable than the Karimnagar dykes (εNd(t) = −0.7 to +0.6) but they overlap. The variability of Sr-Nd isotopes may be related to crustal contamination during emplacement or is indicative of an isotopically heterogeneous mantle source. The chemical and temporal similarities of the Bhanupratappur dykes with the dykes of the Dharwar Craton (Karimnagar, Penukonda, Chennekottapalle) indicate they are members of the same giant radiating dyke swarm. Moreover, our results suggest that the Bastar and Dharwar Cratons were adjacent but likely had a different configuration at 2.37 Ga than the present day. It is possible that the 2.37Ga dyke swarm was related to a mantle plume that assisted in the break-up of an unknown or poorly constrained supercontinent.  相似文献   

8.
The structural organization of a giant mafic dyke swarm, the Okavango complex, in the northern Karoo Large Igneous Province (LIP) of NE Botswana is detailed. This N110°E-oriented dyke swarm extends for 1500 km with a maximum width of 100 km through Archaean basement terranes and Permo-Jurassic sedimentary sequences. The cornerstone of the study is the quantitative analysis of N>170 (exposed) and N>420 (detected by ground magnetics) dykes evidenced on a ca. 80-km-long section lying in crystalline host-rocks, at high-angle to the densest zone of the swarm (Shashe area). Individual dykes are generally sub-vertical and parallel to the entire swarm. Statistical analysis of width data indicates anomalous dyke frequency (few data <5.0 m) and mean dyke thickness (high value of 17 m) with respect to values classically obtained from other giant swarms. Variations of mean dyke thicknesses from 17 (N110°E swarm) to 27 m (adjoining and coeval N70°E giant swarm) are assigned to the conditions hosting fracture networks dilated as either shear or pure extensional structures, respectively, in response to an inferred NNW–SSE extension. Both fracture patterns are regarded as inherited brittle basement fabrics associated with a previous (Proterozoic) dyking event. The Okavango N110°E dyke swarm is thus a polyphase intrusive system in which total dilation caused by Karoo dykes (estimated frequency of 87%) is 12.2% (6315 m of cumulative dyke width) throughout the 52-km-long projected Shashe section. Assuming that Karoo mafic dyke swarms in NE Botswana follow inherited Proterozoic fractures, as similarly applied for most of the nearly synchronous giant dyke complexes converging towards the Nuanetsi area, leads us to consider that the resulting triple junction-like dyke/fracture pattern is not a definitive proof for a deep mantle plume in the Karoo LIP.  相似文献   

9.
《Precambrian Research》2001,105(2-4):183-203
Previous studies have shown that the 2.04 Ga Kangâmiut dyke swarm of SW Greenland was injected into an active tectonic environment associated with the formation of the Nagssugtoqidian orogenic belt. Major and trace element modelling of the swarm shows that its chemical evolution was controlled by simple clinopyroxene–plagioclase fractionation. However, such trends — although typical of continental flood basalts and mafic dyke swarms — are at variance with their mineralogy and petrography, which show that locally hornblende is the dominant primary ferromagnesian mineral. Modelling of intradyke fractionation alone shows that hornblende could locally have been an important crystallising phase within several dykes. Normal basaltic fractionation must have occurred before dyke injection at the exposed crustal levels, where the influx of water into the dykes is believed to be responsible for the transition from clinopyroxene–plagioclase (tholeiitic) to hornblende–plagioclase±oxides (calc–alkaline) crystallisation. Overall geochemical trends are dominated by tholeiitic fractionation because (1) hornblende fractionation tended to buffer chemical composition; (2) the presence of water in the surrounding country rocks may have resulted in the advection of heat away from the dyke and consequently resulted in rapid crystallisation, particularly in thin dykes. There is no evidence from trace element data, and particularly Pb isotopic ratios, of any significant assimilation of country rocks occurring during clinopyroxene–plagioclase fractionation, although this does not preclude contamination of the mantle source prior to magma generation. It is likely that the incompatible element enrichment within the dykes resulted from subduction-related mantle metasomatism. The Kangâmiut dyke swarm was both a syn-tectonic and thermal event, which triggered it may be linked to passage of a slab window underneath the metasomatised region, or a mantle plume ascending under a subduction zone.  相似文献   

10.
 Proterozoic tholeiitic dyke swarms share many compositional features with, and pose similar petrogenetic problems to, Phanerozoic continental flood basalts, but there are few extrusive equivalents of such swarms. The Mesoproterozoic (1.27 Ga) Harp dyke swarm in Labrador is one where possible extrusive equivalents exist in the Seal Lake group, but are slightly displaced in space and time, and can probably be related by models of progressive crustal extension. Here we try to evaluate the roles of crystal differentiation, in situ crystallisation, crustal assimilation and the relative contributions of asthenosphere- and lithosphere-derived melts in the petrogenesis of the mafic magmas. Modelling of the major and trace element variations both within individual dykes and between dykes, and within the lava sequence, does not suggest an important role for continental crust involvement. While in situ crystallisation processes could account for some of the compositional variations, the most successful models invoke mixing or contamination of asthenospheric magmas with/by veined material in the lower lithosphere / upper asthenosphere which carries the ‘continental’ characteristics. The results imply an important role for hydrous phases such as phlogopite and hornblende in the sub-lithosphere mantle. Much of the low-MgO character of mafic dykes may result from significant removal of mafic phases during in situ crystallisation within the lithosphere. Received: 15 May 1994/Accepted: 28 July 1995  相似文献   

11.
There are several geological, geochemical and geophysical evidences, which corroborate reconstruction of Gondwanaland and juxtaposition of India and Antarctica. Petrology of the Precambrian mafic dykes of East Antarctica and Central-East India also support juxtaposition of India and Antarctica. Mafic dykes of different generations are emplaced in the Archaean granite gneisses of these regions. These dykes appear to be an important tool to support juxtaposition of India and Antarctica. Geological and petrological data of the Central-East India Precambrian mafic dykes suggest four episodes of mafic magmatism in the region - three tholeiitic and one noritic (?). Similarly, East Antarctica also comprises four dyke suites, emplaced during three distinct periods. These suites are 2.4 Ga meta-tholeiites, 2.4 Ga high-Mg tholeiites, 1.8 Ga dolerites and 1.2–1.4 Ga dolerites. Geochemical compositions of these mafic dykes are compared and they show good relationships with each other. Similarities in petrological and geochemical characteristics of Precambrian mafic dykes of East Antarctica and Central-East India strongly support juxtaposition of these two continents.  相似文献   

12.
Mafic rocks of Western Dharwar Craton (WDC) belong to two greenstone cycles of Sargur Group (3.1–3.3 Ga) and Dharwar Supergroup (2.6–2.8 Ga), belonging to different depositional environments. Proterozoic mafic dyke swarms (2.4, 2.0–2.2 and 1.6 Ga) constitute the third important cycle. Mafic rocks of Sargur Group mainly constitute a komatiitic-tholeiite suite, closely associated with layered basic-ultrabasic complexes. They form linear ultramaficmafic belts, and scattered enclaves associated with orthoquartzite-carbonate-pelite-BIF suite. Since the country rocks of Peninsular Gneiss intrude these rocks and dismember them, stratigraphy of Sargur Group is largely conceptual and its tectonic environment speculative. It is believed that the Sargur tholeiites are not fractionated from komatiites, but might have been generated and evolved from a similar mantle source at shallower depths. The layered basic-ultrabasic complexes are believed to be products of fractionation from tholeiitic parent magma. The Dharwar mafic rocks are essentially a bimodal basalt-rhyolite association that is dominated by Fe-rich and normal tholeiites. Calc-alkaline basalts and andesites are nearly absent, but reference to their presence in literature pertains mainly to carbonated, spilitized and altered tholeiitic suites. Geochemical discrimination diagrams of Dharwar lavas favour island arc settings that include fore-, intra- and back-arcs. The Dharwar mafic rocks are possibly derived by partial melting of a lherzolite mantle source and involved in fractionation of olivine and pyroxene followed by plagioclase. Distinctive differences in the petrography and geochemistry of mafic rocks across regional unconformities between Sargur Group and Dharwar Supergroup provide clinching evidences in favour of distinguishing two greenstone cycles in the craton. This has also negated the earlier preliminary attempts to lump together all mafic volcanics into a single contemporaneous suite, leading to erroneous interpretations. After giving allowances for differences in depositional and tectonic settings, the chemical distinction between Sargur and Dharwar mafic suites throws light on secular variations and crustal evolution. Proterozoic mafic dyke swarms of three major periods (2.4, 2.0–2.2 and 1.6 Ga) occur around Tiptur and Hunsur. The dykes also conform to the regional metamorphic gradient, with greenschist facies in the north and granulite facies in the south, resulting from the tilt of the craton towards north, exposing progressively deeper crustal levels towards the south. The low-grade terrain in the north does not have recognizable swarms, but the Tiptur swarm consists essentially of amphibolites and Hunsur swarm mainly of basic granulites, all of them preserving cross-cutting relations with host rocks, chilled margins and relict igneous textures. There are also younger dolerite dykes scattered throughout the craton that are unaffected by this metamorphic zonation. Large-scale geochemical, geochronological and palaeomagnetic data acquisition through state-of-the-art instrumentation is urgently needed in the Dharwar craton to catch up with contemporary advancements in the classical greenstone terrains of the world.  相似文献   

13.
华北克拉通1.75Ga基性岩墙群特征及其研究进展   总被引:2,自引:1,他引:2  
基性岩墙群是地壳伸展背景下,来自地幔的基性岩浆侵入体。华北克拉通同世界上其它克拉通一样,广泛发育前寒武纪基性岩墙群。它们在不同时代均有产生,其中1.75Ga前后的规模最大,分布范围最广,几乎遍布整个克拉通,对其进行深入研究,可以揭示华北克拉通该期构造演化过程。华北克拉通1.75Ga前后的岩墙几何形态多变,直立或近直立,走向主要为NNW向和近EW向。岩石以拉斑玄武质岩类占绝对优势(>80%),主要造岩矿物为单斜辉石和斜长石。根据岩墙走向、岩浆分异程度和岩石地球化学特征可将其分五组:低分异LT组、低分异HT组、高分异NW组、高分异EW组,以及具明显差异的高铁系列。同位素和微量元素研究显示,岩浆源区主要与富集Ⅰ型地幔(EMⅠ)、弱亏损的常规地幔(DM-PREMA)以及陆下岩石圈地幔有关。目前对华北克拉通1.75Ga基性岩墙群产出的构造环境在认识上有分歧,其中地幔柱观点和碰撞后伸展观点最为人们所关注。  相似文献   

14.
The Bastar craton has experienced many episodes of mafic magmatism during the Precambrian. This is evidenced from a variety of Precambrian mafic rocks exposed in all parts of the Bastar craton in the form of volcanics and dykes. They include (i) three distinct mafic dyke swarms and a variety of mafic volcanic rocks of Precambrian age in the southern Bastar region; two sets of mafic dyke swarms are sub-alkaline tholeiitic in nature, whereas the third dyke swarm is high-Si, low-Ti and high-Mg in nature and documented as boninite-norite mafic rocks, (ii) mafic dykes of varying composition exposed in Bhanupratappur-Keskal area having dominantly high-Mg and high-Fe quartz tholeiitic compositions and rarely olivine and nepheline normative nature, (iii) four suites of Paleoproterozoic mafic dykes are recognized in and around the Chattisgarh basin comprising metadolerite, metagabbro, and metapyroxenite, Neoarchaean amphibolite dykes, Neoproterozoic younger fine-grained dolerite dykes, and Early Precambrian boninite dykes, and (iv) Dongargarh mafic volcanics, which are classified into three groups, viz. early Pitepani mafic volcanic rocks, later Sitagota and Mangikhuta mafic volcanics, and Pitepani siliceous high-magnesium basalts (SHMB). Available petrological and geochemical data on these distinct mafic rocks of the Bastar craton are summarized in this paper. Recently high precision U-Pb dates of 1891.1±0.9 Ma and 1883.0±1.4 Ma for two SE-trending mafic dykes from the BD2 (subalkaline) dyke swarm, from the southern Bastar craton have been reported. But more precise radiometric age determinations for a number of litho-units are required to establish discrete mafic magmatic episodes experienced by the craton. It is also important to note that very close geochemical similarity exist between boninite-norite suite exposed in the Bastar craton and many parts of the world. Spatial and temporal correlation suggests that such magmatism occurred globally during the Neoarchaean-Paleoproterozoic boundary. Many Archaean terrains were united as a supercontinent as Expanded Ur and Arctica at that time, and its rifting gave rise to numerous mafic dyke swarms, including boninitenorite, world-wide.  相似文献   

15.
The Archean eastern Dharwar craton is transacted by at least four major Proterozoic mafic dyke swarms. We present geochemical data for the ~2.21–2.22 Ga N-S to NNW-SSE trending Kunigal mafic dyke swarm of the eastern Dharwar craton to address its petrogenesis and formation of large igneous province as well as spatial link to supercontinent history. It has a strike span of about 200 km; one dyke of this swarm runs ~300 km along the western margin of the Closepet granite. Texture and mineral compositions classify them as dolerite and olivine dolerite. They show compositions of high-iron tholeiites, high-magnesian tholeiites or picrites. Geochemical characteristics of the sampled dykes suggest their co-genetic nature and show variation from primitive (Mg#; as high as ~76) to evolved (differentiated) nature. Although geochemical characteristics indicate possibility of minor crustal contamination, they show their derivation from an uncontaminated mantle melt. These mafic dykes are probably evolved from a sub-alkaline basaltic magma generated by ~20 % batch melting of a depleted lherzolite mantle source and about 15–30 % olivine fractionation. Paleoproterozoic (~2.21–2.22 Ga) mafic magmatism is recognized globally as dyke swarms or gabbroic sill complexes in the Superior, Slave, North Atlantic, Fennoscandian and Pilbara cratons. Possible Paleoproterozoic Dharwar–Superior–North-Atlantic–Slave correlations are constrained with implications for the configuration of supercraton Superia.  相似文献   

16.
The dense tholeiitic Koster dyke swarm, west Sweden, has undergone progressive deformation under amphibolite facies metamorphic conditions. The varying influence of this event on the dyke rock forms the basis for a regional division of the swarm into three sectors: the sectors of igneous dolerites, partly recrystallised metadolerites, and lineated amphibolites, respectively. Systematic measurements of the magnetic susceptibility in the dykes have demonstrated a correlation between the regional pattern of recrystallisation and the pattern of mean susceptibility given as mean susceptibility per 0.5 km2. The transformation of dolerites to metadolerites and finally to lineated amphibolites is accompanied by a marked decrease in the susceptibility, which is related essentially to the degree of alteration of titanomagnetite to sphene + Fe-ions incorporated in the silicates.  相似文献   

17.
《Gondwana Research》2014,25(2):736-755
The ~ 183 Ma old Karoo Large Igneous Province extends across southern Africa and is related to magmatism in Antarctica (west Dronning Maud Land and Transantarctic Mountains) and parts of Australasia. Intrusive events, including the emplacement of at least ten dyke swarms, occurred between ~ 183 Ma and ~ 174 Ma. We review here the field evidence, structure and geochronology of the dyke swarms and related magmatism as it relates to melt sources and the mantle plume hypothesis for the Karoo LIP. Specifically, the magma flow-related fabric(s) in 90 dykes from five of these swarms is reviewed, paying particular attention to those that converge on triple junctions in southern Africa and Antarctica. The northern Lebombo and Rooi Rand dyke swarms form an integral part of the Lebombo monocline, which converges upon the Karoo triple junction at Mwenezi, southern Zimbabwe. Dykes of the Northern Lebombo dyke swarm (182–178 Ma) appear to have initially intruded vertically, followed later by lateral flow in the youngest dykes. In dykes of the Okavango dyke swarm (178 Ma) there is evidence of steep magma flow proximal to the triple junction, and lateral flow from the southeast to the northwest in the distal regions. This is consistent with the Karoo triple junction and the shallow mantle being a viable magma source for both these dyke swarms. In the Rooi Rand dyke swarm (174 Ma) there is also evidence of vertical and inclined magma flow from north to south. This flow direction cannot be reconciled with the Karoo triple junction, as the northern termination of the Rooi Rand dyke swarm is in east-central Swaziland. The Jutulrøra and Straumsvola dyke swarms of Dronning Maud Land display evidence of sub-vertical magma flow in the north and lateral flow further south. The regional pattern of magma flow is therefore not compatible with direction expected from the Weddell Sea triple junction. The overall flow pattern in Karoo dykes is consistent with the triple junction being an important magma source. However, the Limpopo Belt and Kaapvaal Craton have significantly controlled the structure and distribution of the Lebombo and Save–Limpopo monoclines and the Okavango dyke swarm. The locus of magma flow in dykes of Dronning Maud Land is at least 500 km from the Karoo triple junction, as is the apparent locus for the Rooi Rand dyke swarm. In comparison with recent modelling of continental assembly, the structure and flow of the dyke swarms, linked with geochronology and geochemistry, suggests that thermal incubation during Gondwana assembly led to Karoo magmatism. A plate tectonic, rather than a fluid dynamic plume explanation, is most reasonably applicable to the development of the Karoo LIP which does not bear evidence of a deep-seated, plume source.  相似文献   

18.
The Archean basement in the northeastern part of the Kaapvaal craton is intruded by a large number of mafic dykes, defining three major dyke swarms, which collectively appear to fan out from the Bushveld Complex. Herein we present U–Pb baddeleyite ages for two of these dyke swarms, the northwest trending Badplaas Dyke Swarm and the east-west trending Rykoppies Dyke Swarm, and infer their correlation with tectonic events in the Kaapvaal craton. We also present a U–Pb baddeleyite age for a noritic phase of the Marginal Zone of the Rustenburg Layered Suite (Bushveld Complex).  相似文献   

19.
In many continental large igneous provinces, giant radiating dyke swarms are typically interpreted to result from the arrival of a mantle plume at the base of the lithosphere. Mafic dyke swarms in the Emeishan large igneous province (ELIP) have not received much attention prior to this study. We show that the geochemical characteristics and geochronological data of the mafic dykes are broadly similar to those of the spatially associated lavas, suggesting they were derived from a common parental magma. Based on the regional geological data and our field observations, we mapped the spatial distribution patterns of mafic dyke swarms in the ELIP, and recognized six dyke sub‐swarms, forming an overall radiating dyke swarm and converging in the Yongren area, Yunnan province. This location coincides with the maximum pre‐eruptive domal uplift, and is close to the locations of high‐temperature picrites. Our study suggests that the Yongren area may represent the mantle plume centre during the peak of Emeishan magmatism.  相似文献   

20.
A precise baddeleyite U‐Pb age of 2418 ± 3 Ma is reported for the westerly extension of the Binneringie Dyke in the south‐western Yilgarn Craton of Western Australia. The Binneringie Dyke is a member of the large and extensive Widgiemooltha dyke swarm that trends east‐west across the craton. This age is similar to ages of major dyke swarms In other Archaean Cratons and supports the hypothesis that dykes of the Widgiemooltha swarm are part of a worldwide Palaeoproterozoic mafic magmatic event at ca 2420 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号