首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectra of disc accreting neutron stars generally show complex curvature, and individual components from the disc, boundary layer and neutron star surface cannot be uniquely identified. Here we show that much of the confusion over the spectral form derives from inadequate approximations for Comptonization and for the iron line. There is an intrinsic low-energy cut-off in Comptonized spectra at the seed photon energy. It is very important to model this correctly in neutron star systems as these have expected seed photon temperatures (from either the neutron star surface, inner disc or self-absorbed cyclotron) of ≈1 keV, clearly within the observed X-ray energy band. There is also reflected continuum emission which must accompany the observed iron line, which distorts the higher energy spectrum. We illustrate these points by a reanalysis of the Ginga spectra of Cyg X-2 at all points along its Z track, and show that the spectrum can be well fitted by models in which the low-energy spectrum is dominated by the disc, while the higher energy spectrum is dominated by Comptonized emission from the boundary layer, together with its reflected spectrum from a relativistically smeared, ionized disc.  相似文献   

2.
We calculate the disc and boundary layer luminosities for accreting rapidly rotating neutron stars with low magnetic fields in a fully general relativistic manner. Rotation increases the disc luminosity and decreases the boundary layer luminosity. A rapid rotation of the neutron star substantially modifies these quantities as compared with the static limit. For a neutron star rotating close to the centrifugal mass shed limit, the total luminosity has contribution only from the extended disc. For such maximal rotation rates, we find that well before the maximum stable gravitational mass configuration is reached, there exists a limiting central density, for which particles in the innermost stable orbit will be more tightly bound than those at the surface of the neutron star. We also calculate the angular velocity profiles of particles in Keplerian orbits around the rapidly rotating neutron star. The results are illustrated for a representative set of equation of state models of neutron star matter.  相似文献   

3.
X-ray spectra of accretion discs with dynamic coronae   总被引:1,自引:0,他引:1  
We compute the X-ray spectra produced by non-static coronae atop accretion discs around black holes and neutron stars. The hot corona is radiatively coupled to the underlying disc (the reflector) and generates an X-ray spectrum which is sensitive to the bulk velocity of the coronal plasma, β = v / c . We show that an outflowing corona reproduces the hard-state spectrum of Cyg X-1 and similar objects. The dynamic model predicts a correlation between the observed amplitude of reflection R and the X-ray spectrum slope Γ since both strongly depend on β . A similar correlation was observed and its shape was well fitted by the dynamic model. The scattering of soft radiation in an outflowing corona can also account for the observed optical–UV polarization pattern in active galactic nuclei.  相似文献   

4.
We consider the evolution of neutron stars during the X-ray phase of high-mass binaries. Calculations are performed assuming a crustal origin of the magnetic field. A strong wind from the companion can significantly influence the magnetic and spin behaviour of a neutron star even during the main-sequence life of the companion. In the course of evolution, the neutron star passes through four evolutionary phases ('isolated pulsar', propeller, wind accretion, and Roche lobe overflow). The model considered can naturally account for the observed magnetic fields and spin periods of neutron stars, as well as the existence of pulsating and non-pulsating X-ray sources in high-mass binaries. Calculations also predict the existence of a particular sort of high-mass binary with a secondary that fills its Roche lobe and a neutron star that does not accrete the overflowing matter because of fast spin.  相似文献   

5.
For accretion on to neutron stars possessing weak surface magnetic fields and substantial rotation rates (corresponding to the secular instability limit), we calculate the disk and surface layer luminosities general relativistically using the Hartle & Thorne formalism, and illustrate these quantities for a set of representative neutron star equations of state. We also discuss the related problem of the angular momentum evolution of such neutron stars and give a quantitative estimate for this accretion driven change in angular momentum. Rotation always increases the disk luminosity and reduces the rate of angular momentum evolution. These effects have relevance for observations of low-mass X-ray binaries.  相似文献   

6.
We investigate the process of synchrotron radiation from thermal electrons at semirelativistic and relativistic temperatures. We find an analytic expression for the emission coefficient for random magnetic fields with an accuracy significantly higher than those derived previously. We also present analytic approximations to the synchrotron turnover frequency, treat Comptonization of self-absorbed synchrotron radiation, and give simple expressions for the spectral shape and the emitted power. We also consider modifications of the above results by bremsstrahlung.
We then study the importance of Comptonization of thermal synchrotron radiation in compact X-ray sources. We first consider emission from hot accretion flows and active coronae above optically thick accretion discs in black hole binaries and active galactic nuclei (AGNs). We find that for plausible values of the magnetic field strength, this radiative process is negligible in luminous sources, except for those with hardest X-ray spectra and stellar masses. Increasing the black hole mass results in a further reduction of the maximum Eddington ratio from this process. Then, X-ray spectra of intermediate-luminosity sources, e.g. low-luminosity AGNs, can be explained by synchrotron Comptonization only if they come from hot accretion flows, and X-ray spectra of very weak sources are always dominated by bremsstrahlung. On the other hand, synchrotron Comptonization can account for power-law X-ray spectra observed in the low states of sources around weakly magnetized neutron stars.  相似文献   

7.
Recently discovered quasi-periodic oscillations in the X-ray brightness of low-mass X-ray binaries are used to derive constraints on the mass of the neutron star component and the equation of state of neutron star matter. The observations are compared with models of rapidly rotating neutron stars which are calculated by means of an exact numerical method in full relativity. For the equations of state we select a broad collection of models representing different assumptions about the many-body structure and the complexity of the composition of superdense matter. The mass constraints differ from their values in the approximate treatment by ∼10 per cent. Under the assumption that the maximum frequency of the quasi-periodic oscillations originates from the innermost stable orbit, the mass of the neutron star is in the range M ∼1.92–2.25 M. The quasi-periodic oscillation in the Atoll-source 4U 1820−30 in particular is only consistent with equations of state that are rather stiff at high densities, which is explainable, so far, only with pure nucleonic/leptonic composition. This interpretation contradicts the hypothesis that the protoneutron star formed in SN 1987A collapsed to a black hole, since this would demand a maximum neutron star mass below 1.6 M. The recently suggested identification of quasi-periodic oscillations with frequencies of about 10 Hz with the Lense–Thirring precession of the accretion disc is found to be inconsistent with the models studied in this work, unless it is assumed that the first overtone of the precession is observed.  相似文献   

8.
We compute the continuous part of the ideal-magnetohydrodynamic (ideal-MHD) frequency spectrum of a polar mountain produced by magnetic burial on an accreting neutron star. Applying the formalism developed by Hellsten & Spies, extended to include gravity, we solve the singular eigenvalue problem subject to line-tying boundary conditions. This spectrum divides into an Alfvén part and a cusp part. The eigenfunctions are chirped and anharmonic with an exponential envelope, and the eigenfrequencies cover the whole spectrum above a minimum ωlow. For equilibria with accreted mass  1.2 × 10−6≲ M a/M≲ 1.7 × 10−4  and surface magnetic fields  1011≲ B */G ≲ 1013, ωlow  is approximately independent of   B *  , and increases with M a. The results are consistent with the Alfvén spectrum excited in numerical simulations with the zeus-mp solver. The spectrum is modified substantially by the Coriolis force in neutron stars spinning faster than ∼100 Hz. The implications for gravitational-wave searches for low-mass X-ray binaries are considered briefly.  相似文献   

9.
Be stars are rapidly spinning B stars surrounded by an outflowing disc of gas in Keplerian rotation. Be star/X-ray binary systems contain a Be star and a neutron star. They are found to have non-zero eccentricities and there is evidence that some systems have a misalignment between the spin axis of the star and the spin axis of the binary orbit. The eccentricities in these systems are caused by a kick to the neutron star during the supernova that formed it. Such kicks would also give rise to misalignments. In this paper, we investigate the extent to which the same kick distribution can give rise to both the observed eccentricity distribution and the observed misalignments. We find that a Maxwellian distribution of velocity kicks with a low velocity dispersion,  σk≈ 15 km s−1  , is consistent with the observed eccentricity distribution but is hard to reconcile with the observed misalignments, typically   i ≥ 25°  . Alternatively, a higher velocity kick distribution,  σk= 265 km s−1  , is consistent with the observed misalignments but not with the observed eccentricities, unless post-supernova circularization of the binary orbits has taken place. We discuss briefly how this might be achieved.  相似文献   

10.
为解释Be/X射线双星波段联合观测结果,已发展了许多理论模型。在本文中简述这些Be/X射线双星理论模型的研究现状,包括枞两个正常的B型星组成的密近双星演化成为Be/X射线双星的演化模型,描述Be星气壳的物理模型,Be星和中子星的性质所决定的中子星吸积方式的吸积量及Be/X射线双星X射线源光变曲线的理论解释。  相似文献   

11.
Recently launched X-ray telescopes have discovered several candidate isolated neutron stars. The thermal radiation from these objects may potentially constrain our understanding of nuclear physics in a realm inaccessible to terrestrial experiments. To translate the observed fluxes from neutron stars into constraints, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We describe models of the thermal structure of the envelopes of neutron stars with magnetic fields up to 1014 G. Unlike earlier work, we infer the properties of envelope models in two dimensions and precisely account for the quantization of the electron phase-space. Both dipole and uniformly magnetized envelopes are considered.  相似文献   

12.
We calculate the structure of a force-free magnetosphere which is assumed to corotate with a central star and which interacts with an embedded differentially rotating accretion disc. The magnetic and rotation axes are aligned, and the stellar field is assumed to be a dipole. We concentrate on the case when the amount of field line twisting through the disc–magnetosphere interaction is large , and consider different outer boundary conditions. In general the field line twisting produces field line inflation (e.g. Bardou & Heyvaerts), and in some cases with large twisting many field lines can become open. We calculate the spin-down torque acting between the star and the disc, and we find that it decreases significantly for cases with large field line twisting. This suggests that the oscillating torques observed for some accreting neutron stars could be caused by the magnetosphere varying between states with low and high field line inflation. Calculations of the spin evolution of T Tauri stars may also have to be revised in the light of the significant effect that field line twisting has on the magnetic torque resulting from star–disc interactions.  相似文献   

13.
We present a general relativistic accretion disc model and its application to the soft-state X-ray spectra of black hole binaries. The model assumes a flat, optically thick disc around a rotating Kerr black hole. The disc locally radiates away the dissipated energy as a blackbody. Special and general relativistic effects influencing photons emitted by the disc are taken into account. The emerging spectrum, as seen by a distant observer, is parametrized by the black hole mass and spin, the accretion rate, the disc inclination angle and the inner disc radius.
We fit the ASCA soft-state X-ray spectra of LMC X-1 and GRO J1655-40 by this model. We find that, having additional limits on the black hole mass and inclination angle from optical/UV observations, we can constrain the black hole spin from X-ray data. In LMC X-1 the constraint is weak, and we can only rule out the maximally rotating black hole. In GRO J1655-40 we can limit the spin much better, and we find 0.68 a 0.88 . Accretion discs in both sources are radiation-pressure dominated. We do not find Compton reflection features in the spectra of any of these objects.  相似文献   

14.
We investigate the conditions by which neutron star retention in globular clusters is favoured. We find that neutron stars formed in massive binaries are far more likely to be retained. Such binaries are likely to then evolve into contact before encountering other stars, possibly producing a single neutron star after a common envelope phase. A large fraction of the single neutron stars in globular clusters are then likely to exchange into binaries containing moderate-mass main-sequence stars, replacing the lower-mass components of the original systems. These binaries will become intermediate-mass X-ray binaries (IMXBs), once the moderate-mass star evolves off the main sequence, as mass is transferred on to the neutron star, possibly spinning it up in the process. Such systems may be responsible for the population of millisecond pulsars (MSPs) that has been observed in globular clusters. Additionally, the period of mass-transfer (and thus X-ray visibility) in the vast majority of such systems will have occurred 5–10 Gyr ago, thus explaining the observed relative paucity of X-ray binaries today, given the MSP population.  相似文献   

15.
The first results of numerical analysis of classical r-modes of rapidly rotating compressible stellar models are reported. The full set of linear perturbation equations of rotating stars in Newtonian gravity is solved numerically without the slow rotation approximation. A critical curve of gravitational wave emission induced instability, which restricts the rotational frequencies of hot young neutron stars, is obtained. Taking the standard cooling mechanisms of neutron stars into account, we also show the 'evolutionary curves' along which neutron stars are supposed to evolve as cooling and spinning down proceed. Rotational frequencies of 1.4-M stars suffering from this instability decrease to around 100 Hz when the standard cooling mechanism of neutron stars is employed. This result confirms the results of other authors, who adopted the slow rotation approximation.  相似文献   

16.
We have identified three possible ways in which future XMM‐Newton observations can provide significant constraints on the equation of state of neutron stars. First, using a long observation of the neutron star X‐ray transient Cen X‐4 in quiescence one can use the RGS spectrum to constrain the interstellar extinction to the source. This removes this parameter from the X‐ray spectral fitting of the pn and MOS spectra and allows us to investigate whether the variability observed in the quiescent X‐ray spectrum of this source is due to variations in the soft thermal spectral component or variations in the power law spectral component coupled with variations in NH. This will test whether the soft thermal spectral component can indeed be due to the hot thermal glow of the neutron star. Potentially such an observation could also reveal redshifted spectral lines from the neutron star surface. Second, XMM‐Newton observations of radius expansion type I Xray bursts might reveal redshifted absorption lines from the surface of the neutron star. Third, XMM‐Newton observations of eclipsing quiescent low‐mass X‐ray binaries provide the eclipse duration. With this the system inclination can be determined accurately. The inclination determined from the X‐ray eclipse duration in quiescence, the rotational velocity of the companion star and the semi‐amplitude of the radial velocity curve determined through optical spectroscopy, yield the neutron star mass. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Using time evolutions of the relevant linearized equations, we study non-axisymmetric oscillations of rapidly rotating and superfluid neutron stars. We consider perturbations of Newtonian axisymmetric background configurations and account for the presence of superfluid components via the standard two-fluid model. Within the Cowling approximation, we are able to carry out evolutions for uniformly rotating stars up to the mass-shedding limit. This leads to the first detailed analysis of superfluid neutron star oscillations in the fast rotation regime, where the star is significantly deformed by the centrifugal force. For simplicity, we focus on background models where the two fluids (superfluid neutrons and protons) corotate, are in β-equilibrium and co-exist throughout the volume of the star. We construct sequences of rotating stars for two analytical model equations of state. These models represent relatively simple generalizations of single fluid, polytropic stars. We study the effects of entrainment, rotation and symmetry energy on non-radial oscillations of these models. Our results show that entrainment and symmetry energy can have a significant effect on the rotational splitting of non-axisymmetric modes. In particular, the symmetry energy modifies the inertial mode frequencies considerably in the regime of fast rotation.  相似文献   

18.
We suggest an explanation for the twin kilohertz quasi-periodic oscillations (kHz QPOs) in low-mass X-ray binaries (LMXBs) based on magnetohydrodynamics (MHD) oscillation modes in neutron star magnetospheres. Including the effect of the neutron star spin, we derive several MHD wave modes by solving the dispersion equations, and propose that the coupling of the two resonant MHD modes may lead to the twin kHz QPOs. This model naturally relates the upper, lower kHz QPO frequencies with the spin frequencies of the neutron stars, and can well account for the measured data of six LMXBs.  相似文献   

19.
We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.  相似文献   

20.
Recent ROSAT measurements show that the X-ray emission from isolated neutron stars is modulated at the stellar rotation period. To interpret these measurements, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We present nearly analytic models of the thermal structure of the envelopes of ultramagnetized neutron stars. Specifically, we examine the limit in which only the ground Landau level is filled. We use the models to estimate the amplitude of modulation expected from non-uniformities in the surface temperatures of strongly magnetized neutron stars. In addition, we estimate cooling rates for stars with fields B  ∼ 1015 − 1016 G, which are relevant to models that invoke 'magnetars' to account for soft γ-ray emission from some repeating sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号