首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
对一类具非零角动量的平面三体系统研究其三体构形对系统演化的影响.根据Agekian和Anosova提出的构形图(homology map),三体系统按其构形特点分属于4个不同的区域.通过数值计算,考察了初始位置位于不同区域中的构形颗粒(homolgydrop)的演化,并就有关性质与Heinamaki等人研究的角动量为零的三体系统作了比较指出,构形颗粒的组成系统全部发生解体的时间在L区域最早,H区域最晚,这与零角动量系统不同.还对4个区域的三体系统的寿命进行了统计分析,得到了各区域中末解体的系统数随时间指数衰减的函数关系.  相似文献   

2.
We study the dynamical chaos and integrable motion in the planar circular restricted three-body problem and determine the fractal dimension of the spiral strange repeller set of non-escaping orbits at different values of mass ratio of binary bodies and of Jacobi integral of motion. We find that the spiral fractal structure of the Poincaré section leads to a spiral density distribution of particles remaining in the system. We also show that the initial exponential drop of survival probability with time is followed by the algebraic decay related to the universal algebraic statistics of Poincaré recurrences in generic symplectic maps.  相似文献   

3.
We present a symplectic mapping model to study the evolution of a small body at the 3/4 exterior resonance with Neptune, for planar and for three dimensional motion. The mapping is based on the averaged Hamiltonian close to this resonance and is constructed in such a way that the topology of its phase space is similar to that of the Poincaré map of the elliptic restricted three-body problem. Using this model we study the evolution of a small object near the 3/4 resonance. Both chaotic and regular motions are found, and it is shown that the initial phase of the object plays an important role on the appearance of chaos. In the planar case, objects that are phase-protected from close encounters with Neptune have regular orbits even at eccentricities up to 0.44. On the other hand objects that are not phase protected show chaotic behaviour even at low eccentricities. The introduction of the inclination to our model affects the stable areas around the 3/4 mean motion resonance, which now become thinner and thinner and finally at is=10° the whole resonant region becomes chaotic. This may justify the absence of a large population of objects at this resonance.  相似文献   

4.
The light curves of solar ?ares in the impulsive phase are complex in general, indicating that multiple physical processes are involved in. With the GOES (Geostationary Operational Environmental Satellite) observations, we ?nd that there are a subset of ?ares, whose impulsive phases are dominated by a period of exponential growth of the emission measure. The ?ares occurred from January 1999 to December 2002 are analyzed, and the results from the observations made with both GOES 8 and GEOS 10 satellites are compared to estimate the instrumental uncertainties. Their mean temperatures during this exponential growth phase have a normal distribution. Most ?ares within the 1σ range of this temperature distribution belong to the GOES class B or C, with the peak ?uxes at the GOES low-energy channel following a log-normal distribution. The growth rate and duration of the exponential growth phase also follow a log- normal distribution, in which the duration is distributed in the range from half a minute to about half an hour. As expected, the growth time is correlated with the decay time of the soft X-ray ?ux. We also ?nd that the growth rate of the emission measure is strongly anti-correlated with the duration of the exponential growth phase, and the mean temperature increases slightly with the increase of the growth rate. The implications of these results on the study of energy release in solar ?ares are discussed in the end.  相似文献   

5.
The dynamics of two families of minor inner solar system bodies that suffer frequent close encounters with the planets is analyzed. These families are: Jupiter family comets (JF comets) and Near Earth Asteroids (NEAs). The motion of these objects has been considered to be chaotic in a short time scale,and the close encounters are supposed to be the cause of the fast chaos. For a better understanding of the chaotic behavior we have computed Lyapunov Characteristic Exponents (LCEs) for all the observed members of both populations. LCEs are a quantitative measure of the exponential divergence of initially close orbits. We have observed that most members of the two families show a concentration of Lyapunov times (inverse of LCE) around 50–100yr. The concentration is more pronounced for JF comets than for NEAs, among which a lesser spread is observed for those that actually cross the Earth's orbit (mean perihelion distance q < 1.05 AU). It is also observed that a general correspondence exists between Lyapunov times and the time between consecutive encounters. A simple model is introduced to describe the basic characteristics of the dynamical evolution. This model considers an impulsive approach, where the particles evolve unperturbedly between encounters and suffer ‘kicks’ in semimajor axis at the encounters. It also reproduces successfully the short Lyapunov times observed in the numerical integrations and is able to estimate the dynamical lifetimes of comets during a stay in the Jupiter family in correspondence with previous estimates. It has been demonstrated with the model that the encounters with the largest effect on the exponential growth of the distance between initially nearby orbits are neither the infrequent deep encounters, nor the frequent and far ones; instead, the intermediate approaches have the most relevant contribution to the error growth. Such encounters are at a distance a few times the radius of the Hill's sphere of the planet (e.g. 3). An even simpler model allows us to get analytical estimates of the Lyapunov times in good agreement with the values coming from the model above and the numerical integrations. The predictability of the medium‐term evolution and the hazard posed to the Earth by those objects are analysed in the Discussion section. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Wavelet analysis is applied to distributions of points generated by iterating the standard map. The initial condition is chosen so that the points fill the largest chaotic region. When the standard map parameterk=1.3, the distribution of points contains many voids corresponding to islands in the chaotic region. The wavelet transform is dominated by contributions from these islands. Fork=10 the chaos fills phase space and no structure is apparent; the wavelet transform reveals statistical fluctuations in the distribution of points.  相似文献   

7.
We discuss the issue of ordered and chaotic trajectories in the Bohmian approach of Quantum Mechanics from points of view relevant to the methods of Celestial Mechanics. The Bohmian approach gives the same results as the orthodox (Copenhagen) approach, but it considers also underlying trajectories guided by the wave. The Bohmian trajectories are rather different from the corresponding classical trajectories. We give examples of a classical chaotic system that is ordered quantum-mechanically and of a classically ordered system that is mostly chaotic quantum mechanically. Then we consider quantum periodic orbits and ordered orbits, that can be represented by formal series of the “third integral” type, and we study their asymptotic properties leading to estimates of exponential stability. Such orbits do not approach the “nodal points” where the wavefunction ψ vanishes. On the other hand, when an orbit comes close to a nodal point, chaos is generated in the neighborhood of a hyperbolic point (called X-point). The generation of chaos is maximum when the X-point is close to the nodal point. Finally we remark that high order periodic orbits may behave as “effectively ordered” or “effectively chaotic” for long times before reaching the period.  相似文献   

8.
We describe numerical tools for the stability analysis of extrasolar planetary systems. In particular, we consider the relative Poincaré variables and symplectic integration of the equations of motion. We apply the tangent map to derive a numerically efficient algorithm of the fast indicator Mean Exponential Growth factor of Nearby Orbits (MEGNO), a measure of the maximal Lyapunov exponent, that helps to distinguish chaotic and regular configurations. The results concerning the three-planet extrasolar system HD 37124 are presented and discussed. The best-fitting solutions found in earlier works are studied more closely. The system involves Jovian planets with similar masses. The orbits have moderate eccentricities, nevertheless the best-fitting solutions are found in dynamically active region of the phase space. The long-term stability of the system is determined by a net of low-order two-body and three-body mean motion resonances. In particular, the three-body resonances may induce strong chaos that leads to self-destruction of the system after Myr of apparently stable and bounded evolution. In such a case, numerically efficient dynamical maps are useful to resolve the fine structure of the phase space and to identify the sources of unstable behaviour.  相似文献   

9.
We present a technique to control chaos in Hamiltonian systems which are close to integrable. By adding a small and simple control term to the perturbation, the system becomes more regular than the original one. We apply this technique to a forced pendulum model and show numerically that the control is able to drastically reduce chaos.  相似文献   

10.
The onset of stochasticity is measured in Λ cold dark matter cosmological simulations using a set of classical observables. It is quantified as the local derivative of the logarithm of the dispersion of a given observable (within a set of different simulations differing weakly through their initial realization), with respect to the cosmic growth factor. In an Eulerian framework, it is shown here that chaos appears at small scales, where dynamic is non-linear, while it vanishes at larger scales, allowing the computation of a critical transition scale corresponding to  ∼3.5 Mpc  h −1  . This picture is confirmed by Lagrangian measurements which show that the distribution of substructures within clusters is partially sensitive to initial conditions, with a critical mass upper bound scaling roughly like the perturbation's amplitude to the power 0.15. The corresponding characteristic mass,   M crit= 2 1013 M  , is roughly of the order of the critical mass of non-linearities at   z = 1  and accounts for the decoupling induced by the dark energy triggered acceleration.
The sensitivity to detailed initial conditions spills to some of the overall physical properties of the host halo (spin and velocity dispersion tensor orientation) while other 'global' properties are quite robust and show no chaos (mass, spin parameter, connexity and centre-of-mass position). This apparent discrepancy may reflect the fact that quantities which are integrals over particles rapidly average out details of difference in orbits, while the other observables are more sensitive to the detailed environment of forming haloes and reflect the non-linear scale coupling characterizing the environments of haloes.  相似文献   

11.
The comparison of masses and sizes of the Neptunian satellites and of Pluto and Charon to the secondaries of the planetary, Jovian, Saturnian and Uranian systems support the hypotheses, first, that an initial Neptune's satellite system may have been disrupted, second, that Triton may have been the system perturber and, third, that Pluto (or a parent body of Pluto and Charon) was initially a giant satellite of Neptune. Based on recent theoretical works on perturbed proto-planetary nebula and noting the similarity of some characteristics of Neptune and Uranus, a theoretical mean distance ratio of primeval gaseous rings around Neptune is tentatively deduced to be about 1.475, close to the value of the Uranian system. An exponential distance relation gives possible ranges of distances at which small satellites and/or ring structures could be found by Voyager 2, close to Neptune.  相似文献   

12.
A method for the nonlinear propagation of uncertainties in Celestial Mechanics based on differential algebra is presented. The arbitrary order Taylor expansion of the flow of ordinary differential equations with respect to the initial condition delivered by differential algebra is exploited to implement an accurate and computationally efficient Monte Carlo algorithm, in which thousands of pointwise integrations are substituted by polynomial evaluations. The algorithm is applied to study the close encounter of asteroid Apophis with our planet in 2029. To this aim, we first compute the high order Taylor expansion of Apophis’ close encounter distance from the Earth by means of map inversion and composition; then we run the proposed Monte Carlo algorithm to perform the statistical analysis.  相似文献   

13.
We reexamine the classical virial theorem for bounded orbits of arbitrary autonomous Hamiltonian systems possessing both regular and chaotic orbits. New and useful forms of the virial theorem are obtained for natural Hamiltonian flows of arbitrary dimension. A discrete virial theorem is derived for invariant circles and periodic orbits of natural symplectic maps. A weak and a strong form of the virial theorem are proven for both flows and maps. While the Birkhoff Ergodic Theorem guarantees the existence of the relevant time averages for both regular and chaotic orbits, the convergence is very rapid for the former and extremely slow for the latter. This circumstance leads to a simple and efficient measure of chaoticity. The results are applied to several problems of current physical interest, including the Hénon–Heiles system, weak chaos in the standard map, and a 4D Froeschlé map.  相似文献   

14.
The problem of whether the solar dynamo is quasi-periodic or chaotic is addressed by examining 1500 years of sunspot, geomagnetic and auroral activity cycles. We find sub-harmonics of the fundamental solar cycle period during the years preceding the Maunder minimum and loss of phase of the subharmonic on emergence from it. These phenomena are indicative of chaos. They indicate that the solar dynamo is chaotic and is operating in a region close to the transition between period doubling and chaos. Since Maunder type minima reoccur irregularly for millennia, it appears that the Sun remains close to this transition to and from chaos. We postulate this as a universal characteristic of solar type stars caused by feedback in the dynamo number.  相似文献   

15.
16.
Using the standard map as a model problem and in the spirit of cluster analysis we have studied the invariance of the distributions of different indicators introduced to detect and measure weak chaos. We show that the problem is less straightforward than expected and that, except for very strong chaotic dynamical systems, all the complexities (islands, sticking phenomena, cantori) of mixed Hamiltonian systems are reflected into the indicators of convergence towards invariant distributions.  相似文献   

17.
The temporal evolution of pressure in solar coronal loops is studied using the ideal theory of magnetohydrodynamic turbulence in cylindrical geometry. The velocity and the magnetic fields are expanded in terms of the Chandrasekhar-Kendall (C-K) functions. The three-mode representation of the velocity and the magnetic fields submits to the investigation of chaos. When the initial values of the velocity and the magnetic field coefficients are very nearly equal, the system shows periodicities. For randomly chosen initial values of these parameters, the evolution of the velocity and the magnetic fields is nonlinear and chaotic. The consequent plasma pressure is determined in the linear and nonlinear regimes. The evidence for the existence of chaos is established by evaluating the invariant correlation dimension of the attractorD 2, a fractal value of which indicates the existence of deterministic chaos.  相似文献   

18.
The highly variable BL Lacertae object Mrk 421 has been observed simultaneously in the radio, optical ultraviolet, and X-ray bands over a period of 4 days in early 1984 December and once again in early 1985 January. Using the EXOSAT observatory, we found that dramatic changes occurred in the X-ray flux on a time scale of less than a mouth. During this time the 2-10 keV flux dropped by a factor of 8, whereas the 0.1-1 keV flux decreased by a factor of only 2. These changes were not reproduced at longer wavelengths during the period of simultaneous observations. However, a drop in the ultraviolet flux occurred some months later, which is consistent with the longer characteristic loss times for the lower energy electrons. Since the ultraviolet through radio flux is stable when the X-ray flux is changing, it is extremely unlikely that a simple synchrotron model can account for the full spectrum; in this model the whole spectrum is expected to rise uniformly and in phase as a result of the injection of energetic particles. A simple synchroton self-Compton model that is self-absorbed in the radio also requires an X-ray flux which is many orders of magnitude greater than is observed. However, this discrepancy may be explained by relativistic beaming of electrons with delta > approximately 40 or by a model in which the self-absorption turnover occurs in the optical, and the synchrotron break occurs in the X-rays. Shorter time scale (approximately 10,000 s) variability was also apparent in the 2-10 keV X-ray light curves, and we suggest that it may be a direct measure of the injection time scale. Although reasonable fits resulted when the X-ray data were compared with a simple power-law model with some absorption, a substantial improvement in chi 2 was obtained by adding a high-energy exponential cutoff. Use of this model produced a spectral index close to that typically found in the optical for BL Lacertae objects, in contrast to the high values usually inferred from X-ray spectra.  相似文献   

19.
In this paper we investigate the space and velocity distributions of old neutron stars (aged 109 to 1010?yr) in our Galaxy. Galactic old Neutron Stars (NSs) population fills a torus-like area extending to a few tens kiloparsecs above the galactic plane. The initial velocity distribution of NSs is not well known, in this work we adopt a three component initial distribution, as given by the contribution of kick velocities, circular velocities and Maxwellian velocities. For the spatial initial distribution we use a Γ function. We then use Monte Carlo simulations to follow the evolution of the NSs under the influence of the Paczyński Galactic gravitational potential. Our calculations show that NS orbits have a very large Galactic radial expansion and that their radial distribution peak is quite close to their progenitors’ one. We also study the NS vertical distribution and find that it can well be described by a double exponential low. Finally, we investigate the correlation of the vertical and radial distribution and study the radial dependence of scale-heights.  相似文献   

20.
Some general laws of evolution of a system of a large number of gravitating bodies are discussed. If in the initial stage the dynamics of the system is determined by large-scale perturbations of the gravitational potential associated with excitations of a few collective degrees of freedom, then one can assume, by analogy with chaos in the several-body problem (Poincarè chaos), that randomization will occur in the system over several average crossing times. In the next stage of evolution, the energy of collective modes should be transferred by the cascade mechanism to ever smaller scales, down to invididual particles. Numerical experiments and gross-dynamical considerations that could verify this picture and bring out details are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号