共查询到20条相似文献,搜索用时 31 毫秒
1.
Ch. Skokos P. A. Patsis E. Athanassoula 《Monthly notices of the Royal Astronomical Society》2002,333(4):847-860
In this series of papers we investigate the orbital structure of three-dimensional (3D) models representing barred galaxies. In the present introductory paper we use a fiducial case to describe all families of periodic orbits that may play a role in the morphology of three-dimensional bars. We show that, in a 3D bar, the backbone of the orbital structure is not just the x1 family, as in two-dimensional (2D) models, but a tree of 2D and 3D families bifurcating from x1. Besides the main tree we have also found another group of families of lesser importance around the radial 3:1 resonance. The families of this group bifurcate from x1 and influence the dynamics of the system only locally. We also find that 3D orbits elongated along the bar minor axis can be formed by bifurcations of the planar x2 family. They can support 3D bar-like structures along the minor axis of the main bar. Banana-like orbits around the stable Lagrangian points build a forest of 2D and 3D families as well. The importance of the 3D x1-tree families at the outer parts of the bar depends critically on whether they are introduced in the system as bifurcations in z or in z˙ . 相似文献
2.
3.
4.
M. A. Fardal A. Babul J. J. Geehan P. Guhathakurta 《Monthly notices of the Royal Astronomical Society》2006,366(3):1012-1028
We construct test-particle orbits and simple N -body models that match the properties of the giant stellar stream observed to the south of M31, using the model of M31's potential derived in the companion paper by Geehan et al. We introduce a simple approximation to account for the difference in position between the stream and the orbit of the progenitor; this significantly affects the best-fitting orbits. The progenitor orbits we derive have orbital apocentre ∼60 kpc and pericentre ∼3 kpc , though these quantities vary somewhat with the current orbital phase of the progenitor which is as yet unknown. Our best combined fit to the stream and galaxy properties implies a mass within 125 kpc of M31 of (7.4 ± 1.2) × 1011 M⊙ . Based on its length, width, luminosity, and velocity dispersion, we conclude that the stream originates from a progenitor satellite with mass M s ∼ 109 M⊙ , and at most modest amounts of dark matter; the estimate of M s is again correlated with the phase of the progenitor. M31 displays a large number of faint features in its inner halo which may be progenitors or continuations of the stream. While the orbital fits are not constrained enough for us to conclusively identify the progenitor, we can identify several plausible candidates, of which a feature in the planetary nebula distribution found by Merrett et al. is the most plausible, and rule out several others. We make predictions for the kinematic properties of the successful candidates. These may aid in observational identification of the progenitor object, which would greatly constrain the allowed models of the stream. 相似文献
5.
6.
Witold Maciejewski E. Athanassoula 《Monthly notices of the Royal Astronomical Society》2007,380(3):999-1008
Bars in galaxies are mainly supported by particles trapped around stable periodic orbits. These orbits represent oscillatory motion with only one frequency, which is the bar driving frequency, and miss free oscillations. We show that a similar situation takes place in double bars: particles get trapped around parent orbits, which in this case represent oscillatory motion with two frequencies of driving by the two bars, and which also lack free oscillations. Thus the parent orbits, which constitute the backbone of an oscillating potential of two independently rotating bars, are the double-frequency orbits. These orbits do not close in any reference frame, but they map on to closed curves called loops. Trajectories trapped around the parent double-frequency orbit map on to a set of points confined within a ring surrounding the loop. 相似文献
7.
8.
9.
We discuss the morphology, photometry and kinematics of the bars which have formed in three N -body simulations. These have initially the same disc and the same halo-to-disc mass ratio, but their haloes have very different central concentrations. The third model includes a bulge. The bar in the model with the centrally concentrated halo (model MH) is much stronger, longer and thinner than the bar in the model with the less centrally concentrated halo (model MD). Its shape, when viewed side-on, evolves from boxy to peanut and then to 'X'-shaped, as opposed to that of model MD, which stays boxy. The projected density profiles obtained from cuts along the bar major axis, for both the face-on and the edge-on views, show a flat part, as opposed to those of model MD which are falling rapidly. A Fourier analysis of the face-on density distribution of model MH shows very large m=2 , 4, 6 and 8 components. Contrary to this, for model MD the components m=6 and 8 are negligible. The velocity field of model MH shows strong deviations from axial symmetry, and in particular has wavy isovelocities near the end of the bar when viewed along the bar minor axis. When viewed edge-on, it shows cylindrical rotation, which the MD model does not. The properties of the bar of the model with a bulge and a non-centrally concentrated halo (MDB) are intermediate between those of the bars of the other two models. All three models exhibit a lot of inflow of the disc material during their evolution, so that by the end of the simulations the disc dominates over the halo in the inner parts, even for model MH, for which the halo and disc contributions were initially comparable in that region. 相似文献
10.
Álvaro Villalobos Amina Helmi 《Monthly notices of the Royal Astronomical Society》2009,399(1):166-176
We analyse the phase-space structure of simulated thick discs that are the result of a 5:1 mass-ratio merger between a disc galaxy and a satellite. Our main goal is to establish what would be the imprints of a merger origin for the Galactic thick disc. We find that the spatial distribution predicted for thick-disc stars is asymmetric, seemingly in agreement with recent observations of the Milky Way thick disc. Near the Sun, the accreted stars are expected to rotate more slowly, to have broad velocity distributions and to occupy preferentially the wings of the line-of-sight velocity distributions. The majority of the stars in our model thick discs have low eccentricity orbits (in clear reference to the pre-existing heated disc) which give rise to a characteristic (sinusoidal) pattern for their line-of-sight velocities as a function of galactic longitude. The z -component of the angular momentum of thick-disc stars provides a clear discriminant between stars from the pre-existing disc and those from the satellite, particularly at large radii. These results are robust against the particular choices of initial conditions made in our simulations. 相似文献
11.
12.
13.
14.
15.
What determines the strength and the slowdown rate of bars? 总被引:1,自引:0,他引:1
E. Athanassoula 《Monthly notices of the Royal Astronomical Society》2003,341(4):1179-1198
16.
A. Pizzella E. M. Corsini M. Sarzi J. Magorrian J. Méndez-Abreu L. Coccato L. Morelli F. Bertola 《Monthly notices of the Royal Astronomical Society》2008,387(3):1099-1116
Photometry and long-slit spectroscopy are presented for a sample of six galaxies with a low surface-brightness stellar disc and a bulge. The characterizing parameters of the bulge and disc components were derived by means of a two-dimensional photometric decomposition of the images of the sample galaxies. Their surface-brightness distribution was assumed to be the sum of the contribution of a Sérsic bulge and an exponential disc, with each component being described by elliptical and concentric isophotes of constant ellipticity and position angle. The stellar and ionized-gas kinematics were measured along the major and minor axes in half of the sample galaxies, whereas the other half was observed only along two diagonal axes. Spectra along two diagonal axes were obtained also for one of the objects with major and minor axis spectra. The kinematic measurements extend in the disc region out to a surface-brightness level μ R ≈ 24 mag arcsec−2 , reaching in all cases the flat part of the rotation curve. The stellar kinematics turns out to be more regular and symmetric than the ionized-gas kinematics, which often shows the presence of non-circular, off-plane and non-ordered motions. This raises the question about the reliability of the use of the ionized gas as the tracer of the circular velocity in the modelling of the mass distribution, in particular in the central regions of low surface-brightness galaxies. 相似文献
17.
We study the dynamical interactions of mass systems in equilibrium under their own gravity that mutually exert and ex‐perience gravitational forces. The method we employ is to model the dynamical evolution of two isolated bars, hosted within the same galactic system, under their mutual gravitational interaction. In this study, we present an analytical treatment of the secular evolution of two bars that oscillate with respect to one another. Two cases of interaction, with and without geometrical deformation, are discussed. In the latter case, the bars are described as modified Jacobi ellipsoids. These triaxial systems are formed by a rotating fluid mass in gravitational equilibrium with its own rotational velocity and the gravitational field of the other bar. The governing equation for the variation of their relative angular separation is then numerically integrated, which also provides the time evolution of the geometrical parameters of the bodies. The case of rigid, non‐deformable, bars produces in some cases an oscillatory motion in the bodies similar to that of a harmonic oscillator. For the other case, a deformable rotating body that can be represented by a modified Jacobi ellipsoid under the influence of an exterior massive body will change its rotational velocity to escape from the attracting body, just as if the gravitational torque exerted by the exterior body were of opposite sign. Instead, the exchange of angular momentum will cause the Jacobian body to modify its geometry by enlarging its long axis, located in the plane of rotation, thus decreasing its axial ratios. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
18.
19.
C. Zier 《Monthly notices of the Royal Astronomical Society》2007,378(4):1309-1327
In this paper, the second in a series of two, we justify two important assumptions on which the result is based that in the course of a galaxy merger, the slingshot ejection of bound stars is sufficiently efficient to allow a supermassive black hole binary (BHB) to merge. A steep cusp with a power-law index of 2.5–3 is required which is as massive as the binary and surrounds the BHs when the binary becomes hard. This cusp is probably formed when both clusters, surrounding each BH, merge and combine with the matter funnelled into the centre. We find this profile to be in agreement with observed post-merger distributions after the cusp has been destroyed. The time dependency we derive for the merger predicts that stalled BHs, if they exist at all, will preferentially be found at less than ∼0.2 pc distance. To test this prediction we compute the current semimajor axis of 12 candidates of ongoing mergers. We find all binaries unambiguously to be already in the last phase when they decay due to the emission of gravitational waves. Therefore, in striking contradiction with predictions of a depleted loss-cone, the absence of even a single source in the slingshot phase strongly supports our previous and current results: binaries merge due to the slingshot ejection of stars which have been funnelled into the central regions in the course of a galaxy collision. 相似文献