首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地磁暴的行星际源研究是了解及预报地磁暴的关键因素之一.本文研究了2007-2012年间的所有Dstmin ≤-50 nT的中等以上地磁暴,建立了这些地磁暴及其行星际源的列表.在这6年中,共发生了51次Dstmin≤-50 nT的中等以上地磁暴,其中9次为Dstmin≤-100 nT的强地磁暴事件.对比上一活动周相同时间段发现,在这段太阳活动极低的时间,地磁暴的数目显著减少.对这些地磁暴行星际源的分析表明,65%的中等以上地磁暴由与日冕物质抛射相关的行星际结构引起,31%的地磁暴由共转相互作用区引起,这与以前的结果一致.特别的,在这个太阳活动极低时期内,共转相互作用区没有引起Dstmin≤-100 nT的强地磁暴,同时,日冕物质抛射相关结构也没有引起Dstmin≤-200 nT的超强地磁暴.以上结果表明极低太阳活动同时导致了共转相互作用区和日冕物质抛射地磁效应的减弱.进一步,分析不同太阳活动期间地磁暴的行星际源发现:在太阳活动低年(2007-2009年),共转相互作用区是引起地磁暴的主要原因; 而在太阳活动上升期和高年(2010-2013年),大部分(75%,30/40)的中等以上地磁暴均由日冕物质抛射相关结构引起.  相似文献   

2.
不同起源地磁扰动期间极光沉降能量的统计研究   总被引:2,自引:1,他引:1       下载免费PDF全文
尽管对极光沉降能量(HP)的研究已经开展很久,但是关于不同行星际扰动源对HP影响的研究仍然很少.本文基于2001—2008年NOAA极轨卫星数据,对三类不同扰动源,即盔状冕流共转相互作用区(CIRs)、伪冕流CIRs和行星际日冕物质抛射(ICMEs)驱动的中等磁暴期间HP的变化进行时序叠加统计分析,讨论了相关太阳风背景参数、地磁活动强度以及耦合函数的有效性;研究了三类磁暴事件期间HP的南北半球不对称性.结果表明,在磁暴之前盔状冕流CIR磁暴的HP明显低于伪冕流CIR磁暴和ICME磁暴,盔状冕流"磁暴前的平静期"与Newell耦合函数关系密切,而与Russell-McPherron效应关系较小.盔状冕流CIR磁暴主相HP高于伪冕流CIR磁暴和ICME磁暴,可能与盔状冕流相应行星际|Bz|和太阳风数密度均较高有关.此外,在Kp≤4时,冬夏季半球HP的差别随着Kp增加而增加,相应的变化规律符合电导率反馈机制的预测;在Kp>4时,盔状冕流磁暴和ICME磁暴冬季半球的HP大于夏季半球的,伪冕流磁暴事件夏季半球的HP大于冬季半球的或与冬季半球的相近.  相似文献   

3.
The high-speed stream following the corotating interaction regions (CIRs) was analyzed. As a result of the analysis, it is found that the geomagnetic field is continuously disturbed in the high-speed stream in question. The geomagnetic disturbances with long duration recurred several rotations between December 1993 and June 1994. These disturbances were associated with a large recurrent coronal hole expanding from the south pole of the Sun. High-speed solar wind from this coronal hole was observed by the IMP-8 satellite during this period. However, the observed intensities of the geomagnetic disturbances were different for each recurrent period. This is explained by the seasonal effect. The disturbed geomagnetic condition continued in the highspeed stream after the passage of the CIRs. The long duration of these disturbances can be explained by the continuous energy input into the Earths magnetosphere from the high-speed regions following the CIRs. This kind of long-duration geomagnetic disturbance in association with coronal holes has been observed in the declining phase of other solar cycles. The relation between the coronal-hole area and the maximum solar-wind velocity is not good for the well-developed large coronal hole analyzed here.  相似文献   

4.
We address the geoeffectiveness of three interplanetary structures in the interplanetary space: magnetic clouds (MCs), interplanetary shocks (IPSs), and corotating interaction regions (CIRs). The geoeffectiveness is evaluated using the geomagnetic indices Kp, AE, and Dst. We find that MCs are more geoeffective than IPSs, or CIRs. The average values of magnetic indices are significantly enhanced during disturbed periods associated with MCs, IPSs and CIRs, compared to the whole interval. The highest effect is noted for MC disturbed periods.Results obtained for the three data sets are used to derive a theoretical (continuous) probability distribution function (PDF) by fitting the histograms representing the percentage of events against the intervals of magnetic index. PDFs allow estimation of the probability of a given level of geomagnetic activity to be reached after the detection, by in situ solar wind observations, of a given interplanetary structure approaching the Earth.  相似文献   

5.
Coronal mass ejections (CMEs) and high-speed solar wind streams (HSS) are two solar phenomena that produce large-scale structures in the interplanetary (IP) medium. CMEs evolve into interplanetary CMEs (ICMEs) and the HSS result in corotating interaction regions (CIRs) when they interact with preceding slow solar wind. This paper summarizes the properties of these structures and describes their geoeffectiveness. The primary focus is on the intense storms of solar cycle 23 because this is the first solar cycle during which simultaneous, extensive, and uniform data on solar, IP, and geospace phenomena exist. After presenting illustrative examples of coronal holes and CMEs, I discuss the internal structure of ICMEs, in particular the magnetic clouds (MCs). I then discuss how the magnetic field and speed correlate in the sheath and cloud portions of ICMEs. CME speed measured near the Sun also has significant correlations with the speed and magnetic field strengths measured at 1 AU. The dependence of storm intensity on MC, sheath, and CME properties is discussed pointing to the close connection between solar and IP phenomena. I compare the delay time between MC arrival at 1 AU and the peak time of storms for the cloud and sheath portions and show that the internal structure of MCs leads to the variations in the observed delay times. Finally, we examine the variation of solar-source latitudes of IP structures as a function of the solar cycle and find that they have to be very close to the disk center.  相似文献   

6.
7.
This paper describes the scientific rationale for an L5 mission and a partial list of key scientific instruments the mission should carry. The L5 vantage point provides an unprecedented view of the solar disturbances and their solar sources that can greatly advance the science behind space weather. A coronagraph and a heliospheric imager at L5 will be able to view CMEs broadsided, so space speed of the Earth-directed CMEs can be measured accurately and their radial structure discerned. In addition, an inner coronal imager and a magnetograph from L5 can give advance information on active regions and coronal holes that will soon rotate on to the solar disk. Radio remote sensing at low frequencies can provide information on shock-driving CMEs, the most dangerous of all CMEs. Coordinated helioseismic measurements from the Sun–Earth line and L5 provide information on the physical conditions at the base of the convection zone, where solar magnetism originates. Finally, in situ measurements at L5 can provide information on the large-scale solar wind structures (corotating interaction regions (CIRs)) heading towards Earth that potentially result in adverse space weather.  相似文献   

8.
While it is well known that high fluxes of relativistic electrons in the Earth's radiation belts are associated with high-speed solar wind and its heightened geoeffectiveness, less known is the fact that the Russell–McPherron (R–M) effect strongly controls whether or not a given high-speed stream is geoffective. To test whether it then follows that the R–M effect also strongly controls fluxes of relativistic electrons, we perform a superposed epoch analysis across corotating interaction regions (CIR) keyed on the interfaces between slow and fast wind. A total of 394 stream interfaces were identified in the years 1994–2006. Equinoctial interfaces were separated into four classes based on the R–M effect, that is, whether the solar wind on either side of the interface was either (geo)effective (E) or ineffective (I) depending on season and the polarity of the interplanetary magnetic field (IMF). Four classes of interface identified as II, IE, EI, and EE are possible. The classes IE and EI correspond to CIRs with polarity changes indicating passage through the heliospheric current sheet. To characterize the behavior of solar wind and magnetospheric variables, we produced maps of dynamic cumulative probability distribution functions (cdfs) as a function of time over 10-day intervals centered on the interfaces. These reveal that effective high-speed streams have geomagnetic activity nearly twice as strong as ineffective streams and electron fluxes a factor of 12 higher. In addition they show that an effective low-speed stream increases the flux of relativistic electrons before the interface so that an effective to ineffective transition results in lower fluxes after the interface. We conclude that the R–M effect plays a major role in organizing and sustaining a sequence of physical processes responsible for the acceleration of relativistic electrons.  相似文献   

9.
EISCAT observations of interplanetary scintillation have been used to measure the velocity of the solar wind at distances between 15 and 130R (solar radii) from the Sun. The results show that the solar wind consists of two distinct components, a fast stream with a velocity of 800 km s–1 and a slow stream at 400 kms–1. The fast stream appears to reach its final velocity much closer to the Sun than expected. The results presented here suggest that this is also true for the slow solar wind. Away from interaction regions the flow vector of the solar wind is purely radial to the Sun. Observations have been made of fast wind/slow wind interactions which show enhanced levels of scintillation in compression regions.  相似文献   

10.
Discovery of the Van Allen radiation belts by instrumentation flown on Explorer 1 in 1958 was the first major discovery of the Space Age. A view of the belts as distinct inner and outer zones of energetic particles with different sources was modified by observations made during the Cycle 22 maximum in solar activity in 1989–1991, the first approaching the activity level of the International Geophysical Year of 1957–1958. The dynamic variability of outer zone electrons was measured by the NASA–Air Force Combined Radiation Release and Effects Satellite launched in July 1990. This variability is caused by distinct types of heliospheric structure which vary with the solar cycle. The largest fluxes averaged over a solar rotation occur during the declining phase from solar maximum, when high-speed streams and co-rotating interaction regions (CIRs) dominate the inner heliosphere, leading to recurrent storms. Intense episodic events driven by high-speed interplanetary shocks launched by coronal mass ejections (CMEs) prevail around solar maximum when CMEs occur most frequently. Only about half of moderate storms, defined by intensity of the ring current, lead to an overall flux increase, emphasizing the need to quantify loss as well as source processes; both increase when the magnetosphere is strongly driven. Three distinct types of acceleration are described in this review: prompt and diffusive radial transport, which increases energy while conserving the first invariant, and local acceleration by waves, which change the first invariant. The latter also produce pitch angle diffusion and loss, as does outward radial transport, especially when the magnetosphere is compressed. The effect of a dynamic magnetosphere boundary on radiation belt electrons is described in the context of MHD-test particle simulations driven by measured solar wind input.  相似文献   

11.
中低纬地区电离层对CIR和CME响应的统计分析   总被引:1,自引:1,他引:0       下载免费PDF全文
本文利用中低纬日本地区(131°E,35°N)GPS-TEC格点化数据,分析了2001—2009年间109个共转相互作用区(CIR)事件、45个日冕物质抛射(CME)事件引起的地磁扰动期间电离层的响应.结果表明,电离层暴的类型随太阳活动的变化而有不同的变化,CIR事件引发的电离层正相暴、正负双相暴多发生在太阳活动下降年,负相暴多发生在高年,负正双相暴多发生在低年;CME事件引发的电离层正相暴和负相暴多发生在高年.CIR和CME引发的不同类型的电离层暴的季节性差异不大,在夏季多发生正负双相暴.电离层暴发生时间相对地磁暴的时延大部分在-6~6h之间,但CIR引发的电离层暴时延范围更广,在-12~24h之间,而CME引发的电离层暴时延主要在-6~6h之间.中低纬的电离层暴多发生在主相阶段,其中CIR引发的双相暴也会发生在初相阶段.电离层负暴多发生在AE最大值为800~1200nT之间.CIR引起的电离层扰动持续时间较长,一般在1~6天左右,而CME引起的电离层扰动持续时间一般在1~4天左右.  相似文献   

12.
Two current rings have been observed in the equatorial plane of the earth at times of high geomagnetic activity. An eastward current exists between about 2 and 3.5 earth radii (Re) distant, and a larger, more variable companion current exists between about 4 and 9 Re. These current regions are loaded during geomagnetic substorms. They decay, almost exponentially, after the cessation of the particle influx that attends the solar wind disturbance. This review focuses upon characteristics needed for intelligent use of the ring current as a source for induction probing of the earth's mantle. Considerable difficulties are found with the assumption thatDst is a ring-current index.  相似文献   

13.
日冕物质抛射(Coronal Mass Ejection,简称CME)和共转相互作用区(Corotating Interaction Region,简称CIR)是造成日地空间行星际扰动和地磁扰动的两个主要原因,提供了地球磁暴的主要驱动力,进而显著影响地球空间环境.为深入研究太阳风活动及受其主导影响的地磁活动的时间分布特征,本文对大量太阳风参数及地磁活动指数的数据进行了详细分析.首先,采用由NASA OMNIWeb提供的太阳风参数及地磁活动指数的公开数据,通过自主编写matlab程序对第23太阳活动周期(1996-01-01—2008-12-31)的数据包括行星际磁场Bz分量、太阳风速度、太阳风质子密度、太阳风动压等重要太阳风参数及Dst指数、AE指数、Kp指数等主要的地磁指数进行统计分析,建立了包括269个CME事件和456个CIR事件列表的数据库.采用事例分析法和时间序列叠加法分别对两类太阳活动的四个重要太阳风参数(IMF Bz、太阳风速度、太阳风质子密度、太阳风动压)和三个主要地磁指数(Dst、AE、Kp)进行统计分析,并研究了其统计特征.其次,根据Dst指数最小值确定了第23太阳活动周期内的355个孤立地磁暴事件,并以Dst指数最小值为标准将这些磁暴进一步分类为145个弱磁暴、123个中等磁暴、70个强磁暴、12个剧烈磁暴和5个巨大磁暴.最后,采用时间序列叠加法对不同强度磁暴的太阳风参数和地磁指数进行统计分析.统计分析表明,对于CME事件,Nsw/Pdyn(Nsw表示太阳风质子密度,Pdyn表示太阳风动压)线性拟合斜率一般为正;对于CIR事件,Nsw/Pdyn线性拟合斜率一般为负,这可作为辨别CME和CIR事件的一种有效方法.从平均意义上讲,相较于CIR事件,CME事件有更大的南向IMF Bz分量、太阳风动压Pdyn、AE指数、Kp指数以及更小的Dstmin.一般情况下,CME事件有更大的可能性驱动极强地磁暴.总体而言,对于不同强度的地磁暴,Dst指数的变化呈现出一定的相似性,但随着地磁暴强度的增强,Dst指数衰减的速度变快.CME和CIR事件以及其各自驱动的地磁暴事件有着很多不同,因此,需要将CME事件驱动的磁暴及CIR事件驱动的磁暴分开研究.建立CME、CIR事件及地磁暴的数据库以及获取的统计分析结果,将为深入研究地球磁层等离子体片、辐射带及环电流对太阳活动的响应特征提供有利的帮助.  相似文献   

14.
In the solar system, our Sun is Nature’s most efficient particle accelerator. In large solar flares and fast coronal mass ejections (CMEs), protons and heavy ions can be accelerated to over ~GeV/nucleon. Large flares and fast CMEs often occur together. However there are clues that different acceleration mechanisms exist in these two processes. In solar flares, particles are accelerated at magnetic reconnection sites and stochastic acceleration likely dominates. In comparison, at CME-driven shocks, diffusive shock acceleration dominates. Besides solar flares and CMEs, which are transient events, acceleration of particles has also been observed in other places in the solar system, including the solar wind termination shock, planetary bow shocks, and shocks bounding the Corotation Interaction Regions (CIRs). Understanding how particles are accelerated in these places has been a central topic of space physics. However, because observations of energetic particles are often made at spacecraft near the Earth, propagation of energetic particles in the solar wind smears out many distinct features of the acceleration process. The propagation of a charged particle in the solar wind closely relates to the turbulent electric field and magnetic field of the solar wind through particle-wave interaction. A correct interpretation of the observations therefore requires a thorough understanding of the solar wind turbulence. Conversely, one can deduce properties of the solar wind turbulence from energetic particle observations. In this article I briefly review some of the current state of knowledge of particle acceleration and transport in the inner heliosphere and discuss a few topics which may bear the key features to further understand the problem of particle acceleration and transport.  相似文献   

15.
Based on observations of long-term variations in galactic cosmic rays (CRs) on Earth and in the near-Earth space, we have determined, using our own semiempirical model, modulation of galactic CRs during solar cycles 19–23. The modulation model relates CR variations to the characteristics of the solar magnetic field obtained for the surface of the solar wind source at distances of 2.50 and 3.25 solar radii. The main focus is CR behavior at the minimums of cycles 19–23 and specific features of CR modulation at a prolonged (as compared to previous cycles) minimum of cycle 23, which is still ongoing. CR modulation at minimums related to a change in the solar field dipole component during this period of the cycle has been considered. It is indicated that the long-term variations in CRs are better described if the last two years (2007 and 2008) of cycle 23 with anomalously low solar activity (SA) are included in the model. The role and value of the contribution of the cyclic variations in each index used in the proposed CR modulation model to the observed CR modulation have been estimated.  相似文献   

16.
We study temporal changes of the rigidity (R) spectrum of the harmonics of the 27-day variation of the galactic cosmic ray (GCR) intensity using neutron monitors (NM) data for the period 1965–2002. We show that the rigidity spectrum of the third harmonic (9 days) of the 27-day variation of the GCR intensity changes in a similar way as the spectra of the first and second harmonics, being hard in the maximum epochs and soft in the minimum epochs of solar activity. We ascribe this finding to the alternation of the sizes of the modulation regions of the 27-day variation of the GCR intensity in different epochs of solar activity. The average size of the vicinity of the corotating interaction regions, causing the 27-day variation of the GCR intensity, is less in the minimum epochs than in the maximum epochs of solar activity. A vicinity of the corotating interaction regions of larger size involves in modulation higher rigidity particles of GCR than the vicinity of smaller size; thus, this statement can be considered as one of the reasons leading to the hardening of the rigidity spectrum of the harmonics of the 27-day variation of the GCR intensity in maximum epochs compared with minimum epochs of solar activity.We also show that the temporal changes of the power rigidity spectrum of the third harmonic of the 27-day variation of the GCR intensity are negatively correlated with the rigidity spectrum of the 11-year variation of the galactic cosmic ray intensity.We found a recurrence in the temporal changes of the amplitudes of the first harmonic of the 27-day variation of the GCR intensity and in some parameters of solar activity and solar wind.  相似文献   

17.
18.
Simultaneous observations of the slow solar wind off the southeast limb of the Sun were made in May 1999 using optical measurements from the C2 and C3 LASCO coronagraphs on board the SOHO spacecraft and radio-scattering measurements from the MERLIN and EISCAT facilities. The observations show the slow solar wind accelerating outwards from 4.5 solar radii (R), reaching a final velocity of 200–300 km s-1 by 25–30 R. The acceleration profile indicated by these results is more gentle than the average profile seen in earlier LASCO observations of larger scale features, but is within the variation seen in these studies.  相似文献   

19.
The solar wind velocity distribution in the heliosphere is best represented using a v-map, where velocity contours are plotted in heliographic latitude-longitude coordinates. It has already been established that low-speed regions of the solar wind on the source surface correspond to the maximum bright regions of the K-corona and the neutral line of the coronal magnetic field. In this analysis, v-maps on the source surface for Carrington rotations (CRs) 1787-1795, during 1987, have been prepared using the interplanetary scintillation measurements at Research Institute of Atmospherics (RIA), Nagoya Univ., Japan. These v-maps were then used to study the time evolution of the low-speed (\leq450 km s−1) belt of the solar wind and to deduce the distribution of solar wind velocity on the heliospheric current sheet. The low-speed belt of the solar wind on the source surface was found to change from one CR to the next, implying a time evolution. Instead of a slow and systematic evolution, the pattern of distribution of solar wind changed dramatically at one particular solar rotation (CR 1792) and the distributions for the succeeding rotations were similar to this pattern. The low-speed region, in most cases, was found to be close to the solar equator and almost parallel to it. However, during some solar rotations, they were found to be organised in certain longitudes, leaving regions with longitudinal width greater than 30 free of low-speed solar wind, i.e. these regions were occupied by solar wind with velocities greater than 450 km s−1. It is also noted from this study that the low-speed belt, in general, followed the neutral line of the coronal magnetic field, except in certain cases. The solar wind velocity on the heliospheric current sheet (HCS) varied in the range 300–585 km s−1 during the period of study, and the pattern of velocity distribution varied from rotation to rotation.  相似文献   

20.
一、引言地磁場扰动的原因,至今仍是地球物理学者与天体物理学者所共同关切的問題.有許多理由說明太阳是使地磁产生扰动的主要根源.一般說来,在任何时期內,太阳活动愈強,地磁活动也愈強.然而,即使是在太阳活动最弱的年份,地磁場也可能产生不小的扰动.既然在太阳活动低年,作为太阳活动标誌的黑子数很少,那么,使地磁产生扰动的根源又是什么呢?对于这个問題,20多年以前提出了所謂M区来做答案.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号