首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curie temperatures, hysteresis, alternating field properties and anhysteretic and ordinary susceptibilities have been used to characterize the titanomagnetites in a large collection of continental granites, diorites, syenites, anorthosites, gabbros, diabases and basalts. Low-Curie-point titanomagnetites or titanomaghemites were found only in basalts. In all shallow and deep-seated intrusive rocks, the predominant magnetic phase was nearly-titanium-free titanomagnetite with a Curie point of 520–580°C. Most felsic plutonic rocks owed their magnetic properties to coarse, discrete titanomagnetites with truly multidomain properties. Many mafic plutonic rocks (anorthosites, gabbros, norites) displayed bimodal magnetic properties, strong-field properties being due to the discrete titanomagnetites and weak-field properties being due to fine magnetite inclusions in deuterically altered silicates. The Lowrie-Fuller test and the anhysteretic induction curve were the most diagnostic tests of this bimodal behaviour. Grain-size variation within a single diabase dike or sill had a strong expression in all magnetic properties, except HR/Hc and the Lowrie-Fuller test. On the other hand, the Lowrie-Fuller test was a sensitive indicator of changes in “effective” grain size in basalts due to the subdivision of grains by ilmenite lamellae.  相似文献   

2.
A survey, carried out using transmission electron microscopy, of exsolution-derived microstructures developed in titanomagnetites is presented. Microstructures, probably produced by spinodal decomposition, consist of a three-dimensional lamellar framework of ulvospinel, separating magnetite-enriched blocks. In coarser textures the magnetite-enriched regions have a plate morphology, and the ulvospinel-enriched lamellae develop secondary exsolution textures. The implications of exsolution for the magnetic properties of titanomagnetites are discussed. The coarsening of exsolution textures will cause the blocking temperature of the magnetite-enriched regions to increase with time. The development of magnetite-enriched plates may alter the magnetic properties of the titanomagnetite, as may the stress associated with some of the small scale, coherent microstructures.  相似文献   

3.
Magnetic hysteresis of coarse-grained titanomagnetites at room temperature is characterised by low coercive force, low relative remanence, and a high ratio of coercivity of remanence to coercive force. These properties are generally interpreted in terms of multidomain structure. At low temperatures, however, ulvöspinel-rich compositions exhibit hysteresis properties similar to those of single-domain assemblages, and on this basis Radhakrishnamurty and Deutsch have proposed an alternative interpretation of the domain structure of titanomagnetites having x 0.3 in terms of a mixture of single-domain and superparamagnetic particles. Low apparent Curie temperatures are attributed to the effects of thermal agitation above the blocking temperature.

We have examined theoretically the effects of thermal agitation on the low- and high-field thermomagnetic curves and find that observed Curie temperatures in general represent an intrinsic property of the magnetic mineral present, rather than reflecting thermal agitation. The high coercive force and relative remanence at low temperatures for titanomagnetites having x > 0.5 can be explained on the basis of the interaction of domain walls with crystal defects when the large increases in magnetocrystalline anisotropy and magnetostriction with decreasing temperature are taken into account. We discuss the evidence for the existence of domain walls in coarse-grained ulvöspinel-rich titanomagnetites and conclude that multidomain structure is well established.

It is also shown that fine titanomagnetite grains may have more than one blocking temperature. In any temperature interval for which superparamagnetic grains are present they will disproportionately influence susceptibility and low-field hysteresis.  相似文献   


4.
There are some puzzling features of the stress-dependence of magnetic susceptibility in rocks, although the behaviour in high fields appears to be well understood. As a test for the factors that cause low-field behaviour to differ from current theories we have made both high- and low-field torquemeter measurements of the stress-induced magnetic anisotropies of a number of rocks. Ratios of low- and high-field torques differing from expectation by factors up to 4 or so have been found in some rocks, although others conform well to expectation. A comprehensive study of magnetic and microscopic properties was undertaken to seek the cause(s) of the discrepancies. Stress sensitivity of susceptibility becomes particularly high in titanomagnetite with composition parameter x ≈ 0.6, at which the intrinsic anisotropy vanishes, and some other high values appear to be related to the presence of sulphide. It is concluded that current theory is satisfactory if but only if the magnetic minerals in a rock are simple titanomagnetites with x ? 0.4.  相似文献   

5.
The oxide mineralogy and magnetic properties were examined in a suite of fifteen olivine-normative diabase dike samples from western South Carolina in an attempt to elucidate their magnetic petrology. Titanomagnetite (1–2 vol.%) is the dominant Fe-Ti oxide mineral. Ilmenite and secondary magnetite are generally present in very minor amounts. Chromite constitutes up to 0.5 vol.%; its abundance and composition correlate with bulk rock Cr. Various types of fine-scale microstructure are evident in titanomagnetite crystals. The most important are patterned anisotropism and the development of trellis-type ilmenite lamellae. Microprobe analyses indicate: (1) titanomagnetite compositions, x, are mostly between 0.4 and 0.55, and (2) low analytical totals are characteristic of most titanomagnetites. Curie temperatures of the diabases are 500–540°C, which are several hundred degrees higher than predicted from the observed titanomagnetite x's (150–300°C). We attribute these higher Curie temperatures to oxidation of the titanomagnetites, which has produced “titanomaghemites” having visible microstructure and yielding low analyses (because they are cation deficient). Natural remanence magnetization and REM (ratio of natural remanence to saturation remanence) vary between 4 and 100 × 10−4 A m2 kg−1 and 0.0019 and 0.032, respectively. These properties inversely correlate with Cr content and demonstrably contrast Cr-rich and Cr-poor samples. Initial susceptibility, saturation magnetization and coercivity values show a two- to three-fold range. Variations in initial susceptibility and coercivities appear to be largely related to the type and extent of oxidation-induced microstructure in the titanomagnetites.  相似文献   

6.
Summary The changes of the anisotropy of the magnetic susceptibility of alkaline Tertiary basalts under titanomagnetite oxidation are investigated. The oxidation of the titanomagnetites was achieved by the following thermal processing of rock samples: 60 mins at a temperature of 400°C, 300 mins at T=400°C and 60 mins at T=500°C. It is shown that considerable changes of the values of the magnetic susceptibility, as well as of the degree of the preferred orientation of the titanomagnetites and of the ellipsoid of anisotropy in the sample occur as a result of the oxidation of titanomagnetites, contained in the samples, due to the said thermal processing. Moreover, the micro-structure of the grains, created by the oxidation of the titanomagnetites, causes the mostly linearly parallel configuration to change to a planar-parallel configuration.  相似文献   

7.
Summary Phase, structural and magnetic changes, occurring under oxidation and at increased temperatures, are studied on four samples of magnetic fractions. The samples of magnetic fractions, containing titanomagnetites at different oxidation levels, were oxidized at a temperature of 400°C for 1, 60 and 300 mins. With the aid of X-rays and Mössbauer's spectrometry it has been proved that under oxidation non-stoichiometric titanomagnetites and titanomagnetites plus ilmenite and pseudobrookite are formed.  相似文献   

8.
This paper focuses on the study of the correlation between magnetic parameters with the level of contamination by heavy metals in urban soils. We report a magnetic investigation of urban soil samples from Merida, state of Yucatan, Southern Mexico. It appears that most of our samples contain ferrimagnetic minerals as the magnetic carriers, probably coming from the titanomagnetites/titanomaghemites series. This is inferred by the acquisition of isothermal remanent magnetization, which shows that most of samples are almost completely saturated at about 200 mT. The S−200 value (factor characterizing stability of remanent magnetization) is between 0.8 and 1.0, characteristic of ferrimagnetic minerals. The susceptibility vs. temperature measurements also point to some titanomaghemites and titanomagnetites as probable responsible for magnetization. On the other hand, measurements of magnetic susceptibility at high and low frequencies helped us to determine the high content of superparamagnetic grains in the majority of the samples, although not all of these showed high values of magnetic susceptibility. We found that the most contaminated samples by Pb and Zn showed the higher saturation isothermal remanent magnetization values, whereas the higher values in magnetic susceptibility correspond to samples contaminated by Cr. Finally, we noted that a high level in Sr decreases the magnetic susceptibility.  相似文献   

9.
Summary Analysis of saturation magnetization measurements and data from the literature indicate that the cation distribution in the titanomagnetite solid solution series is temperature dependent. The ionic configuration of ferric and ferrous ions on both lattice sites of their spinel structure can be described by a modified Boltzmann relation in agreement with theoretical consideratios. Thermodynamic equilibrium isotherms for the cation distribution and the resulting variation of saturation magnetization are calculated on the basis of the experimental values. These results should be especially valuable for the interpretation of magnetic properties of rapidly cooled igneous rock units where a respective high-temperature metastable state may exist in the magnetic ore component.Further measurements of the Curie temperature and lattice constant did not confirm a similar effect. Both these parameters should therefore be qualified for the identification of naturally occurring titanomagnetites.  相似文献   

10.
The existence of domain structure has been questioned for titanomagnetites of typical oceanic basalt composition owing to the unusual temperature dependence of their susceptibility, resembling that of spin glasses. In order to make a direct test of domain structure, a series of stoichiometric titanomagnetites between magnetite (TM0) and 75% ulvöspinel content (TM75) as well as a titanomagnetite of typical oceanic basalt composition have been synthesised using the double-sintering technique at 1300°C, in controlled atmospheres. The purity, stoichiometry and homogeneity of these materials were tested by optical, X-ray and microprobe studies as well as by magnetic measurements.Domain structures were observed using the Bitter-pattern technique after ionic polishing to produce stress-free surface of the bulk material. The optimum time required for ionic polishing was found to increase with the ulvöspinel content and to be correlated with the magnetostrictive constant θ. Magnetite showed a domain configuration which is also typical for nickel (mostly lamella-shaped domains, pine-tree-shaped closure domains, high domain wall mobility in small external fields, straight domain walls). The tendency to form lamella-shaped domains is present up to TM75 (which has a Curie temperature of only 40°C), but with an increasing tendency to form curved domain walls and to have fewer and also differently shaped closure domains. This is demonstrated in a series of photographs. The results constitute unequivocal evidence for the existence of a domain structure in the classical sense in a broad range of stoichiometric pure and doped (Al, Mg, Mn, V) titanomagnetites.  相似文献   

11.
We report opaque mineralogical observations and magnetic properties of primary titanomagnetites in Tertiary submarine gabbros from DSDP, Legs 30 and 37 and in a late Archean, continental granitic pluton, the Shelley Lake granite. The titanomagnetites and silicates in all the submarine gabbros have been deuterically oxidized. There is no indication of subsequent low-temperature oxidation, although serpentization of olivines is pervasive in the deeper Leg 37 units. The Leg 30 samples, from a single thick sill, contain abundant coarse (≈100 μm) titanomagnetites with fully developed ilmenite exsolution lamellae. Curie temperatures are 515–550°C; there are no low Curie temperatures that would indicate surviving unoxidized titanomagnetite. The unserpentinized Leg 37 gabbros contain scarce opaques with pure magnetite Curie points that are barely resolvable microscopically; most occur as inclusions in pyroxene. In the Shelley Lake granite, on the other hand, many samples exhibit bimodal blocking-temperature spectra, with blocking temperature peaks at 250–300°C and 550–575°C. The low-blocking-temperature phase is unidentified. No pyrrhotite was seen in thin section. Optically homogeneous grains coexist with fully exsolved neighbours, but the electron microprobe indicates no titanium. The lamellae appear to be haematite, not ilmenite, and the primary composition of the opaques is pure magnetite. The oxidation state of the opaques is very inhomogeneous, even on a fine scale.  相似文献   

12.
The paper is devoted to studying the mineral composition and magnetic properties, mainly at the cryogenic temperatures, of the Middle–Late Devonian basalts from North Timan. The magnetic minerals in these basalts are dominated by intermediate-composition titanomagnetites (TM25–TM30) which demonstrate unusual magnetic properties in a wide temperature range. At room temperature, a low coercive force coexists with relatively high Mrs/Ms ratios. At cryogenic temperatures, the dependences of magnetic susceptibility on the temperature and frequency of the applied field are characteristic of this titanomagnetite composition, whereas the remanent saturation magnetization acquired at 2 K is destroyed at significantly lower temperatures compared to the synthetic analogs. The obtained results again highlight the necessity of studying the low-temperature properties of titanomagnetite samples with a controlled composition and grain size.  相似文献   

13.
In this work, we investigate the correlation between some magnetic parameters and the level of contamination by heavy metals in urban soils from Morelia city, western Mexico. The magnetic study was carried out on 98 urban soils samples belonging to distinct land uses. Most of analyzed samples contain ferrimagnetic minerals as the responsible for magnetization, most probably corresponding to the titanomagnetites/ titanomaghemites solid solutions. This is inferred from the susceptibility vs. temperature measurements and the isothermal remanent magnetization (IRM) experiments. These measurements also indicate that most of samples are almost completely saturated before 300 mT. Additionally, the S-200 values (S-200 = IRM-200/ SIRM, where IRM-200= Back-field of 200 mT after magnetic saturation) are between 0.7 and 1.0, characteristic of low coercivity magnetic minerals. The averaged saturation isothermal remanent magnetization (SIRM) curves can be used as an indicator of pollution level, as these curves show different saturation values according to the level of contamination by heavy metals: Cu, Ni, Cr and Sr. These associations of (titano)magnetite with heavy metals were observed by Scanning Electron Microscope revealing some complex aggregates rather than commonly detected spherules.  相似文献   

14.
A new mechanism of the atmosphere-magnetosphere interaction, which might be called “acoustic-magnetospheric cyclotron accelerator”, is proposed. The idea of this mechanism stems from the fact that strong acoustical perturbations in the ionosphere (e.g., due to earthquakes, thunderstorms, etc.) may generate magnetic disturbances in the magnetosphere. Then, the latter will induce local resonant acceleration and subsequent inward diffusion of trapped particles. This idea may be fruitful in the interpretation of some occasional increases in inner zone particle fluxes which do not correlate with the solar or magnetospheric activities.  相似文献   

15.
Summary Using four samples of basaltic rocks from the Bohemian Massif, Nos 201, 202, 206 and 218, the curves of rotational moments in a magnetic field of 4 × 105 A/m were studied as a function of the degree of oxidation of titanomagnetites. The amplitudes of the individual harmonics were determined by harmonic analysis for samples oxidized to various degrees. It was found that the proportion of the harmonic A 1 withsin increases with the degree of oxidation. Simultaneously, the anisotropy of the magnetic susceptibility changes in a field of 60 A/m and the structure changes from linearly parallel to plane parallel.  相似文献   

16.
Volcano-magnetic effects provide a possible way of monitoring temperature or stress changes within a volcano. A systematic study of several volcanoes in and close to the Rabaul caldera in east New Britain, Papua New Guinea, has been made to identify those in which thermal changes would be expected to cause changes in magnetic field. Two out of nine were chosen as suitable for a programme of magnetic monitoring which commenced in February 1974 and is continued at approximately six monthly intervals. The main criterion used for selection is that the volcano must have a magnetic structure causing a strong anomaly in magnetic field with its source located where its temperature would respond to changing conditions in the volcano. In the first three years of monitoring, no thermomagnetic effects have been observed, but the ongoing programme may be a useful tool in the prediction of volcanic eruption. Estimation of the magnitude of possible field changes depends on determining a satisfactory model of the source of the magnetic anomaly and how the remanent magnetization of the source depends on temperature. The former is a standard problem in geomagnetism and may be solved by computer modelling methods. Measurements of the temperature dependence of thermo-remanent magnetization (TRM) for rocks collected in the Rabaul caldera show the latter to be a much more difficult problem to solve in detail. This is because the temperature range in which TRM changes most rapidly with temperature varies greatly from specimen to specimen, and depends both on the magnetic minerals present and the cooling history of the rock. Rocks from within the anomaly sources were not accessible so doubt remains as to how similar their magnetic properties are to those of rocks collected from the surface. Within this limitation, it is shown that for at least one of the volcanoes studied, changes of total magnetic field of several hundred nanoteslas (1 nT = 1γ) are possible prior to a future eruption.  相似文献   

17.
Iron ore and host rocks have been sampled (90 oriented samples from 19 sites) from the Las Truchas mine, western Mexico. A broad range of magnetic parameters have been studied to characterize the samples: saturation magnetization, Curie temperature, density, susceptibility, remanence intensity, Koenigsberger ratio, and hysteresis parameters. Magnetic properties are controlled by variations in titanomagnetite content, deuteric oxidation, and hydrothermal alteration. Las Truchas deposit formed by contact metasomatism in a Mesozoic volcano-sedimentary sequence intruded by a batholith, and titanomagnetites underwent intermediate degrees of deuteric oxidation. Post-mineralization hydrothermal alteration, evidenced by pyrite, epidote, sericite, and kaolin, seems to be the major event that affected the minerals and magnetic properties. Magnetite grain sizes in iron ores range from 5 to >200 μm, which suggest dominance of multidomain (MD) states. Curie temperatures are 580±5°C, characteristic of magnetite. Hysteresis parameters indicate that most samples have MD magnetite, some samples pseudo-single domain (PSD), and just a few single domain (SD) particles. AF demagnetization and IRM acquisition indicate that NRM and laboratory remanences are carried by MD magnetite in iron ores and PSD–SD magnetite in host rocks. The Koenigsberger ratio falls in a narrow range between 0.1 and 10, indicating the significance of MD and PSD magnetites.  相似文献   

18.
Partially oxidized titanomagnetite grains in various kinds of volcanic rocks were investigated by electron probe microanalyzer (EPMA) in order to clarify the process of oxidation at low temperature. The following results were obtained by the present investigation: (1) Primary composition of titanomagnetite is homogeneous in individual grains, although variation in composition among different grains is observed on each thin section. (2) Migration of Fe cations during low-temperature oxidation is clearly seen in all oxidized grains. Some other constituent cations are also bleached and consequently the relative content of the remaining cations becomes large. (3) The detailed internal structures of titanomagnetite grains are observed as backscattered electron images (BEI) with an electronprobe microanalyzer, and it seems likely that the structures depend upon the degree of low-temperature oxidation. (4) The chemical and physical properties of oxidized titanomagnetites imply that low-temperature oxidation is not a simple process but a complex one. Such an oxidation process is correlatable to both the mobility of cation and the oxidation condition such as a circulation of some active hydrothermal materials at low temperature.  相似文献   

19.
Many archaeological artifacts contain magnetic minerals that may record the direction and strength of the Earth’s magnetic field. The geomagnetic field parameters (declination, inclination and intensity) change through time and then may be used as a dating tool. Over the last three decades, the archeomagnetic method was successfully applied in Europe. Still, no systematic studies are devoted to the American sites. We report here, a detailed rock-magnetic and archeomagnetic investigation of some pre-Columbian settlements at Chapultepec archeological site (western Mesoamerica). Continuous low-field susceptibility vs. temperature curves performed in air point to Ti-poor titanomagnetites as remanence carriers. Hysteresis ratios fall essentially in the pseudo-single-domain region. The twelve oriented samples taken from the furnace located in the habitation area were demagnetized applying pick alternative fields. In most cases, a stable uni-vectorial remanent magnetization was found yielding a reasonably well defined mean characteristic direction: inclination I = 32.8°, declination D = 353.4°, and parameters of Fisherian statistics α95 = 10.4° and k = 14. Still poorly defined directional master curves for Mesoamerica, together with relatively dispersed mean directions obtained in this study, make dating targets difficult. Archaeomagnetic dating was carried out on the basis of Bayessian statistics. This established a most probable time interval from 512 to 634 A.D. with an average of 573 ± 61 A.D.  相似文献   

20.
In this paper, we analyze the self-reversal of magnetization in titanomagnetites as a function of the Ti content and the distribution of Fe3+ to Fe2+ ion transitions in sublattices (which is associated with the law of charge conservation). The dependence of the Curie point on the Ti concentration and the temperature dependence of the mean magnetic moment per iron atom at different Ti concentrations and different cation distributions in sublattices are calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号