首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oysters can create reefs that provide habitat for associated species resulting in elevated resident abundances, lower mortality rates, and increased growth and survivorship compared to other estuarine habitats. However, there is a need to quantify trophic relationships and transfer at created oyster reefs to provide a better understanding of their potential in creating suitable nekton habitat. Stable isotope analyses (δ13C and δ15N) were conducted to examine the organic matter sources and potential energy flow pathways at a created intertidal oyster (Crassostrea ariakensis; hereinafter, oyster) reef and adjacent salt marsh in the Yangtze River estuary, China. The δ13C values of most reef-associated species (22 of 37) were intermediate between those of suspended particle organic matter (POM) and benthic microalgae (BMI), indicating that both POM and BMI are the major organic matter sources at the created oyster reef. The sessile and motile macrofauna colonizing the reef make up the main prey of transient nekton (e.g., spotted sea bass, Asian paddle crab, and green mud crab), thus suggesting that the associated community was most important in supporting higher trophic levels as opposed to the direct dietary subsidy of oysters. The created oyster reef consistently supported higher trophic levels than the adjacent salt marsh habitat due to the dominance of secondary consumers. These results indicate that through the provision of habitat for associated species, created oyster reefs provide suitable habitat and support a higher average trophic level than adjacent salt marsh in the Yangtze River estuary.  相似文献   

2.
Seagrass beds have declined in Chesapeake Bay, USA as well as worldwide over the past century. Increased seston concentrations, which decrease light penetration, are likely one of the main causes of the decline in Chesapeake Bay. It has been hypothesized that dense populations of suspension-feeding bivalves, such as eastern oysters (Crassostrea virginica), may filter sufficient seston from the water to reduce light attenuation and enhance seagrass growth. Furthermore, eastern oyster populations can form large three-dimensional reef-like structures that may act like breakwaters by attenuating waves, thus decreasing sediment resuspension. We developed a quasi-three-dimensional Seagrass-Waves-Oysters-Light-Seston (SWOLS) model to investigate whether oyster reefs and breakwaters could improve seagrass growth by reducing seston concentrations. Seagrass growth potential (SGP), a parameter controlled by resuspension-induced turbidity, was calculated in simulations in which wave height, oyster abundance, and reef/breakwater configuration were varied. Wave height was the dominant factor influencing SGP, with higher waves increasing sediment resuspension and decreasing SGP. Submerged breakwaters parallel with the shoreline improved SGP in the presence of 0.2 and 0.4 m waves when sediment resuspension was dominated by wave action, while submerged groins perpendicular to the shoreline improved SGP under lower wave heights (0.05 and 0.1 m) when resuspension was dominated by along-shore tidal currents. Oyster-feeding activity did not affect SGP, due to the oysters’ distance from the seagrass bed and reduced oyster filtration rates under either low or high sediment concentrations. Although the current implementation of the SWOLS model has simplified geometry, the model does demonstrate that the interaction between oyster filtration and along-shore circulation, and between man-made structures and wave heights, should be considered when managing seagrass habitats, planning seagrass restoration projects, and choosing the most suitable methods to protect shorelines from erosion.  相似文献   

3.
Oyster cultch was added to the lower intertidal marsh-sandflat fringe of three previously createdSpartina alterniflora salt marshes. Colonization of these created reefs by oysters and other select taxa was examined. Created reefs supported numerous oyster reef-associated faunas at equivalent or greater densities than adjacent natural reefs. Eastern oyster (Crassostrea virginica) settlement at one site of created reef exceeded that of the adjacent natural reefs within 9 mo of reef creation. After only 2 yr, harvestable-sizeC. virginica (>75 mm) were present in the created reefs along with substantial numbers ofC. virginica clusters. The created reefs also had a higher number of molluscan, fish, and decapod species than the adjacent natural reefs. After 2 yr the densities ofC. virginica, striped barnacle (Balanus amphitrite), scorched mussel (Brachidontes exustus), Atlantic ribbed mussel (Geukensia demissa), common mud crab (Panopeus herbstii), and flat mud crab (Eurypanopeus depressus) within the created reefs were equivalent to that of adjacent natural reefs. From these data it is evident that created oyster reefs can quickly acquire functional ecological attributes of their natural counterparts. Because the demand for oysters continues to increase in the face of dwindling natural resources, habitat creation techniques need to evolve and these approaches need to consider the ancillary ecological benefits reef creation may provide. Reef function as well as physical and ecological linkages of oyster reefs to other habitats (marsh, submerged aquatic vegetation, and bare bottom) should be considered when reefs are created in order to provide the best use of resources to maintain the integrity of estuarine systems.  相似文献   

4.
The native Olympia oyster, Ostrea lurida, was once abundant in many US Pacific Northwest (PNW) estuaries, but was decimated by human activity in the late nineteenth early to twentieth centuries. Having been the subject of only few modern, detailed studies, a dearth of basic physiological information surrounded O. lurida and how it compared to the now dominant, non-native Pacific oyster, Crassostrea gigas. Utilizing laboratory and in situ studies in Yaquina Bay, OR, we explored the clearance rates of both species across a wide range of conditions. Pacific oysters not only had greater size-specific clearance rates than Olympia oysters, but also had a lower optimum temperature. Clearance rates for both species were reduced at lower salinity, at lower organic content, and at higher turbidity. Clearance rate models were constructed for each species using three approaches: (1) a single mechanistic model that incorporated feeding response functions of each species to the effects of temperature, salinity, turbidity, and seston organic content based on laboratory studies; (2) another additive model in which the number and type of response functions from laboratory studies were allowed to vary; and (3) a statistical model that utilized environmental data collected during in situ feeding trials. Clearance rate models that correlated feeding activity with in situ environmental data were found to often better predict oyster clearance rates (based on Adj R 2) for both species in Yaquina Bay, OR, than mechanistic, additive models based on laboratory feeding response functions; however, in situ correlative models varied in accuracy by species and season. This work represents important first steps towards better understanding the physiological ecology of the native Olympia oyster and how it differs from introduced and now dominant Pacific oyster.  相似文献   

5.
The ability of oysters to remove large quantities of particulates from the water column, thereby potentially improving water quality, has been cited as one of the reasons for oyster reef restoration. However, this ability has not yet been effectively demonstrated in the field. As part of the Alabama Oyster Reef Restoration Project, this study was designed to assess impacts of restored eastern oyster (Crassostrea virginica) reefs on primary production, nutrient dynamics, and water quality in shallow tidal creeks. Using a Before–After-Control–Impact (BACI) design, we monitored tidal creeks around Dauphin Island, AL, for changes induced by the introduction of oyster reefs. Reef placement resulted in increased ammonium (NH4+) in two of the three experimental creeks. Interestingly, oyster reefs did not seem to reduce water column particulates or have an impact on phytoplankton or microphytobenthic biomass or productivity. We do not believe that our data discount the importance and/or usefulness of oysters in modifying the water column. Rather, we acknowledge that it is difficult to detect these impacts/environmental services in this type of system (i.e., a tidal creek system), because they seem to be very localized and short-lived (i.e., not ecologically relevant on a creek-wide scale). This study highlights the need to consider location and habitat in planning oyster restoration projects. Also, it demonstrates that the types, magnitudes, and spatial extent of changes in ecosystem services that should be expected after reef restoration might need to be re-evaluated.  相似文献   

6.
The restoration of dead/degraded oyster reefs is increasingly pursued worldwide to reestablish harvestable populations or renew ecosystem services. Evidence suggests that oysters can improve water quality, but less is known about the role of associated benthic sediments in promoting biogeochemical processes, such as nutrient cycling and burial. There is also limited understanding of if, or how long postrestoration, a site functions like a natural reef. This study investigated key biogeochemical properties (e.g., physiochemical properties, nutrient pools, microbial community size and activity) in the sediments of dead reefs; 1-, 4-, and 7-year-old restored reefs; and natural reference reefs of the eastern oyster, Crassostrea virginica, in Mosquito Lagoon (FL, USA). Results indicated that most of the measured biogeochemical properties (dissolved organic carbon (C), NH4 +, total C, total nitrogen (N), and the activity of major extracellular enzymes involved in C, N, and phosphorus (P) cycling) increased significantly by 1-year postrestoration, relative to dead reefs, and then remained fairly constant as the reefs continued to age. Few differences were observed in biogeochemical properties between restored reefs of any age (1 to 7 years) and natural reference reefs. Variability among reefs of the same treatment category was often correlated with differences in the number of live oysters, reef thickness, and/or the availability of C and N in the sediments. Overall, this study demonstrates the role of live intertidal oyster reefs as biogeochemical hot spots for nutrient cycling and burial and the rapidity (within 1 year) with which biogeochemical properties can be reestablished following successful restoration.  相似文献   

7.
Delaware's Inland Bays comprise a large estuarine system with a restricted access to the Atlantic Ocean (Indian River Inlet). As part of a local oyster stock enhancement and restoration effort, we conducted a survey for the protozoan pathogenPerkinsus marinus (Dermo) in oysters from a newly established reef. Using standardized methods for the polymerase chain reaction (PCR) amplification of the non-transcribed spacer (NTS) region, we were surprised to find no detectable titers of this pathogen in the 30 oysters sampled in the first year of the project. The detection threshold of the PCR coupled with chemiluminescent detection was 30 fgP. marinus NTS DNA. We were able to detect a trace presence of this pathogen in a few hard clams (Mercenaria mercenaria) from the same locale, indicating that aPerkinsus sp. was present in the Inland Bay system. Subsequent monitoring of the reef system using a fluid thioglycollate assay over 3 yr revealed no epizootic outbreaks of this pathogen within the planted oyster population. Two large mortality episodes that did appear in the oyster population were attributable to abiotic conditions and not pathogen exposure. This study emphasizes that all potential sources of mortality in the environment are important to consider when designing oyster seeding projects. In the Delaware Inland Bays,P. marinus does not appear to have a large enough oyster host population to become a significant disease threat at present. Because of the low parasite incidence levels in the Inland Bay system in 2000, the James Farm oyster reef restoration project presents an ideal model system to follow the population dynamics between an oyster-host population and a latent or reservoir pathogen population.  相似文献   

8.
Oyster reefs (Crassostrea virginica) supply important ecosystem services to estuarine habitats in the northern Gulf of Mexico, but little is known of the role of fish predators in controlling their structure or areal cover on soft sediments. At two sites and during fall and spring, we employed gill nets and trot lines to remove black drum (Pogonias cromis) from experimental reefs, and assessed oyster survival in comparison to control reefs. Numbers and biomass of black drum removed from reefs varied seasonally, among sites, and among removal methods. In the fall, black drum were rare at one site and abundant at the other, but did not significantly lower oyster survival on control reefs at either site. In the spring, black drum were common at both sites, and significantly lowered oyster survival on control reefs. Oysters and epizoic hooked mussels comprised roughly a third of the fishes’ diet, and oyster mortality was closely related to the percentage of drum feeding on oysters. There was little evidence of mortality from other predators of seed oysters like stone crabs or Southern oyster drills, and a repeated measures analysis of variance indicated black drum biomass was significantly depressed on experimental reefs during the experiments. Black drum thus appear to be potentially important predators on oyster reefs, but more work needs to be done on what factors explain the temporal and spatial variation in their abundance and oyster consumption.  相似文献   

9.
Anthropogenic carbon dioxide (CO2) emissions reduce pH of marine waters due to the absorption of atmospheric CO2 and formation of carbonic acid. Estuarine waters are more susceptible to acidification because they are subject to multiple acid sources and are less buffered than marine waters. Consequently, estuarine shell forming species may experience acidification sooner than marine species although the tolerance of estuarine calcifiers to pH changes is poorly understood. We analyzed 23 years of Chesapeake Bay water quality monitoring data and found that daytime average pH significantly decreased across polyhaline waters although pH has not significantly changed across mesohaline waters. In some tributaries that once supported large oyster populations, pH is increasing. Current average conditions within some tributaries however correspond to values that we found in laboratory studies to reduce oyster biocalcification rates or resulted in net shell dissolution. Calcification rates of juvenile eastern oysters, Crassostrea virginica, were measured in laboratory studies in a three-way factorial design with 3 pH levels, two salinities, and two temperatures. Biocalcification declined significantly with a reduction of ∼0.5 pH units and higher temperature and salinity mitigated the decrease in biocalcification.  相似文献   

10.
Filter-feeding bivalves, like oysters, couple pelagic primary production with benthic microbial processes by consuming plankton from the water column and depositing unassimilated material on sediment. Conceptual models suggest that at low to moderate oyster densities, this deposition can stimulate benthic denitrification by providing denitrifying bacteria with organic carbon and nitrogen (N). While enhanced denitrification has been found at oyster reefs, data from oyster aquaculture are limited and equivocal. This study measured seasonal rates of denitrification, as well as dissimilatory nitrate reduction to ammonium (DNRA), and dissolved inorganic N fluxes at a rack and bag eastern oyster (Crassostrea virginica) aquaculture farm. Consistent with models, denitrification was enhanced within the farm, with an average annual increase of 350% compared to a reference site. However, absolute denitrification rates were low relative to other coastal systems, reaching a maximum of 19.2 μmol m?2 h?1. Denitrification appeared to be nitrate (NO3 ?) limited, likely due to inhibited nitrification caused by sediment anoxia. Denitrification may also have been limited by competition for NO3 ? with DNRA, which accounted for an average of 76% of NO3 ? reduction. Consequently, direct release of ammonium (NH4 +) from mineralization to the water column was the most significant benthic N pathway, with seasonal rates exceeding 900 μmol m?2 h?1 within the farm. The enhanced N processes were spatially limited however, with significantly higher rates directly under oysters, compared to in between oyster racks. For commercial aquaculture farms like this, with moderate oyster densities (100–200 oysters m?2), denitrification may be enhanced, but nonetheless limited by biodeposition-induced sediment anoxia. The resulting shift in the sediment N balance toward processes that regenerate reactive N to the water column rather than remove N is an important consideration for water quality.  相似文献   

11.
The uptake and release of materials by intertidal mussel beds were directly measured in two cultivated Dutch estuaries. Generally, chlorophylla, seston, and particulate organic carbon were taken up, while ammonium, orthophosphate, and silicate were released. The observed rates were higher than values computed from organismic observations and similar to those observed for intertidal oyster reefs in South Carolina. Specific estuarine material turnover rates varied from 1 week to 38 weeks when calculated with mussel bed fluxes. The fastest turnover rates were for chlorophylla and ammonium. These results support the idea that dense assemblages of bivalves are major components in the recycling of nutrients in estuaries.  相似文献   

12.
We determined how the species used for calibration affects the accuracy of in situ chlorophyll a (chl a) measurements by fluorometry using single-species cultures and natural phytoplankton populations from Winyah Bay, South Carolina, USA. When a diatom was used for calibration, chl a in a dinoflagellate culture was overestimated by 66 ± 7%, whereas concentrations of a cryptophyte, chlorophyte, and cyanobacterium were underestimated by 16 ± 20%, 40 ± 7%, and 71 ± 33%, respectively. In natural populations, the combination of species-specific and environmentally induced variation in the ratio of fluorescence to chl a (F Chl−1) led to an overestimate by the in situ fluorometer of 40–169% for an April experiment and an underestimate of 4–50% in July. Even when field samples were dominated by diatoms, environmental effects resulted in highly variable predictions of chl a. Thus, while a carefully selected calibration species can improve estimates of in vivo chl a in the laboratory, calibration of in situ fluorometers should be done with natural communities collected from the site of interest.  相似文献   

13.
The eastern oyster, Crassostrea virginica, is a prominent ecosystem engineer, whose reefs exhibit strikingly consistent morphologies at multiple spatial scales throughout its North American range. These distinct morphologies are thought to form by interactions of nascent reef structures with hydrodynamics. We carried out two field studies to determine if historical reef configurations applied in a restoration context would improve reef persistence and restoration outcomes. We collected seabed and water column observations across constructed reefs of three orientations representative of those found historically throughout the oyster’s range: parallel or perpendicular to tidal currents or circular. Areas adjacent to reefs were sites of fine sediment trapping, with lower flow velocities, evidence of particle settling, and more fine sediments on the seabed relative to off-reef reference sites. The water column above the reef crest exhibited higher acoustic backscatter, higher flow velocities, and larger particles in suspension, consistent with local erosion of flocculated fine sediment from the reef crest. Perpendicular reefs produced conditions that were more conducive to reef persistence and improved oyster performance, including high flow velocities and enhanced resuspension of sediments from the reef, compared to parallel or circular reefs. Particle trapping in areas between reefs has the potential to inhibit reef growth between existing reef structures, providing support for hypotheses of landscape-scale reef pattern formation. Oyster reef restoration efforts can benefit from this improved understanding of biophysical interactions arising from reef orientation that contribute to sediment dynamics on constructed oyster reefs.  相似文献   

14.
Wreck Shoal is a subtidal oyster reef located in the James River estuary, Virginia. This estuary has moved upstream and landward in response to rising sea level. The recent geomorphic history of Wreck Shoal is analyzed based on bathymetric records from the 1850’s to the 1980’s. The data indicate that the shallow oyster reef areas have lost elevation in the last 130 yr. This is attributed to intense harvesting activity during the last century. The late Holocene evolution of Wreck Shoal is developed based on the results of sub-bottom profiles and coring data. These suggest that the Wreck Shoal oyster reef has developed on the ridge and swale topography of a point-bar formed during the late Pleistocene epoch. Contemporary biodeposition processes on Wreck Shoal are evaluated. The results indicate that sediments of biogenic origin (fecal and shell material) potentially accumulate at rates in excess of 50 cm 100 years?1. A model for subtidal oyster reef development is proposed that accounts for sea level rise, biodeposition, and the harvesting activity of man. The model is verified with field observations of reef elevation and radiocarbon dates of oyster shell material. The implications of these results are that oyster reefs should be considered a renewable natural resource, and therefore managed accordingly in concert with the oysters.  相似文献   

15.
The eastern oyster, Crassostrea virginica, plays an essential functional role in many estuarine ecosystems on the east and Gulf coasts of the USA. Oysters form biogenic reefs but also live on alternative intertidal substrates such as artificial surfaces and mangrove prop roots. The hypothesis tested in this study was that non-reef-dwelling oysters (i.e., those inhabiting mangrove, seawall, or restoration substrates) were similar to their reef-dwelling counterparts based upon a suite of biological parameters. The study was carried out at six sites in three zones in Tampa Bay on the west coast of Florida using monthly samples collected from October 2008–September 2009. The timing of gametogenesis and spawning, fecundity, and juvenile recruitment were the same for oysters in all four habitats. Oyster size (measured as shell height), density, and Perkinsus marinus infection intensity and prevalence varied among habitats. This study indicates that oysters on mangroves, seawalls, and oyster restoration substrates contribute larvae, habitats for other species, and likely other ecosystem benefits similar to those of intertidal oyster reefs in Tampa Bay. Oysters from alternative intertidal substrates should be included in any system wide studies of oyster abundance, clearance rates, and the provision of alternate habitats, especially in highly developed estuaries.  相似文献   

16.
A 2-year period with flood versus drought conditions provided the opportunity to examine the effects of flood disturbance on subtidal eastern oyster Crassostrea virginica biology and population dynamics in a south Texas estuary. Oysters were sampled monthly in 2007 and 2008 to examine the impacts of changing environmental conditions on oyster populations. Oysters were also examined quarterly for the presence of Perkinsus marinus. Filtration rates were calculated as a function of oyster size, temperature, salinity, and total suspended solids. Flood events in 2007 caused temporary reductions in salinity and were associated with reductions in oyster abundance, spat settlement, disease levels (weighted prevalence and percent infection), and filtration rates. Oyster populations had generally recovered within 1 year’s time—the oysters were younger and smaller but were just as abundant as pre-flood levels. The rapid return of oysters to pre-flood abundance levels is attributed in part to the ability of oysters in Gulf coast estuaries to spawn multiple times in a single season and in part to their relatively high growth rates. Although flood disturbance may temporarily reduce or destroy oyster populations, the ability of the Mission–Aransas Estuary to retain freshwater pulses within the system and maintain low salinities that are unfavorable for predators and disease can facilitate oyster population recovery. Episodic flood events appear to play a critical role in promoting long-term oyster population maintenance in the Mission–Aransas Estuary. The response of oysters to changing environmental conditions over the short term provides some insights into the potential long-term effects of changing climate.  相似文献   

17.
We measured seasonal effects of wastewater treatment plant (WTP) effluent on growth, survival, and accumulation of microbes in oysters near a major WTP in Mobile Bay, AL. Despite higher nutrients near the WTP, seasonal conditions rather than distance affected chlorophyll a concentration and oyster growth. In summer and fall, when oyster growth was higher, δ15N‰ in oysters near the WTP changed through time to reflect δ15N‰ in effluent (approx. −4‰). Microbial indicators (male-specific coliphage, fecal coliforms) were highest in oysters near the WTP in all seasons and correlated with δ15N‰ in fall and summer. Increased riverine discharge and slower acquisition of δ15N‰ likely confounded correlations in winter/spring. Although we did not detect gross ecological effects of wastewater exposure for oysters, data indicated wastewater-derived particles entered the local food web and accumulated in oysters. These data highlight the importance of using multiple indicators of wastewater exposure and considering both seasonal and spatial effects when defining wastewater influence on a system or species.  相似文献   

18.
稳定同位素贝壳年轮指示的牡蛎礁体水平夹层成因   总被引:1,自引:0,他引:1       下载免费PDF全文
渤海湾西岸众多的埋藏牡蛎礁体内,除正常的牡蛎壳体堆积层外,还广泛地存在一定数量的水平夹层。水平夹层的存在,可能指示了礁体的生长环境发生了变化。文章对组成礁体的正常建礁层和水平夹层中的牡蛎壳体,进行了贝壳年轮和稳定同位素分析研究,对比了水平夹层和正常建礁层中的壳体生长速率和壳体记录的稳定同位素变化范围与幅度,恢复了壳体记录的礁体生长环境,探讨了壳体同位素记录揭示的礁体水平夹层成因。结果表明,相对于相邻正常建礁层中的壳体,水平夹层中的壳体记录的季节性氧同位素变化幅度较小,这主要与壳体生长时期的季节性淡水输入变化较小或(和)年平均气温较低有关。水平夹层中的壳体记录的低温季节相对较多的淡水输入量和高温季节相对较少的淡水输入量, 或(和)由于年平均气温较低而导致的壳体在一年中的生长周期缩短,是造成礁体中水平夹层形成的主要驱动因素。  相似文献   

19.
Cold‐water coral ecosystems present common carbonate factories along the Atlantic continental margins, where they can form large reef structures. There is increasing knowledge on their ecology, molecular genetics, environmental controls and threats available. However, information on their carbo‐nate production and accumulation is still very limited, even though this information is essential for their evaluation as carbonate sinks. The aim of this study is to provide high‐resolution reef aggradation and carbonate accumulation rates for Norwegian cold‐water coral reefs from various settings (sunds, inner shelf and shelf margin). Furthermore, it introduces a new approach for the evaluation of the cold‐water coral preservation within cold‐water coral deposits by computed tomography analysis. This approach allows the differentiation of various kinds of cold‐water coral deposits by their macrofossil clast size and orientation signature. The obtained results suggest that preservation of cold‐water coral frameworks in living position is favoured by high reef aggradation rates, while preservation of coral rubble prevails by moderate aggradation rates. A high degree of macrofossil fragmentation indicates condensed intervals or unconformities. The observed aggradation rates with up to 1500 cm kyr?1 exhibit the highest rates from cold‐water coral reefs so far. Reef aggradation within the studied cores was restricted to the Early and Late Holocene. Available datings of Norwegian cold‐water corals support this age pattern for other fjords while, on the shelf, cold‐water coral ages are reported additionally from the early Middle Holocene. The obtained mean carbonate accumulation rates of up to 103 g cm?2 kyr?1 exceed previous estimates of cold‐water coral reefs by a factor of two to three and by almost one order of magnitude to adjacent sedimentary environments (shelf, slope and deep sea). Only fjord basins locally exhibit carbonate accumulation rates in the range of the cold‐water coral reefs. Furthermore, cold‐water coral reef carbonate accumulation rates are in the range of tropical reef carbonate accumulation rates. These results clearly suggest the importance of cold‐water coral reefs as local, maybe regional to global, carbonate sinks.  相似文献   

20.
渤海湾西北岸埋藏牡蛎礁体中的 壳体形态与沉积环境*   总被引:1,自引:0,他引:1  
渤海湾西北岸沿岸平原分布的众多埋藏牡蛎礁体中的壳体形态和泥沙沉积物特征是不尽相同的。不同礁体中的壳体形态有明显的区别,有些礁体中的壳体细窄,有些礁体中的壳体较宽厚; 与此相对应,具有不同壳体形态的礁体中的沉积物颗粒和粘土含量也有明显的差别。文章分别对组成大吴庄和岭头两个礁体剖面的牡蛎壳体和泥质沉积物进行测量和分析,结果表明大吴庄礁体中壳体的重量随高度增长的速率大于岭头礁体中的壳体,而两个礁体中壳体的壳重随体积增长的速率大致相同; 组成礁体的壳体形态与礁体的沉积环境有关,沉积物较细、粘土含量高时发育细窄的壳体,沉积物较粗、粘土含量低时发育宽厚的壳体。渤海湾西北岸地区埋藏牡蛎礁体中的壳体本身记录了其生长时的环境信息,可以通过分析礁体中的壳体形态来恢复礁体建礁过程中的沉积环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号