首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Convective cloudiness in the Atlantic sector of the Arctic is considered as an atmospheric spatially self-organized convective field. Convective cloud development is usually studied as a local process reflecting the convective instability of the turbulent planetary boundary layer over a heated surface. The convective cloudiness has a different dynamical structure in high latitudes. Cloud development follows cold-air outbreaks into the areas with a relatively warm surface. As a result, the physical and morphological characteristics of clouds, such as the type of convective cloud, and their geographical localization are interrelated. It has been shown that marginal sea ice and coastal zones are the most frequently occupied by Cu hum, Cu med convective clouds, which are organized in convective rolls. Simultaneously, the open water marine areas are occupied by Cu cong, Cb, which are organized in convective cells. An intercomparison of cloud statistics using satellite data ISCCP and ground-based observations has revealed an inconsistency in the cloudiness trends in these data sources: convective cloudiness decreases in ISCCP data and increases in the groundbased observation data. In general, according to the stated hypothesis, the retreat of the sea-ice boundary may lead to an increase in the amount of convective clouds.  相似文献   

2.
Thermal convection in an inclined plane layer having boundaries with different temperatures and rotating around an axis perpendicular to its plane is studied experimentally. It is shown that the convection and heat transfer are determined by two different convective mechanisms—gravitational and thermovibrational ones; they manifest themselves in the threshold excitation of cellular convective structures with different sizes. The thermovibrational convection is caused by the period-averaged mass force arising as a result of tidal oscillations of a nonisothermal fluid with respect to the cavity under the action of the external force-field component tangential to the layer. The map of convection regimes on the plane of governing parameters—the gravitational Rayleigh number and its vibrational analog—has been constructed. It has been found that the thermovibrational convection can develop even in a layer heated from above. The role of the dimensionless velocity of rotation, which has a stabilizing effect on the excitation of both gravitational and thermovibrational convection, has been studied.  相似文献   

3.
An ensemble of convective thermals is distinguished from the surface layer of penetrative turbulent convection over a heated horizontally uniform surface. A statistical model of the ensemble of convective thermals is developed that uses the idea of entropy in the Boltzmann-Jaynes form. The distribution of thermals by potential energies is shown to display an entropy maximum. On the basis of the Boltzmann distribution by potential energies, the temperature distribution of spontaneous jets is obtained and found to be consistent with known experimental data.  相似文献   

4.
This paper, the second part of further analyses of the structure of the typhoon, mainly discusses the distributions of temperature and moisture fields of typhoon No. 7507. The result has shown that the typhoon developed from the warm-core disturbance. The height of maximum warming is highest (300 to 250 hPa) during the mature stage. There is a dry layer capping the typhoon during the initial stage. Once the typhoon rapidly developed, the dry layer was destroyed. A deep saturation layer eventually occurred in the central region of the typhoon. Meanwhile, the dry air from the China main continuously intruded into the outer region in the western and northwestern parts of the typhoon.The initial eyewall of the typhoon sloped outward with increasing height, and then became nearly vertical below 12 km level. This was closely associated with convective activity. The convective instability had been mostly released during the growing stage of the typhoon and stratification rapidly tended to moist neutralization.  相似文献   

5.
渤海对辽东半岛大暴雨影响的数值试验   总被引:1,自引:0,他引:1  
朱晶  寿绍文 《海洋学报》2006,28(6):12-20
运用MM5V3.5模式成功模拟了辽东半岛2004年8月3日的大暴雨过程,并模拟出了产生大暴雨的中尺度低压.敏感性试验比较了渤海、沙漠、城市和地形高度产生的地面温度、湿度、不同高度的水平风速、垂直速度的变化,研究了不同下垫面造成的边界层结构特征和局地环流,揭示出渤海和辽东半岛地形使降水大幅度增强.湿位涡诊断分析表明,此次大暴雨是在低层强对流不稳定和斜压不稳定条件下发生的,改变渤海地表和降低辽东半岛地形高度都使低层不稳定减弱.  相似文献   

6.
在冰脊的固结过程中,由于接触面积与温差的大幅提升,冰水之间的换热强度显著增强。本文通过浸没试验对自然对流条件下冰水间的换热系数进行了研究。在试验过程中,对试样内部的温度分布与体积变化分别用温度梯度测试系统与数字图像进行测量。为研究初始条件对换热系数的影响,分别采用不同初始温度与厚度的试样在瞬态热传导的环境下进行测试。试验结果表明,换热系数与表面温差呈指数增长,且在本文试验条件下的变化区间为0.3~175 W/(m2·K)。试样的初始温度及厚度并不是影响换热系数的直接因素,而其根本因素为流-固界面的边界层状态。在自然对流状态下流体的驱动条件是热胀效应,即当边界层存在温度差时,虽然外界并不存在扰动流体状态的因素,但由于液体自身温差引起的密度差进而驱动流体运动并影响了换热系数。随着边界层温度梯度的增加,边界层的影响区域扩大,从而导致了较高的换热系数。  相似文献   

7.
We investigate the hypothesis that the atmosphere is constrained to maximize its entropy production by using a one-dimensional (1-D) vertical model. We prescribe the lapse rate in the convective layer as that of the standard troposphere. The assumption that convection sustains a critical lapse rate was absent in previous studies, which focused on the vertical distribution of climatic variables, since such a convective adjustment reduces the degrees of freedom of the system and may prevent the application of the maximum entropy production (MEP) principle. This is not the case in the radiative-convective model (RCM) developed here, since we accept a discontinuity of temperatures at the surface similar to that adopted in many RCMs.
For current conditions, the MEP state gives a difference between the ground temperature and the air temperature at the surface ≈10 K. In comparison, conventional RCMs obtain a discontinuity ≈2K only. However, the surface boundary layer velocity in the MEP state appears reasonable (≈m s−1). Moreover, although the convective flux at the surface in MEP states is almost uniform in optically thick atmospheres, it reaches a maximum value for an optical thickness similar to current conditions. This additional result may support the maximum convection hypothesis suggested by Paltridge (1978 ).  相似文献   

8.
Comparing the concentration of molybdenum (Mo) (ppm) and total organic carbon (TOC) (wt%) within sediments allows interpretation of the relative degrees of bottom water restriction within the geologic record. The Woodford Shale is interpreted as transgressive systems tract (TST) grading into highstand systems tract (HST). The lowermost Woodford preserves a Mo-TOC signal that is consistent with a restricted basin that periodically received influxes of water consistent with rising sea levels flowing into restricted sub-basins that became isolated by localized conditions. The middle Woodford preserves a signal that indicates an increased ventilation at the sediment-water interface persisting until the maximum flooding surface. The presence of phosphate nodules in the uppermost Woodford suggests sufficient oxygen to retain the Mo in solution and indicates active upwelling and circulation with the Paleotethys.It is also possible to document changing ventilation patterns, non-destructively, within a basin by utilizing changing trends in redox-sensitive trace metals (Mo, Ni, and Cu) and an approximation of the degree of pyritization (aDOP) based on an idealized formula for pyrite (FeS2). This chemofacies approach produces a qualitatively similar interpretation to the changing Mo-TOC signal and can evaluate lateral trends in bottom water ventilation where destructive sampling is not permitted. Distal regions preserve the greatest degree of bottom water ventilation. Proximal regions preserve highly variable conditions with more restricted conditions being common in the lowermost Woodford Shale and ventilation improving upsection.Interpreting changing levels of bottom water anoxia enable greater degrees of precision in targeting potential hydrocarbon resources. Furthermore, this information improves our understanding of the changing environmental conditions of the Woodford Shale. The Framvaren Fjord is a reasonable modern analog for bottom water restriction in the lowermost portion of the Woodford Shale. The Cariaco Basin is a good modern analog for bottom water restriction in the middle and uppermost Woodford Shale.  相似文献   

9.
The representation of baroclinic instability in numerical models depends strongly upon the model physics and significant differences may be found depending on the vertical discretization of the governing dynamical equations. This dependency is explored in the context of the restratification of an idealized convective basin with no external forcing. A comparison is made between an isopycnic model including a mixed layer (the Miami Isopycnic Coordinate Ocean Model, MICOM), its adiabatic version (MICOM-ADIAB) in which the mixed layer physics are removed and the convective layer is described by a deep adiabatic layer outcropping at the surface instead of a thick dense mixed layer, and a z-coordinate model (OPA model).In the absence of a buoyancy source at the surface, the mixed layer geometry in MICOM prevents almost any retreat of this layer. As a result, lateral heat exchanges in the upper layers are limited while mass transfers across the outer boundary of the deep convective mixed layer result in an unrealistic outward spreading of this layer. Such a widespread deep mixed layer maintains a low level of baroclinic instability, and therefore limits lateral heat exchanges in the upper layers over most of the model domain. The behavior of the adiabatic isopycnic model and z-coordinate model is by far more satisfactory although contrasted features can be observed between the two simulations. In MICOM-ADIAB, the more baroclinic dynamics introduce a stronger contrast between the surface and the dense waters in the eddy kinetic energy and heat flux distributions. Better preservation of the density contrasts around the dense water patch maintains more persistent baroclinic instability, essentially associated with the process of dense water spreading. The OPA simulation shows a faster growth of the eddy kinetic energy in the early stages of the restratification which is attributed to more efficient baroclinic instability and leads to the most rapid buoyancy restoring in the convective area among the three simulations. Dense water spreading and warm surface capping occur on fairly similar time scales in MICOM-ADIAB although the former is more persistent that the latter. In this model, heat is mainly transported by anticyclonic eddies in the dense layer while both cyclonic and anticyclonic eddies are involved in the upper layers. In OPA, heat is mainly brought into the convective zone through the export of cold water trapped in cyclonic eddies with a strong barotropic structure. Probably the most interesting difference between the z-coordinate and the adiabatic isopycnic model is found in the temperature distribution ultimately produced by the restratification process. OPA generates a spurious volume of intermediate water which is not seen in MICOM-ADIAB where the volume of the dense water is preserved.  相似文献   

10.
Kushnir  V. M.  Hansen  E.  Pavlov  V. K.  Morozov  A. N. 《Physical Oceanography》2003,13(6):361-374
The analysis of the thermochaline (double-diffusive) convection in the edge-ice zone of the Barents Sea to the east of Spitsbergen was performed by using the data of two hydrological surveys of the Norwegian Polar Institute in 1999 and 2000. The Turner's model, where the critical Rayleigh number is determined by using the empirical relationship between the Nusselt number and the Rayleigh number normalized to its critical value, was used for analysis. The results of calculation of thickness of the convective layer were compared with the data of supervision. The estimates of the vertical convective velocity were obtained.  相似文献   

11.
The term cabbeling describes the convection that can occur when a mixture of two oceanic water masses is more dense than both of the parent water masses. When the two water masses are situated one above the other, the temperature and salinity distributions are in the correct senses for double-diffusive convection to occur and it is found that the prime effects of the nonlinearity of the equation of state are firstly to drive a greater level of double-diffusive convective activity in the lower layer than in the upper layer, and secondly, to make the lower edge of the interfacial region less gravitationally stable. Both of these effects cause the interface to migrate upwards as the lower layer grows at the expense of the upper layer. We introduce a nondimensional parameter δ (called the cabbeling parameter) which represents the importance of the nonlinearity of the equation of state:—δ is zero when the equation of state is linear and when cabbeling is normally thought to be possible, δ is greater than unity. Experiments set up in both the finger and diffuse sense show how the nondimensional measure of the upward interface migration (called the “entrainment” parameter E) varies with the density anomaly ration R? for various values of δ between zero and 2.0 and that no abrupt change in this behaviour occurs at δ = 1.0. It is impossible to explain these observation by neglecting double-diffusive convection and considering only the convection driven by the conventional cabbeling instability. The successful interpretation of the laboratory results relies on considering the effects of a non-linear equation of state on the double-diffusive convection process.  相似文献   

12.
在高空槽和低层切变线配合的相似环流背景下,2019年4月11日深圳出现短时暴雨(简称"2019年过程"),2020年4月11日以稳定性弱降水为主(简称"2020年过程"),利用ERA5再分析数据等对深圳这两次前汛期降水过程进行了对比分析.结果表明,2019年过程,温湿层结等对流条件和高空辐散条件较好,低空辐合动力条件相...  相似文献   

13.
The stability of the zonal axisymmetric quasi-geostrophic hydrostatic solution to the equations of atmospheric dynamics that is determined by the horizontal temperature gradient is studied. Time-dependent regions of unstable solutions specified by the Rayleigh number describe ordinary convective (baroclinic) processes and the long-term weak growth of disturbances under the action of the centrifugal forces arising from the Earth’s rotation. Comparison with a centrifugal hydrodynamic instability is made. The spatiotemporal structure of the corresponding geophysical fields is described.  相似文献   

14.
Linear instability theory of double diffusive convection is generalized to a rotating system. For sufficiently large rotation, rotation has a stabilizing effect, and viscosity stabilizes most of oscillatory modes but destabilizes direct modes. The following behavior is found in oscillatory modes in the case of destabilizing temperature distribution and stabilizing solute distribution. With the fixed destabilizing temperature distribution (1) the system is stable when the stabilizing solute gradient is large, (2) it becomes unstable with respect to oscillatory modes when the gradient is less than a certain value. (3) When the gradient is reduced further, the system becomes stable again. This anomalous phenomenon happens only when the Prandtle number is less than unity and larger than the ratio of the diffusivity of solute and that of temperature, under the existence of rotation.  相似文献   

15.
The Yellow Sea Bottom Cold Water (YSBCW) is a large cold water mass lying in the deep part of the Yellow Sea during the warm season. We acquired multichannel seismic (MCS) data using an air gun source to image the structure of the YSBCW. The MCS data recorded reflections from sea water. The recognition of these reflections was confirmed by finite-difference seismic modeling in the frequency-domain. The seismic section from MCS data enabled discrimination of water masses distinctly separated by reflecting horizons. The structure of the water masses is fairly consistent with temperature-depth variations obtained using expandable bathythermograph (XBT) casts. The YSBCW is imaged as the lowermost water mass, maximally 40 m thick, that extends as a lens-like form along the sea bottom under the warm mixed layer. The correlation of XBT measurements and the seismic section indicates a rapid decrease in temperature from around 11 to 8 °C in the uppermost part of the YSBCW. A transition zone between the mixed layer and the underlying YSBCW is also defined. This transition zone has fairly uniform thickness of 14–18 m and marks an interval of rapid temperature drop, indicating vigorous thermal mixing. Our study demonstrates that MCS profiling is a useful and reliable tool for imaging fine structures in the shallow Yellow Sea.  相似文献   

16.
《Ocean Modelling》2004,6(1):83-100
A series of vertical mixing schemes implemented in a circumpolar coupled ice–ocean model of the BRIOS family is validated against observations of hydrography and sea ice coverage in the Weddell Sea. Assessed parameterizations include the Richardson number-dependent Pacanowski–Philander scheme, the Mellor–Yamada turbulent closure scheme, the K-profile parameterization, a bulk mixed layer model and the ocean penetrative plume scheme (OPPS). Combinations of the Pacanowski–Philander parameterization or the OPPS with a simple diagnostic model depending on the Monin–Obukhov length yield particularly good results. In contrast, experiments using a constant diffusivity and the traditional convective adjustment cannot reproduce the observations. An underestimation of wind-driven mixing in summer leads to an accumulation of salt in the winter water layer, inducing deep convection in the central Weddell Sea and a homogenization of the water column. Large upward heat fluxes in these simulations lead to the formation of unrealistic, large polynyas in the central Weddell Sea after only a few years of integration. Furthermore, spurious open-ocean convection affects the basin-scale circulation and leads to a significant overestimation of meridional overturning rates. We conclude that an adequate parameterization of both wind-induced mixing and buoyancy-driven convection is crucial for realistic simulations of processes in seasonally ice-covered seas.  相似文献   

17.
The Kuroshio, one of the most energetic western boundary currents in the world, shows variations in its mesoscale features and recirculation gyres, providing an excellent test case of interactions between the mesoscale field and Kuroshio Extension (KE) states. A three-layer quasi-geostrophic model was used to reconstruct flow fields continuous in time and the horizontal plane from the TOPEX/POSEIDON altimeter data based on the variational method. Compared with the solutions obtained by the nudging method, the present results proved that the variational solution was closer to the real field. In the assimilation period, 1993–1997, the baroclinic instability index (BII) was defined to be the phase shift from the uppermost layer to the lowest layer with mesoscale features. In the first half of the assimilation period, the KE took the transition from the elongated to contracted states, in which BII decreased gradually, as a consequence of the KE state shift. In the second half period, BII increased in the downstream region just west of the Shatsky Rise, in which baroclinic instability contributed to the final stage of the contracted state, and was followed by rapidly weakened instability as a trigger of the opposite transition from the contracted to elongated states. The wind-driven recirculation gyre played an active role on the KE transition in the first half period, although not in the second half.  相似文献   

18.
南黄海浮游植物季节性变化的数值模拟与影响因子分析   总被引:26,自引:1,他引:25  
用三维物理-生物耦合模式研究南黄海浮游植物(以叶绿素a为指标)的季节变化.对于物理模式采用Princeton ocean model(POM),对于生物模式考虑溶解无机营养盐(氮、磷、硅)、浮游植物、食草性浮游动物和碎屑.给定已知的初始场和外加边界强迫,模拟了观测到叶绿素a的主要时、空分布特征,如浮游植物的春、秋季水华和夏季次表层叶绿素a极大值现象等.研究表明,浮游植物春季水华最先发生于黄海中央海域,主要原因是该海域透明度较高,流速较小.春季水华开始于垂直对流减弱和层化开始形成之前(约3月底至4月上旬),显著地依赖水层的稳定性.水体层化以后(约5~9月)叶绿素a浓度高值区分布在南黄海的南部和锋区.夏季的南黄海中央海域,由于上混合层营养盐几乎耗尽,限制了浮游植物的生长,在紧贴温跃层下部的真光层,具有丰富的营养盐和合适的光照,次表层叶绿素a极大值得以形成.秋季(约9~11月份,略迟于海表面开始降温的时间,随地点不同而异)随垂直混合的增强,有利于营养盐向上输运,浮游植物出现一次较小的峰值.  相似文献   

19.
Laboratory experiments on the dynamics of a downwelling coastal current over a sloping bottom were conducted in a tank on a rotating platform. The current was generated by a source of stable water flow of the same density (barotropic case) or of lesser density (baroclinic case) compared with the surrounding water in the tank. It was found that even in the case of the baroclinic current, a less dense water downflow in the bottom Ekman layer was formed under certain conditions. At some moment, this downflow undergoes convective instability. Taking into account the results of the experiment, the parameters of the bottom Ekman layer on the continental shelf/slope of the Black Sea were preliminarily estimated and the possible sinking depth of less dense water was calculated.  相似文献   

20.
Observations of deep ocean temperature and salinity in the Labrador and Greenland Seas indicate that there is negative correlation between the activities of deep convection in these two sites. A previous study suggests that this negative correlation is controlled by the North Atlantic Oscillation (NAO). In this study, we discuss this deep convection seesaw by using a coupled atmosphere and ocean general circulation model. In this simulation, the deep convection is realistically simulated in both the Labrador and Greenland Seas and their negative correlation is also recognized. Regression of sea level pressure to wintertime mixed layer depth in the Labrador Sea reveals strong correlation between the convection and the NAO as previous studies suggest, but a significant portion of their variability is not correlated. On the other hand, the convection in the Greenland Sea is not directly related to the NAO, and its variability is in phase with changes in the freshwater budget in the GIN Seas. The deep convection seesaw found in the model is controlled by freshwater transport through the Denmark Strait. When this transport is larger, more freshwater flows to the Labrador Sea and less to the Greenland Sea. This leads to lower upper-ocean surface salinity in the Labrador Sea and higher salinity in the Greenland Sea, which produces negative correlation between these two deep convective activities. The deep convection seesaw observed in the recent decades could be interpreted as induced by the changes in the freshwater transport through the Denmark Strait, whose role has not been discussed so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号