首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Calculations are carried out of upward propagation of a tropospherically forced 10-day planetary wave into the upper middle atmosphere with the use of the COMMA-R model of the University of Cologne, of its transformation into a wave in electron density by means of the model of the Comenius University, and of its final transformation into a wave in radio wave absorption in the lower ionosphere applying the computer code of the Geophysical Institute. The calculations show that the absorption may be used for investigating the planetary wave activity, particularly of its long-term trends. The possibility of propagation of planetary waves from the winter hemisphere to the summer hemisphere is illustrated, which could contribute to explanation of the occurrence of travelling planetary waves in the mesosphere in summer.Dedicated to the Memory of Professor Karel P  相似文献   

2.
The continuous increase in concentration of greenhouse gases in the atmosphere is expected to cool higher levels of the atmosphere. There is some direct and indirect experimental evidence of long-term trends in temperature and other parameters in the mesosphere and lower thermosphere (MLT). Here we look for long-term trends in the annual and semiannual variations of the radio wave absorption in the lower ionosphere, which corresponds to the MLT region heights. Data from central and southeastern Europe are used. A consistent tendency to a positive trend in the amplitude of the semiannual wave appears to be observed. The reality of a similar tendency in the amplitude of the annual wave is questionable in the sense that the trend in the amplitude of the annual wave is probably induced by the trend in the yearly average values of absorption. The phases of both the annual and semiannual waves display a forward tendency, i.e. shift to an earlier time in the year. A tentative interpretation of these results in terms of changes of the seasonal variation of temperature and wind at MLT heights does not contradict the trends observed in those parameters.  相似文献   

3.
4.
Summary The nighttime and sunset LF radio wave absorption measured at Nagycenk, western Hungary over 1967–1991 is used to infer planetary wave activity and its long-term trend in the upper middle atmosphere (85 – 100 km). The very moderate positive and mostly statistically insignificant trends are consistent with the pattern provided by previous analyses of various day- and night-time absorption measurements. The trends could be of anthropogenic origin.  相似文献   

5.
We detected a decrease in the intensity of microwave radiation at the atmospheric ozone line at a frequency of 110836.04 MHz during ionospheric modification by high-power HF radiowaves radiated by the Sura Ionospheric Heating Facility. The obtained experimental data allowed us to hypothesize that this effect was caused by the fact that mesospheric ozone was affected by internal gravity waves generated in the E region of the ionosphere during its high-power HF radiowave heating.  相似文献   

6.
The model of calculations of electron density profiles in D-region is suggested. The model includes four positive ions, four negative ions and electrons. The effective rate coefficients were received from detailed models of ionization-recombination cycle. The calculations, which were made, and the comparisons with experimental data (Ne-profiles and their variations, absorption of radiowaves) have showed, that in general the model described the basic features of D-region parameters.  相似文献   

7.
Summary The assymetry of the diurnal variation of radio-wave ionospheric absorption, measured by the A3 method on the 2775 kHz Kiel — Panská Ves circuit, is studied. Almost full symmetry of absorption is observed in winter and autumn. It is explained by electron concentration variations. A remarkable diurnal asymmetry of absorption is observed in spring and particularly in summer. The observed diurnal asymmetry of the electron concentration seems to be insufficient to account completely for the great absorption asymmetry observed.  相似文献   

8.
Variations of HF probe radio wave parameters caused by the influence on the ionosphere of oblique powerful HF radiowaves are analysed. The analysis is made on the data obtained from the original experiments carried out on single-hop paths in the middle and subauroral latitudes. Powerful and probe waves with some difference in frequency were chosen near MUF and were transmitted in the same direction. The polar diagrams of both transmitting systems overlapped in both the horizontal and vertical planes. The results obtained indicate that the ionospheric plasma parameters can be varied by powerful oblique HF radiowaves under certain geophysical conditions.  相似文献   

9.
au uu nu a¶rt;u a amma a nu¶rt; 1966–1981 naa, m ¶rt;, auu m m, u nu u ¶rt; uu n n¶rt;, ¶rt;num nu aa ¶rt; ¶rt;a n n¶rt;. m uu aa ¶rt;u u mu u.  相似文献   

10.
Summary The nighttime LF radio wave absorption in the lower ionosphere measured at two frequencies in central Europe over 1963–1985 is used to infer planetary wave activity and its long-term trend in the upper middle atmosphere (∼90–100 km). The observed positive trend is roughly consistent with results based on daytime absorption. Nighttime results are less pronounced and less statistically significant probably due to perturbing effects of geomagnetic activity. The observed trends, which are probably of anthropogenic origin, are together with the daytime results [3,4] the first evidence of long-term trends in planetary wave activity in the upper middle atmosphere.  相似文献   

11.
Summary The vertical distribution of the contribution of the energy flux density due to the Alfvén(ordinary) wave, guided by the geomagnetic field(and propagating through the ionosphere to the Earth's surface) in the horizontal direction is demonstrated in the mechanism of the horizontal propagation of the Pc1 signal. The distribution with height is shown of the variations of the polarization characteristics of the propagating wave(e.g. the rotation of the polarization plane, changes in ellipticity, attenuation, etc.), which are the result of coupling in the denser layers of the low ionosphere in which also suitable isotropic(extraordinary) modes are generated. The results obtained using the method described in[4, 13] are demonstrated on a model of the daytime ionosphere under incidence of ordinaryL-modes, frequency f=0.3 Hz, and various meridional angles at the ionosphere.
auauma anmau uaa Pc1 naa m an¶rt;u ¶rt;u nmmu ma uu uma anauu maum n n¶rt; , anma u nmu. naa m an¶rt;u uu aamumu nuauu anma (nauau nmu nuauu, uu unmumu, amau u m.¶rt;.), m m ¶rt;mu au¶rt;mu na uu u . ¶rt; mum n¶rt;¶rt;u umn() ¶rt;. mam num m¶rt; [4, 13] ¶rt;mua ¶rt;u ¶rt; u nu na¶rt;uu a u L-¶rt; amm f=0,3 n¶rt; au u¶rt;uau au.
  相似文献   

12.
The problem of radio wave propagation allowing for 3D localized lower ionosphere irregularity appears in accordance with the necessity of the theoretical interpretation of VLF remote sensing data. The various processes in the Earth's crust and in space (earthquakes, magnetic storms, sporadic E-layers, lightning induced electron precipitations, rocket launches, artificial ionosphere heating, nuclear explosions, etc.) may cause different power and size ionospheric disturbances. This paper presents a further development of the numerical–analytical method for 3D problem solving. We consider a vector problem of VLF vertical electric dipole field in a plane Earth-ionosphere waveguide with a localized anisotropic ionosphere irregularity. The possibility of lowering (elevating) of the local region of the upper waveguide wall is taken into account. The field components on the boundary surfaces obey the Leontovich impedance conditions. The problem is reduced to a system of 2D integral equations taking into account the depolarization of the field scattered by the irregularity. Using asymptotic (kr⪢1) integration along the direction perpendicular to the propagation path, we transform this system to a system of 1D integral equations. The system is solved in the diagonal approximation, combining direct inversion of the Volterra integral operator and the subsequent iterations. The proposed method is useful for study of both small-scale and large-scale irregularities. We obtained estimates of the TE field components that originate entirely from field scattering by a 3D irregularity.  相似文献   

13.
On the basis of MEM spectrum analysis, the main planetary scale fluctuations formed in the lower ionosphere are studied over a period of 3–25 days during the CRISTA campaign (October-November 1994). Three dominant period bands are found: 3–5, 6–8 and 15–23 (mainly 16–18) days. For 7–8 and 16–18 day fluctuations, propagation was eastward with wave numbers K = 3 and K = 1, respectively. The magnitude of planetary wave activity in the mid-latitudes of the Northern Hemisphere during the CRISTA campaign seems to be fairly consistent with the expected undisturbed normal/climatological state of the atmosphere at altitudes of 80–100 km.  相似文献   

14.
Summary On the basis of long period measurements of ionospheric absorption in five A3 circuits in Central Europe, it is shown that the considerable seasonal variation of the diurnal asymmetry of absorption, found in[1], exhibits practically no year-to-year variability and is well-developed at equivalent frequencies f eq 1 MHz, while it vanishes at F eq 2 MHz. The limited data on the diurnal asymmetry of the D-region electron concentration are consistent with the seasonal pattern of the diurnal asymmetry in absorption. A tentative hypothesis of nitric oxide variability as the cause of the seasonal variation of the asymmetry is proposed.  相似文献   

15.
The present article displays the results of theoretical investigation of the planetary ultra-low-frequency (ULF) electromagnetic wave structure, generation and propagation dynamics in the dissipative ionosphere. These waves are stipulated by a spatial inhomogeneous geomagnetic field. The waves propagate in different ionospheric layers along the parallels to the east as well as to the west and their frequencies vary in the range of (10–10−6) s−1 with a wavelength of order 103 km. The fast disturbances are associated with oscillations of the ionospheric electrons frozen in the geomagnetic field. The large-scale waves are weakly damped. They generate the geomagnetic field adding up to several tens of nanotesla (nT) near the Earth's surface. It is prescribed that the planetary ULF electromagnetic waves preceding their nonlinear interaction with the local shear winds can self-localize in the form of nonlinear long-living solitary vortices, moving along the latitude circles westward as well as eastward with a velocity different from the phase velocity of the corresponding linear waves. The vortex structures transfer the trapped particles of medium, as well as energy and heat. That is why such nonlinear vortex structures can be the structural elements of the ionospheric strong macro-turbulences.  相似文献   

16.
The generation and further linear and nonlinear dynamics of planetary ultra-low-frequency (ULF) waves are investigated in the rotating dissipative ionosphere in the presence of inhomogeneous zonal wind (shear flow). Planetary ULF magnetized Rossby type waves appear as a result of interaction of the medium with the spatially inhomogeneous geomagnetic field. An effective linear mechanism responsible for the intensification and mutual transformation of large scale magnetized Rossby type and small scale inertial waves is found. For shear flows, the operators of the linear problem are not self-conjugate, and therefore the eigenfunctions of the problem may not be orthogonal and can hardly be studied by the canonical modal approach. Hence, it becomes necessary to use the so-called nonmodal mathematical analysis. The nonmodal analysis shows that the transformation of wave disturbances in shear flows is due to the non-orthogonality of eigenfunctions of the problem in the conditions of linear dynamics. Using numerical modeling, the peculiar features of the interaction of waves with the background flow as well as the mutual transformation of wave disturbances are illustrated in the ionosphere. It has been shown that the shear flow driven wave perturbations effectively extract an energy of the shear flow increasing the own energy and amplitude. These perturbations undergo self-organization in the form of the nonlinear solitary vortex structures due to nonlinear twisting of the perturbation’s front. Depending on the features of the velocity profiles of the shear flows the nonlinear vortex structures can be either monopole vortices or vortex streets and vortex chains.  相似文献   

17.
Summary A one-dimensional numerical model has been developed which gives the vertical profiles of the electron and ion concentrations at altitudes between 50 and 100 km. The model has been constructed for day-time ionization conditions in midlatitudes and yields a slightly abbreviated scheme of ion-molecular reactions. Neutral species concentrations have been compiled from various authors. Seasonal variations of temperature and the most important neutral species have been taken into account. For the purpose of this paper moderate solar fluxes in all required radiation bands have been considered.  相似文献   

18.
Experimental results from SPEAR HF heating experiments in the polar ionosphere are examined. Bi-static scatter measurements of HF diagnostic signals were carried out on the Pori (Finland)–SPEAR–St. Petersburg path at operational frequencies of 11,755 and 15,400 kHz and the London–SPEAR–St. Petersburg path at frequencies of 12,095 and 17,700 kHz, using a Doppler spectral method. The SPEAR HF heating facility generates heater-induced artificial field-aligned small-scale irregularities (AFAIs), which can be detected by HF diagnostic bi-static radio scatter techniques at St. Petersburg at a distance of about 2000 km. In accordance with the Bragg condition, HF bi-static backscatters were sensitive to small-scale irregularities having spatial sizes of the order of 9–13 m across the geomagnetic field line. The properties and behaviour of AFAIs have been considered in the winter and summer seasons under quiet magnetic conditions and under various status of the polar ionosphere (the presence of “thick” and “thin” sporadic Es layers, different structures of the F2 layer). The experimental results obtained have shown that AFAIs can be excited in the F as well as in the E regions of the polar ionosphere. The excitation of a very intense wide-band spectral component with an abrupt increase in the spectral width up to 16–20 Hz has been found in the signals scattered from striations. Along with a wide-band component, a narrow-band spectral component can be also seen in the Doppler sonograms and in the average spectra of the signals scattered from the SPEAR-induced striations. AFAIs were excited even when the HF heater frequency was up to 0.5 MHz larger than the critical frequency. A simulation of the ray geometry for the diagnostic HF radio waves scattered from AFAIs in the polar ionosphere has been made for the geophysical conditions prevailing during experiments carried out in both the winter and summer seasons.  相似文献   

19.
Summary Based on data on the lowest reflected frequencyf min and on information on the lower and upper boundaries of the non-sounded lower ionosphere, an equivalent electron concentration for all concentrations below the correspondingf min was determined. Day-time variations of the equivalent concentration are investigated, confirming that there is a cosine relation to the solar zenith angle. The power index of that relation has an outlined seasonal course with a maximum in April and October, while the absolute seasonal minimum is during the winter (the summer minimum is slightly outlined). The mean yearly values of the index are almost constant:n N 0.5 for solaractivity,I 1500 to 115.10–22 W Hz–1 m2. During higher activityn N changes correspondingly toI 1500 according to relation (12). The variations ofn N during high solar activity show that the altitude gradient and temperature gradient in the low ionosphere are becoming proportional toI 1500 when the solar x-ray radiation exceeds a certain level. The results obtained confirm the reliability of the method developed for employingf min in aeronomic investigations.  相似文献   

20.
Summary In this paper the modified formula for scattering cross-section of radio waves from the ionosphere has been deduced in presence of time-varying random irregularities. The anisotropic behaviour of the medium which arises due to the presence of the geomagnetic field along with the time-varying irregularities of the medium has been considered. The derived expression for the dielectric tensor for the above medium has been utilised to obtain the required cross-section. The latitude, altitude, azimuth and polarisation angle dependence of scattering of radio waves from the ionosphere has been shown. The evaluated formula may be verified experimentally and the importance of the geomagnetic field and irregularities may then be analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号