首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correlation and spectral analysis of solar radio flux density and sunspot number near the maximum of the sunspot cycle has indicated the existence of
  1. long period amplitude modulation of the slowly varying component (SVC) of radio emission
  2. coronal storage over a period of the order of three solar rotations
  3. fast decay (one solar rotation period or less) of gyromagnetic emissions from radio sources
  4. shift in location of chromospheric sources compared to those of either the upper corona or the photosphere.
  相似文献   

2.
The properties of small (< 2″) moving magnetic features near certain sunspots are studied with several time series of longitudinal magnetograms and Hα filtergrams. We find that the moving magnetic features:
  1. Are associated only with decaying sunspots surrounded entirely or in part by a zone without a permanent vertical magnetic field.
  2. Appear first at or slightly beyond the outer edge of the parent sunspot regardless of the presence or absence of a penumbra.
  3. Move approximately radially outward from sunspots at about 1 km s?1 until they vanish or reach the network.
  4. Appear with both magnetic polarities from sunspots of single polarities but appear with a net flux of the same sign as the parent sunspot.
  5. Transport net flux away from the parent sunspots at the same rates as the flux decay of the sunspots.
  6. Tend to appear in opposite polarity pairs.
  7. Appear to carry a total flux away from sunspots several times larger than the total flux of the sunspots.
  8. Produce only a very faint emmission in the core of Hα.
A model to help understand the observations is proposed.  相似文献   

3.
The purpose of this paper is to present the correlation of seasonal variation of 5893 Å line intensity with relative sunspot numbers, solar flare numbers and the variable component of 10.7 cm solar flux. A study has been made and the following important results have been obtained.
  1. The intensity of 5893 Å line at Calcutta shows periodic variation with different solar parameters during descending part of secondary peak of 21st solar cycle (1984–1985).
  2. 5893 Å line intensity of Mt. Abu also shows periodic variation with solar parameters during the period 1965–1968 when there was a peak phase of 20th solar cycle.
  3. A possible explanation for such type of variation is also presented.
  相似文献   

4.
Celebrating the diamond jubilee of the Physics Research Laboratory (PRL) in Ahmedabad, India, we look back over the last six decades in solar physics and contemplate on the ten outstanding problems (or research foci) in solar physics:
  1. The solar neutrino problem
  2. Structure of the solar interior (helioseismology)
  3. The solar magnetic field (dynamo, solar cycle, corona)
  4. Hydrodynamics of coronal loops
  5. MHD oscillations and waves (coronal seismology)
  6. The coronal heating problem
  7. Self-organized criticality (from nanoflares to giant flares)
  8. Magnetic reconnection processes
  9. Particle acceleration processes
  10. Coronal mass ejections and coronal dimming
The first two problems have been largely solved recently, while the other eight selected problems are still pending a final solution, and thus remain persistent Challenges for Solar Cycle 24, the theme of this jubilee conference.  相似文献   

5.
An observational study of maps of the longitudinal component of the photospheric fields in flaring active regions leads to the following conclusions:
  1. The broad-wing Hα kernels characteristic of the impulsive phase of flares occur within 10″ of neutral lines encircling features of isolated magnetic polarity (‘satellite sunspots’).
  2. Photospheric field changes intimately associated with several importance 1 flares and one importance 2B flare are confined to satellite sunspots, which are small (10″ diam). They often correspond to spot pores in white-light photographs.
  3. The field at these features appears to strengthen in the half hour just before the flares. During the flares the growth is reversed, the field drops and then recovers to its previous level.
  4. The magnetic flux through flare-associated features changes by about 4 × 1019 Mx in a day. The features are the same as the ‘Structures Magnétiques Evolutives’ of Martres et al. (1968a).
  5. An upper limit of 1021 Mx is set for the total flux change through McMath Regions 10381 and 10385 as the result of the 2B flare of 24 October, 1969.
  6. Large spots in the regions investigated did not evince flux changes or large proper motions at flare time.
  7. The results are taken to imply that the initial instability of a flare occurs at a neutral point, but the magnetic energy lost cannot yet be related to the total energy of the subsequent flare.
  8. No unusual velocities are observed in the photosphere at flare time.
  相似文献   

6.
High resolution on- and off-band Hα filtergrams of disk solar surges obtained with the Vacuum Tower Telescope of the Sacramento Peak Observatory have been compared to magnetic data.
  1. Surges constitute clusters of very fine dark (sometimes bright) filaments where each thread connects to an Ellerman bomb brightening. If the magnetic map reveals the existence of a satellite polarity as defined by Rust (1968), the bomb(s) lies over it.
  2. Although a large fraction of surges is not associated with clearly detectable satellite polarities, events are strongly favored in regions of evolving magnetic features, characterized by dimensions of about 10 000 km and significant flux change over a period of less than a day. A flux change rate of 3 × 1015 Mx s?1 has been measured along at least three homologous bomb-surge events in a satellite of region MW 18594. Surges appear to be related to rising flux of one polarity into a region of stronger opposite flux.
  3. The trajectories of surges are matched by magnetic lines of force computed in the current-free approximation.
  相似文献   

7.
The observational data permit us to establish clear statistical correlations between different parameters of stellar flare activity and the characteristics of quiet stars. These relations are:
  1. between energies and frequencies of flares on stars of different luminosities;
  2. between total radiation energies of flares and quiet stars both in X-ray and Balmer emission lines;
  3. between flare decay rates just after the maxima and flare luminosities at maxima.
  相似文献   

8.
The majority of flare activity arises in active regions which contain sunspots, while Coronal Mass Ejection (CME) activity can also originate from decaying active regions and even so-called quiet solar regions which contain a filament. Two classes of CME, namely flare-related CME events and CMEs associated with filament eruption are well reflected in the evolution of active regions. The presence of significant magnetic stresses in the source region is a necessary condition for CME. In young active regions magnetic stresses are increased mainly by twisted magnetic flux emergence and the resulting magnetic footpoint motions. In old, decayed active regions twist can be redistributed through cancellation events. All the CMEs are, nevertheless, caused by loss of equilibrium of the magnetic structure. With observational examples we show that the association of CME, flare and filament eruption depends on the characteristics of the source regions:
  • ?the strength of the magnetic field, the amount of possible free energy storage,
  • ?the small- and large-scale magnetic topology of the source region as well as its evolution (new flux emergence, photospheric motions, cancelling flux), and
  • ?the mass loading of the configuration (effect of gravity). These examples are discussed in the framework of theoretical models.
  •   相似文献   

    9.
    The purpose of this paper is to study the nature of variation of O3 concentration of Antarctic Survey Stations and its correlation with solar ultraviolet radiation. Solar UV data for the period November 1978 to October 1984 are taken from Solar Geophysical Data Book. In absence of solar UV data for long period, a calibration curve between solar UV radiation and solar flare number (S.F.NO.) is drawn. (A straight line is obtained and correlation coefficient between two variables is 80%). The equation of straight line from least square principle becomes, UV flux = 0.2672 + 2.7578 × 10?5 × S.F.NO. From this equation UV flux values for long period are calculated from known values of solar flare numbers. O3 concentration of two Antarctic Survey Stations, Halley Bay (76? S, 27? W) and McMurdo (78? S, 166? E) are considered for analysis and following important results are obtained:
    1. Yearly variations of O3 concentrations and UV radiations are mainly controlled by their October concentrations.
    2. Correlation coefficient between O3 concentration and UV radiation is 62% for the month of October. For the other months it is poor.
    3. It is concluded that dramatic decrease of O3 concentration at Antarctica is independent of solar UV radiation and chemical processes are responsible for special depletion of O3.
      相似文献   

    10.
    Statistical properties of solar active regions (AR) have been studied. In particular, (1) the distribution of ARs by their areas and importances using normal and lognormal distribution laws; (2) it was checked whether the distribution of the ARs' birth sites satisfies the Poisson distribution law (the so-called ‘law of rare events’). Observational data of 1979–1982 have been used and our conclusions are as follows:
    1. As regards the areas, the distribution of the ARs that emerged near or on the borders of the large-scale background fields is normal or lognormal.
    2. As regards the importances, the distribution of all ARs is lognormal.
    3. The distribution of ARs that emerged far from background field borders is not normal.
    4. ARs are not casual or rare events on the Sun.
      相似文献   

    11.
    The Transition Region and Coronal Explorer (TRACE) gave us the highest EUV spatial resolution and the Ramaty High Energy Solar Spectrometric Imager (RHESSI) gave us the highest hard X-ray and gammaray spectral resolution to study solar flares. We review a number of recent highlights obtained from both missions that either enhance or challenge our physical understanding of solar flares, such as:
    1. Multi-thermal Diagnostic of 6.7 and 8.0 keV Fe and Ni lines
    2. Multi-thermal Conduction Cooling Delays
    3. Chromospheric Altitude of Hard X-Ray Emission
    4. Evidence for Dipolar Reconnection Current Sheets
    5. Footpoint Motion and Reconnection Rate
    6. Evidence for Tripolar Magnetic Reconnection
    7. Displaced Electron and Ion Acceleration Sources.
      相似文献   

    12.
    Using eighteen years of observations at Big Bear, we summarize the development of δ spots and the great flares they produce. We find δ groups to develop in three ways: eruption of a single complex active region formed below the surface, eruption of large satellite spots near (particularly in front of) a large older spot, or collision of spots of opposite polarity from different dipoles. Our sample of twenty-one δ spots shows that once they lock together, they never separate, although rarely an umbra is ejected. The δ spots are already disposed to their final form when they emerge. The driving force for the shear is spot motion, either flux emergence or the forward motion of p spots in an inverted magnetic configuration. We observe the following phenomena preceding great flares:
    1. δ spots, preferentially Types 1 and 2.
    2. Umbrae obscured by Hα emission.
    3. Bright Hα emission marking flux emergence and reconnection.
    4. Greatly sheared magnetic configurations, marked by penumbral and Hα fibrils parallel to the inversion line.
    We assert that with adequate spatial resolution one may predict the occurrence of great flares with these indicators.  相似文献   

    13.
    Based on the developed method of jointly using data on the magnetic fields and brightness of filaments and coronal holes (CHs) at various heights in the solar atmosphere as well as on the velocities in the photosphere, we have obtained the following results:
  • The upward motion of matter is typical of filament channels in the form of bright stripes that often surround the filaments when observed in the HeI 1083 nm line.
  • The filament channels observed simultaneously in Hα and HeI 1083 nm differ in size, emission characteristics, and other parameters. We conclude that by simultaneously investigating the filament channels in two spectral ranges, we can make progress in understanding the physics of their formation and evolution.
  • Most of the filaments observed in the HeI 1083 nm line consist of dark knots with different velocity distributions in them. A possible interpretation of these knots is offered.
  • The height of the small-scale magnetic field distribution near the individual dark knots of filaments in the solar atmosphere varies between 3000 and 20000 km.
  • The zero surface separating the large-scale magnetic field structures in the corona and calculated in the potential approximation changes the inclination to the solar surface with height and is displaced in one or two days.
  • The observed formation of a filament in a CH was accompanied by a significant magnetic field variation in the CH region at heights from 0 to 30000 km up to the change of the predominant field sign over the entire CH area. We assume that this occurs at the stage of CH disappearance.
  •   相似文献   

    14.
    Using the Baranger-Mozer method, we explore the possibility of diagnosing the flare plasma of forbidden Hei lines, that permits the determination of the plasma oscillation frequency and noise level. Examination of the Hei lines observed in solar flare has led us to conclude that:
    1. the appearance of satellites of forbidden components in the flares spectrum, due to turbulent electric fields, is the most probable for Hei 3819.606 Å lines;
    2. the Baranger-Mozer method is more sensitive to the high-frequency component of turbulent fields than to the low-frequency ones;
    3. the upper limit of the turbulent oscillation level in flares is evaluated.
    In the spectrum of the solar flare of 26 September, 1963 we detected satellites of the forbidden component of the 3820 Å line and used its relative intensity to derive the level of low-frequency oscillations (~1.5 kVcm-1).  相似文献   

    15.
    Spectroheliograms, obtained in certain Fraunhofer lines with the 82-cm solar image at the Kitt Peak National Observatory, show a bright photospheric network having the following properties:
    1. It resembles, but does not coincide with, the chromospheric network, the structure of the photospheric network being finer and more delicate than the relatively coarse structure of the chromospheric network.
    2. It is exactly cospatial with the network of non-sunspot photospheric magnetic fields.
    3. Its visibility in a given photospheric Fraunhofer line is primarily dependent on the states of ionization and excitation from which the line is formed and secondarily dependent on the Zeemansensitivity of the line-being most visible in low-excitation lines of neutral atoms and least visible in high-excitation lines of singly ionized atoms.
    We conclude that these magnetic regions of the solar atmosphere are a few hundred degrees hotter than their surroundings, and that they are visible in white light near the limb as photospheric faculae.  相似文献   

    16.
    The properties of rapidly changing inhomogeneities visible in the H and K lines above sunspot umbrae are described. We find as properties for these ‘Umbral Flashes’:
    1. A lifetime of 50 sec. The light curve is asymmetrical, the increase is faster than the decrease in brightness.
    2. A diameter ranging from the resolution limit up to 2000 km.
    3. A tendency to repeat every 145 sec.
    4. A ‘proper motion’ of 40 km/sec generally directed towards the penumbra.
    5. A Doppler shift of 6 km/sec.
    6. A magnetic field of 2100 G.
    7. A decrease in this field of 12 G/sec. This decrease is probably related to the flash motion.
    8. At any instant an average of 3–5 flashes in a medium-sized umbra. A weak feature often persists in the umbra after the flash. This post-flash structure initially shows a blue shift, but 100–120 sec after the flash, it shows a rapid red shift just before the flash repeats.
      相似文献   

    17.
    Evidence is discussed showing that a representative solar flare event comprises three or more separate but related phenomena requiring separate mechanisms. In particular it is possible to separate the most energetic effect (the interplanetary blast) from the thermal flare and from the rapid acceleration of particles to high energies. The phenomena are related through the magnetic structure characteristic of a composite flare event, being a bipolar surface field with most of its field lines ‘closed’. Of primary importance are helical twists on all scales, starting with the ‘flux rope’ of the spot pair which was fully twisted before it emerged. Subsequent untwisting by the upward propagation of an Alfvén twist wave provides the main flare energy.
    1. The interplanetary blast model is based on subsurface, helically twisted flux ropes which erupt to form spots and then transfer their twists and energy by Alfvén-twist waves into the atmospheric magnetic fields. The blast is triggered by the prior-commencing flash phase or by a coronal wave.
    2. The thermal flare is explained in terms of Alfvén waves travelling up numerous ‘flux strands’ (Figure 3) which have frayed away from the two flux ropes. The waves originate in interaction (collisions, bending, twisting, rubbing) between subsurface flux strands; the sudden flash is caused by a collision. The classical twin-ribbon flare results from the collision of a flux rope with a tight bunch of S-shaped flux strands.
    3. The impulsive acceleration of electrons (hard X-ray, EUV, Hα and radio bursts) is tentatively attributed to magnetic reconnection between fields in two parallel, helically twisted flux strands in the low corona.
    4. Flare (Moreton) waves in the corona have the same origin as the interplanetary blast. Sympathetic flares represent only the start of enhanced activity in a flare event already in the slow phase. Filament activation also occurs during the slow phase as twist Alfvén waves store their energy in the atmosphere.
    5. Flare ejecta are caused by Alfvén waves moving up flux strands. Surges are attributed to packets of twist Alfvén waves released into bundles of flux strands; the waves become non-linear and drive plasma upwards. Spray-type prominences result from accumulations of Alfvén wave energy in dome-shaped fields; excessive energy density eventually explodes the field.
      相似文献   

    18.
    Radio and X-ray observations are presented for three flares which show significant activity for several minutes prior to the main impulsive increase in the hard X-ray flux. The activity in this ‘pre-flash’ phase is investigated using 3.5 to 461 keV X-ray data from the Solar Maximum Mission, 100 to 1000 MHz radio data from Zürich, and 169 MHz radio-heliograph data from Nançay. The major results of this study are as follows:
    1. Decimetric pulsations, interpreted as plasma emission at densities of 109–1010 cm?3, and soft X-rays are observed before any Hα or hard X-ray increase.
    2. Some of the metric type III radio bursts appear close in time to hard X-ray peaks but delayed between 0.5 and 1.5 s, with the shorter delays for the bursts with the higher starting frequencies.
    3. The starting frequencies of these type III bursts appear to correlate with the electron temperatures derived from isothermal fits to the hard X-ray spectra. Such a correlation is expected if the particles are released at a constant altitude with an evolving electron distribution. In addition to this effect we find evidence for a downward motion of the acceleration site at the onset of the flash phase.
    4. In some cases the earlier type III bursts occurred at a different location, far from the main position during the flash phase.
    5. The flash phase is characterized by higher hard X-ray temperatures, more rapid increase in X-ray flux, and higher starting frequency of the coincident type III bursts.
      相似文献   

    19.
    In this paper, we consider the implications of the observed inverse correlation between solar wind speed at Earth and the expansion rate of the Sun-Earth flux tube as it passes through the corona. We find that the coronal expansion rate depends critically on the large-scale photospheric field distribution around the footpoint of the flux tube, with the smallest expansions occurring in tubes that are rooted near a local minimum in the field. This suggests that the fastest wind streams originate from regions where large coronal holes are about to break apart and from the facing edges of adjacent like-polarity holes, whose field lines converge as they transit the corona. These ideas lead to the following predictions:
    1. Weak holes and fragmentary holes can be sources of very fast wind.
    2. Fast wind with steep latitudinal gradients may be generated where the field lines from the polar hole and a lower-latitude hole of like polarity converge to form a mid-latitude ‘apex’.
    3. The fastest polar wind should occur shortly after sunspot maximum, when trailing-polarity flux converges onto the poles and begins to establish the new polar fields.
      相似文献   

    20.
    Photoelectric measurements of Doppler shifts of various Fraunhofer lines obtained with the Capri magnetograph were analysed. The height dependence of the supergranular and oscillatory motions, as well as the two dimensional structure of these velocity fields is investigated. The most interesting results are the following:
    1. The oscillatory and supergranular motions are still clearly present in very deep photospheric layers as detected e.g. by means of the Ci line at 5380.3 Å.
    2. Whereas the vertical motions (both of oscillation and supergranulation) increase with height, the horizontal component of the supergranular flow is found to be decreasing slightly.
    3. Aperiodic horizontal motions are observed in the photospheric layers, which are probably connected with the process of excitation of the oscillatory field.
    4. There is no simple way of describing the oscillatory field in terms of independently oscillating ‘cells’, since the two-dimensional pattern changes its appearance drastically already in a fraction of one oscillation period.
    5. The correlation obtained by previous observers between vertical stationary motions, the chromospheric network and magnetic fields in particular is confirmed.
      相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号