首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study 50 seismic events, preceding and accompanying the eruptions occurring in 1981 and 1983, have been considered. Seismic moments, fault radii, stress drops and seismic energies have been calculated using Brune’s model (J Geophys Res 75:4997–5009, 1970; J Geophys Res 76:5002, 1971); site, anelastic attenuation along the propagation path, geometrical spreading and interaction with the free surface effects are taken into account. For each event we have also estimated the equivalent Wood–Anderson magnitude (MWAeq) (Scherbaum and Stoll in Bull Seism Soc Am 73:1321–1343, 1983); relations among all these source parameters have been determined. Furthermore, the hypothesis of self-similarity (Aki in J Geophys Res 72:1217–1231, 1967) is not verified for events with seismic moments <1012 N-m: in fact the relationship between log-stress drop and log-moment is linear up to a moment of 1012 N-m (events of 1981 eruption), while for higher moments (events of 1983 eruption) the slope of the regression line is not significantly different from zero. We suppose that such a behaviour is related to a heterogeneous medium with barriers on the faults. Finally, the main conclusion is that eruptions of 1981 and 1983 differ from one another both in eruptive and seismic aspects; analysis of seismic energies indicates an increase in Mt. Etna’s activity, confirmed by studies performed on the following lateral eruption of 1991–1993 (Patanè et al. in Bull Volcanol 47:941–952, 1995), occurring on the same structural trend.  相似文献   

2.
 The Alto Guadalentín detrital aquifer is both overexploited and polluted. Water conductivity ranges between 1200 and 4900 μS cm–1, HCO3 between 1000 and 1990 mg l–1, and PCO2 between 0.041 and 1.497 bars. The temperature and chemical composition of the water show a positive thermal anomaly directly attributable to the neotectonic activity in the area. The high CO2 content has caused the abandonment of numerous wells due to water corrosiveness which attacks pumping equipment. Received: 10 October 1995 · Accepted: 14 November 1995  相似文献   

3.
There are significant advantages in using indirect pedo-transfer functions, (PTFs) for the estimation of unsaturated soil properties. The pedo-transfer functions can be used for the estimation of the soil–water characteristic curve (SWCC) which in turn is used for the estimation of other unsaturated soil properties. The accuracy of the indirect pedo-transfer function method for the estimation of the SWCC depends on the PTF and the equation used to best-fit the particle-size distribution (PSD) data. The objectives of this study are to: (1) evaluate the performance of the Fredlund et al. (Can Geotech J 37:817–827, 2000) equation for best-fitting the particle-size distribution, (PSD) data, and, (2) compare the predictions made by two of the commonly used PTFs; namely, Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) and Fredlund et al. (Can Geotech J 39:1103–1117, 2002), for estimating the SWCC from the PSD. The authors used 258 measured PSDs and SWCC datasets from the Loess Plateau, China, for this study. The dataset consisted of 187 silt–loam soils, 41 loam soils, 11 silt–clay–loam soils, 10 sand–loam soils, 6 silt–clay soils, and 3 loam–sand soils. The SWCC and PSD datasets were measured using a Pressure Plate apparatus and the pipette method, respectively. The comparison between the estimated and measured particle-size distribution curves showed that the Fredlund et al. (Can Geotech J 37:817–827, 2000) equation closely prepresented the PSD for all soils in the Loess Plateau, with a lower root mean square error (RMSE) of 0.869%. The comparison between the estimated and measured water contents at the same suction showed that the Fredlund et al. (Can Geotech J 39:1103–1117, 2002) PTF performed somewhat better than the Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) function. The Fredlund et al. method had RMSE value of 0.039 cm3 cm−3 as opposed to 0.046 cm3 cm−3 for the Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) method. The Fredlund et al. (Can Geotech J 39:1103–1117, 2002) PTF produced the closest predictions for sand–loam, loam–sand, and loam soils, with a lower RMSE for gravimetric water content ranging from 0.006 to 0.036 cm3 cm−3. There were consistent over-estimations observed for silt–loam, silt–clay–loam, and slit–clay soils with RMSE values for gravimetric water content ranging from 0.037 to 0.043 cm3 cm−3. The measured and estimated air-entry values were closest when using the Fredlund et al. (Can Geotech J 39:1103–1117, 2002) PTF. The measured and estimated maximum slopes on the SWCC were closest when using the Arya and Paris (Soil Sci Soc Am J 45:1023–1030, 1981) PTF.  相似文献   

4.
In this study, we tried to model the processes of moisture and heat transfers in the soil–vegetation–atmosphere system in an integrated comprehensive way. The purpose of the study is to simulate profiles of soil water content and temperature at root active zone (i.e., 0–50 cm), taking the root water uptake, soil evaporation, and canopy transpiration into account. The water and heat transfer equations are solved by an iterative Newton–Raphson technique and a finite difference method is used to solve the governing equations. Soil water content and soil temperature dynamics could be simulated rather accurately in a cropped field on Loess Plateau area. The water and heat transfer flux predicted by the classical theory of Philip and de Vries (Tans Am Geophys Union 38:222–232, 1957) slightly overestimated near the surface and underestimated at the deeper depths, as a result of the overestimated soil evaporation at the top soil layer (0–10 cm) and underestimated crop canopy transpiration at the deeper depths (10–50 cm). Water content tended to be underestimated for the entire profile at the soil surface (from 0 to 50 cm). Soil temperatures during the simulated period was slightly overestimated in the nighttimes and underestimated in the daytimes, as a result of the underestimated soil water content at the top soil layer (0–10 cm) and overestimated at the deeper depths (10–50 cm). Soil temperatures tended to be underestimated for the entire profile at the soil surface (from 0 to 50 cm). While the sum of the water and heat regimes yielded a much better match with the soil water content and soil temperature obtained from the field observations. The results obtained show that the model coupled water and heat transfer is able to capture the dynamics of soil water content.  相似文献   

5.
Terra rossa and eutric cambisol soils were surveyed in Slovenia. At both sites, 6–13 boreholes were drilled in a regular 24 m × 24 m square grid. Soil samples from various depths were taken for gamma spectrometric analysis, and radon in soil gas was measured at a depth of 80 cm using an AlphaGuard instrument. The following ranges of activity concentration (Bq kg−1) were obtained for 238U, 226Ra, 228Ra, 40K and 137Cs: in terra rossa, 64–74, 70–84, 45–49, 293–345, 20–30 and, in eutric cambisol, 55–80, 132–147, 50–57, 473–529, 106–272. Radon activity concentrations in both soils ranged from about 100 kBq m−3 to 370 kBq m−3.  相似文献   

6.
The high-pressure behavior of three synthetic amphiboles crystallized with space group P21/m at room conditions in the system Li2O–Na2O–MgO–SiO2–H2O has been studied by in situ synchrotron infrared absorption spectroscopy. The amphiboles have compositions ANa B(Na x Li1 − x Mg1) CMg5 Si8 O22(OH)2 with = 0.6, 0.2 and 0.0, respectively. The high-P experiments up to 32 GPa were carried out on the U2A beamline at Brookhaven National Laboratory (NY, USA) using a diamond anvil cell under non-hydrostatic or quasi-hydrostatic conditions. The two most intense absorption bands in the OH-stretching infrared spectra can be assigned to two non-equivalent O–H dipoles in the P21/m structure, bonded to the same local environment M1M3Mg3–OH–ANa, and pointing toward two differently kinked tetrahedral rings. In all samples these bands progressively merge to give a unique symmetrical absorption with increasing pressure, suggesting a change in symmetry from P21/m to C2/m. The pressure at which the transition occurs appears to be linearly correlated to the aggregate B-site dimension. The infrared spectra collected for amphibole B(Na0.2Li0.8Mg1) in the frequency range 50 to 1,400 cm−1 also show a series of changes with increasing pressure. The data reported here support the inference of Iezzi et al. (Am Miner 91:479–482, 2006a) regarding a new high-pressure amphibole polymorph.  相似文献   

7.
Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe   总被引:6,自引:1,他引:5  
The incorporation of hydrogen in mantle olivine xenocrysts from the Udachnaya kimberlite pipe was investigated by Fourier-transform infrared spectroscopy and secondary ion mass spectrometry (SIMS). IR spectra were collected in the OH stretching region on oriented single crystals using a conventional IR source at ambient conditions and in situ at temperatures down to −180°C as well as with IR synchrotron radiation. The IR spectra of the samples are complex containing more than 20 strongly polarized OH bands in the range 3,730–3,330 cm−1. Bands at high energies (3,730–3,670 cm−1) were assigned to inclusions of serpentine, talc and the 10 Å phase. All other bands are believed to be intrinsic to olivine. The corresponding point defects are (a) associated with vacant Si sites (3,607 cm−1 || a, 3,597 E || a, 3,571 cm−1 E || c, 3,567 || c, and 3,556 || b), and (b) with vacant M1 sites (most of the bands polarized parallel to a). From the pleochroic behavior and position of the OH bands associated with the vacant M1 sites, we propose two types of hydrogen—one bonded to O1 and another to O2, so that both OH vectors are strongly aligned parallel to a. The O2–H groups may be responsible for the OH bands at higher wavenumbers than those for the O1–H groups. The multiplicity of the corresponding OH bands in the spectra can be explained by different chemical environments and by slightly different distortions of the M1 sites in these high-pressure olivines. Four samples were investigated by SIMS. The calculated integral molar absorption coefficient using the IR and SIMS results of 37,500±5,000 L mol H2O cm−2 is within the uncertainties slightly higher than the value determined by Bell et al. (J Geophys Res 108(B2):2105–2113, 2003) (28,450±1,830 L mol H2O cm−2). The reason for the difference is the different distributions of the absorption intensity of the spectra of both studies (mean wavenumber 3,548 vs. 3,570 cm−1). Olivine samples with a mean wavenumber of about 3,548 cm−1 should be quantified with the absorption coefficient as determined in this study; those containing more bands at higher wavenumber (mean wavenumber 3,570 cm−1) should be quantified using the value determined by Bell et al. (J Geophys Res 108(B2):2105–2113, 2003).
Monika Koch-MüllerEmail: Phone: +49-331-2881492
  相似文献   

8.
The low-temperature heat capacity (C P) of stishovite (SiO2) synthesized with a multi-anvil device was measured over the range of 5–303 K using the heat capacity option of a physical properties measurement system (PPMS) and around ambient temperature using a differential scanning calorimeter (DSC). The entropy of stishovite at standard temperature and pressure calculated from DSC-corrected PPMS data is 24.94 J mol−1 K−1, which is considerably smaller (by 2.86 J mol−1 K−1) than that determined from adiabatic calorimetry (Holm et al. in Geochimica et Cosmochimica Acta 31:2289–2307, 1967) and about 4% larger than the recently reported value (Akaogi et al. in Am Mineral 96:1325–1330, 2011). The coesite–stishovite phase transition boundary calculated using the newly determined entropy value of stishovite agrees reasonably well with the previous experimental results by Zhang et al. (Phys Chem Miner 23:1–10, 1996). The calculated phase boundary of kyanite decomposition reaction is most comparable with the experimental study by Irifune et al. (Earth Planet Sci Lett 77:245–256, 1995) at low temperatures around 1,400 K, and the calculated slope in this temperature range is mostly consistent with that determined by in situ X-ray diffraction experiments (Ono et al. in Am Mineral 92:1624–1629, 2007).  相似文献   

9.
Soil organic carbon storage changes in Yangtze Delta region,China   总被引:1,自引:1,他引:0  
Soil carbon sequestration plays an essential role in mitigating CO2 increases and the global greenhouse effect. This paper calculates soil organic carbon (SOC) storage changes during the course of industrialization and urbanization in Yangtze Delta region, China, based on the data of the second national soil survey (1982–1985) and the regional geochemical survey (2002–2005), with the help of remote sensing images acquired in periods of 1980, 2000, 2005. The results show that soils in the top 0–20 and 0–100 cm depth in this region demonstrate the carbon sink effect from the early 1980s to the early 2000s. The SOC storage in 0–20 cm depth has resulted in increase from 213.70 to 238.65 Tg, which corresponds to the SOC density increase from 2.94 ± 1.08 to 3.28 ± 0.92 kg m−2, and mean carbon sequestration storage and rate are 1.25 Tg a−1, 17.14 g m−2 a−1, respectively. The SOC storage in 0–100 cm depth has resulted in increase from 690.26 to 792.65 Tg, which corresponds to the SOC density increase from 9.48 ± 4.22 to 10.89 ± 3.42 kg m−2, and mean carbon sequestration storage and rate are 5.12 Tg a−1, 70.32 g m−2 a−1, respectively. Urban area in Yangtze Delta region, China, increased more than 3,000 km2 and the urban growth patterns circled the central city region in the past 20 years. The SOC densities in 0–20 cm depth decrease gradually along urban–suburban–countryside and the urban topsoil is slightly enriched with SOC. Compared to the data of the second national soil survey in the early 1980s, the mean SOC density in urban area increased by 0.76 kg m2, or up 25.85% in the past 20 years. With the characteristics of SOC storage changes offered, land-use changes, farming system transition and ecological city construction are mainly attributed to SOC storage increases. Because of lower SOC content in this region, it is assumed that the carbon sink effect will go on in the future through improved soil management.  相似文献   

10.
Thermal diffusivity of natural and synthetic garnet solid solution series   总被引:1,自引:0,他引:1  
Knowledge of heat transport properties as a function of mineral- and rock-composition and temperature is of major relevance to understand and model heat transfer in the Earth’s interior. A systematic study on 13 natural and 4 synthetic garnets was carried out in an attempt to obtain a better systematic understanding of the processes that affect the heat transport in minerals, especially the effect of chemical substitution in solid solution series. It is found that substitution significantly lowers the thermal diffusivity from end-member values for both synthetic and natural garnets with a minimum of thermal diffusivity at an intermediate composition. The thermal diffusivity as a function of the degree of substitution can be described by the approach of Padture and Klemens (J Am Ceram Soc 80 (4):1018–1020, 1997). With increasing temperature the thermal diffusivity decreases due to phonon-phonon-scattering effects. A quantitative analysis of the high-temperature behaviour was carried out by using the model of Roufosse and Klemens (J Geophys Res 79 (5):703–705, 1974), which takes a lower limit of thermal diffusivity at elevated temperatures into account. The model allows for an extrapolation of the deduced room temperature thermal diffusivities to higher temperatures. Furthermore, the model was modified to determine the high temperature limit of the thermal diffusivity for all investigated natural garnets D min to be 0.64 ± 0.03 mm2/s.  相似文献   

11.
The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 has been determined in situ using a multi-anvil apparatus and synchrotron X-rays radiation at SPring-8. In spite of the similar X-ray diffraction profiles of these high-pressure phases with closely related structures, we were able to identify the occurrence of the mutual phase transformations based on the change in the difference profile by utilizing a newly introduced press-oscillation system. The boundary was located at ~18.9 GPa and 1,400°C when we used Shim’s gold pressure scale (Shim et al. in Earth Planet Sci Lett 203:729–739, 2002), which was slightly (~0.8 GPa) lower than the pressure as determined from the quench experiments of Katsura and Ito (J Geophys Res 94:15663–15670, 1989). Although it was difficult to constrain the Clapeyron slope based solely on the present data due to the kinetic problem, the phase boundary [P (GPa)=13.1+4.11×10−3×T (K)] calculated by a combination of a PT position well constrained by the present experiment and the calorimetric data of Akaogi et al. (J Geophys Res 94:15671–15685, 1989) reasonably explains all the present data within the experimental error. When we used Anderson’s gold pressure scale (Anderson et al. in J Appl Phys 65:1535–1543, 1989), our phase boundary was located in ~18.1 GPa and 1,400°C, and the extrapolation boundary was consistent with that of Kuroda et al. (Phys Chem Miner 27:523–532, 2000), which was determined at high temperature (1,800–2,000°C) using a calibration based on the same pressure scale. Our new phase boundary is marginally consistent with that of Suzuki et al. (Geophys Res Lett 27:803–806, 2000) based on in situ X-ray experiments at lower temperatures (<1,000°C) using Brown’s and Decker’s NaCl pressure scales.  相似文献   

12.
Fluxes of carbon dioxide, water vapor, and heat were measured above crop canopy using the eddy covariance method during the 2008 maize growing season, over an agricultural field within an oasis located in the middle reaches of Heihe River basin, northwest China. The values for friction velocity, the Monin–Obukhov stability parameter, and energy balance closure indicated that the eddy covariance system at this study site provided reliable flux estimates. Results from measurements showed that the mean sensible heat flux was 70 W m−2 with a maximum value of 164 W m−2 (May) and a minimum value of 45 W m−2 (July) during the maize growing season. In contrast, the mean latent heat was 278 W m−2 with a maximum value of 383 W m−2 (July) and minimum of 101 W m−2 (May). The mean downward soil heat flux was 55 W m−2 with a maximum value of 127 W m−2 (May) and minimum of 49 W m−2 (July). The magnitude of mean daytime net CO2 uptake was −11.50 μmol m−2 s−1 with a maximum value of −28.32 μmol m−2 s−1 (18 and 19 July) and a minimum values of −0.32 μmol m−2 s−1 (18 and 19 May). Correlation was observed between daytime half-hourly carbon dioxide flux and canopy conductance. In addition, the relationship between carbon dioxide flux and photosynthetically active radiation for selected days during different stages of maize growing season indicated the carbon dioxide flux uptake by the canopy was controlled by actual photosynthetic activity related to the variation of green leaf area index for the different growing stages.  相似文献   

13.
A novel methodology is proposed to calculate transmissivity (T) and storage coefficient (S) in a confined aquifer, based on the Theis (1935) solution and using only the first derivative of the drawdown with respect to time. By analyzing the behavior of the third derivative of the drawdown with respect to the logarithm of time, it is apparent that the third derivative vanishes when the first derivative attains its peak value. Since the third log-derivative is zero if, and only if, the argument, u, of the Theis well function is equal to unity, this condition can be used to estimate T and S, knowing the time at which the first derivative reaches its peak, and so overcoming the problem of actually computing the third log-derivative, which is very unstable. The main characteristic of the proposed method is that it does not require long pumping tests, since T and S are calculated using only the early-time drawdown. The proposed method was verified with a synthetic, an experimental and a field pumping test showing its validity when applied to homogeneous media. Theis CV (1935) The relation between lowering the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 16(2):519–524  相似文献   

14.
Mantle xenoliths entrained in Quaternary alkaline basalts from the Turkana Depression in southern Ethiopia (the East Africa Rift) were studied for their geochemical and Sr–Nd–Pb isotopic compositions to constrain the evolution of the lithosphere. The investigated mantle xenoliths are spinel lherzolites in composition with a protogranular texture. They can be classified into two types: anhydrous and hydrous spinel lherzolites; the latter group characterized by the occurrences of pargasite and phlogopite. The compositions of whole-rock basaltic component (CaO = 3.8–5.6 wt%, Al2O3 = 2.5–4.1 wt%, and MgO = 34.7–38.1 wt%), spinel (Cr# = 0.062–0.117, Al2O3 = 59.0–64.4 wt%) and clinopyroxene (Mg# = 88.4–91.7, Al2O3 = 5.2–6.7 wt%) indicate that the lherzolites are fertile and have not experienced significant partial melting. Both types are characterized by depleted 87Sr/86Sr (0.70180–0.70295) and high 143Nd/144Nd (0.51299–0.51348) with wide ranges of 206Pb/204Pb (17.86–19.68) isotopic compositions. The variations of geochemical and isotopic compositions can be explained by silicate metasomatism induced by different degree of magma infiltrations from ascending mantle plume. The thermobarometric estimations suggest that the spinel lherzolites were derived from depths of 50–70 km (15.6–22.2 kb) and entrained in the alkaline magma at 847–1,052°C. Most of the spinel lherzolites from this study record an elevated geotherm (60–90 mW/m2) that is related to the presence of rising mantle plume in an active tectonic setting. Sm–Nd isotopic systematic gives a mean TDM model age of 0.95 Ga, interpreted as the minimum depletion age of the subcontinental lithosphere beneath the region.  相似文献   

15.
Diffusion of four rare-earth elements and gallium has been measured in yttrium aluminum garnet (YAG). Sources of diffusant were mixtures of alumina and rare-earth element oxides for REE diffusion, and mixtures of gallium and yttrium oxides for Ga diffusion. Diffusion profiles were measured with Rutherford backscattering spectrometry (RBS). For the rare-earth elements investigated, the following Arrhenius relations were obtained: DLa=6.87×10–1 exp (–582±21 kJ mol–1 /RT) m2s–1 DNd=1.63×10–1 exp (–567±15 kJ mol–1 /RT) m2s–1 DDy=2.70×100 exp (–603±35 kJ mol–1 /RT) m2s–1 DYb=1.50×10–2 exp (–540±26 kJ mol–1 /RT) m2s–1 Diffusion rates for the rare earths are quite similar, in contrast with trends noted for zircon. It is likely that these differences are a consequence of the relative ionic radii of the REE and the cations for which they substitute in the mineral lattice. For gallium, the following Arrhenius relation was determined: DGa=9.96×10–6 exp (–404±19 kJ mol–1 /RT) m2s–1 Gallium diffuses faster than the REE in YAG and has a smaller activation energy for diffusion. These data mirror relative trends in diffusion rates for YIG, in which trivalent cations occupying tetrahedral and octahedral sites (i.e., Al, Ga, Fe) diffuse faster than trivalent cations occupying dodecahedral sites (i.e., Y and the REE), and suggest that the rate-limiting process in the diffusion-controlled regime of solid-state creep of YAG is the diffusion of yttrium. Received: 10 November 1997 / Revised; accepted: 13 March 1998  相似文献   

16.
Respiration and calcification rates of the Pacific oyster Crassostrea gigas were measured in a laboratory experiment in the air and underwater, accounting for seasonal variations and individual size, to estimate the effects of this exotic species on annual carbon budgets in the Bay of Brest, France. Respiration and calcification rates changed significantly with season and size. Mean underwater respiration rates, deducted from changes in dissolved inorganic carbon (DIC), were 11.4 μmol DIC g−1 ash-free dry weight (AFDW) h−1 (standard deviation (SD), 4.6) and 32.3 μmol DIC g−1 AFDW h−1 (SD 4.1) for adults (80–110 mm shell length) and juveniles (30–60 mm), respectively. The mean daily contribution of C. gigas underwater respiration (with 14 h per day of immersion on average) to DIC averaged over the Bay of Brest population was 7.0 mmol DIC m−2 day−1 (SD 8.1). Mean aerial CO2 respiration rate, estimated using an infrared gas analyzer, was 0.7 μmol CO2 g−1 AFDW h−1 (SD 0.1) for adults and 1.1 μmol CO2 g−1 AFDW h−1 (SD 0.2) for juveniles, corresponding to a mean daily contribution of 0.4 mmol CO2 m−2 day−1 (SD 0.50) averaged over the Bay of Brest population (with 10 h per day of emersion on average). Mean CaCO3 uptake rates for adults and juveniles were 4.5 μmol CaCO3 g−1 AFDW h−1 (SD 1.7) and 46.9 μmol CaCO3 g−1 AFDW h−1 (SD 29.2), respectively. The mean daily contribution of net calcification in the Bay of Brest C. gigas population to CO2 fluxes during immersion was estimated to be 2.5 mmol CO2 m−2 day−1 (SD 2.9). Total carbon release by this C. gigas population was 39 g C m−2 year−1 and reached 334 g C m−2 year−1 for densely colonized areas with relative contributions by underwater respiration, net calcification, and aerial respiration of 71%, 25%, and 4%, respectively. These observations emphasize the substantial influence of this invasive species on the carbon cycle, including biogenic carbonate production, in coastal ecosystems.  相似文献   

17.
K. Mohan  A. Joshi 《Natural Hazards》2012,60(2):649-670
Attenuation relationships are commonly used for engineering studies to estimate the peak ground acceleration values. This paper presents the role of attenuation relationship in defining the seismic hazard in an area. It is seen that the seismic hazard in an area, which is calculated using attenuation relationships, is mostly controlled by the type of attenuation relationship used in the study. The present work aims to study the effect of attenuation relationship on seismic hazard study. In the present work, seismic hazard maps have been prepared in the seismically very active northeast Himalaya using the approach given by Joshi and Patel (Tectonophysics 283:289–310, 1997). The attenuation relationships of Jain et al. (2000), Sharma (2000), Joyner and Boore (Bull Seism Soc Am 71:2011–2038, 1981) and Abrahamson and Litehiser (Bull Seism Soc Am 79:549–580, 1989) have been considered in the present study. Among all considered attenuation relationships, the Abrahamson and Litehiser (Bull Seism Soc Am 79:549–580, 1989) attenuation relationship gives the least root mean square error between the recorded and calculated peak ground acceleration values. Therefore, the same has been used to define attenuation characteristic of the region. The mean and standard deviation of peak ground acceleration values at all the observation points due to above-mentioned attenuation relationships in the NE Himalayas are calculated. The study shows that the Zone III covers an area of 81,000 km2 and Zone II of 96,000 km2 in the map prepared using the mean peak ground acceleration values, whereas the area of Zone IV increases by 40,000 km2 when the map is prepared by adding the standard deviation values in the mean peak ground acceleration values, and only Zone II is left with 183,000 km2 when the standard deviation values are subtracted from the mean. This high standard deviation is due to the difference in the peak ground acceleration values obtained from different events. This study shows that a rigorous test needs to be done for selecting attenuation relationship for any hazard study in a given area.  相似文献   

18.
The high-pressure behavior of Keokuk kaolinite has been studied to 9.5 GPa by infrared spectroscopy using synchrotron radiation. The kaolinite-I → kaolinite-II and kaolinite-II → kaolinite-III transformations have clear spectroscopic expression, with discontinuities coinciding with the transformation pressures bracketed by X-ray diffraction (Welch and Crichton in Am Mineral 95:651–654, 2010). The experimental spectra have been interpreted from band assignments derived from density functional theory for the structures of kaolinite-II and kaolinite-III, using as starting models the ab initio structures reported by Mercier and Le Page (Acta Crystallogr A B64:131–143, 2008, Mater Sci Technol 25:437–442, 2009) and unit-cell parameters from Welch and Crichton (Am Mineral 95:651–654, 2010). The relaxed theoretical structures are very similar to those reported by Mercier and Le Page (Acta Crystallogr A B64:131–143, 2008, Mater Sci Technol 25:437–442, 2009) in their theoretical investigation of kaolinite polytypes at high pressure. The vibrational spectra calculated from the quantum-mechanical analysis allow band assignments of the IR spectra to be made and provide insights into the behavior of different OH environments in the two high-pressure polytypes. The single perpendicular-interlayer OH group of kaolinite-III has a distinctive spectroscopic signature that is diagnostic of this polytype (ν = 3,595 cm−1 at 9.5 GPa) and is sensitive to the compression/expansion of the interlayer space. This OH group also has a distinctive signature in the calculated spectra. The spectra collected on decompression are those of kaolinite-III and persist largely unchanged to 4.6 GPa, except for a continuous blue shift of the 3,595 cm−1 band to 3,613 cm−1. Finally, kaolinite-I is recovered at 0.6 GPa, confirming the kaolinite-III → kaolinite-I transformation previously observed by X-ray diffraction, and the irreversibility of the kaolinite-II → kaolinite-III transformation. The ambient spectra collected at the start and finish of the experiment are those of kaolinite-I, and start/finish band frequencies agree to within 6 cm−1.  相似文献   

19.
A pristine magnetite (Fe3O4) specimen was studied by means of Neutron Powder Diffraction in the 273–1,073 K temperature range, in order to characterize its structural and magnetic behavior at high temperatures. An accurate analysis of the collected data allowed the understanding of the behavior of the main structural and magnetic features of magnetite as a function of temperature. The magnetic moments of both tetrahedral and octahedral sites were extracted by means of magnetic diffraction up to the Curie temperature (between 773 and 873 K). A change in the thermal expansion coefficient around the Curie temperature together with an increase in the oxygen coordinate value above 700 K can be observed, both features being the result of a change in the thermal expansion of the tetrahedral site. This anomaly is not related to the magnetic transition but can be explained with an intervened cation reordering, as magnetite gradually transforms from a disordered configuration into a partially ordered one. Based on a simple model which takes into account the cation-oxygen bond length, the degree of order as a function of temperature and consequently the enthalpy and entropy of the reordering process were determined. The refined values are ΔH0 = −23.2(1.7) kJ mol−1 and ΔS0 = −16(2) J K−1 mol−1. These results are in perfect agreement with values reported in literature (Mack et al. in Solid State Ion 135(1–4):625–630, 2000; Wu and Mason in J Am Ceramic Soc 64(9):520–522, 1981).  相似文献   

20.
Almost every year in the winter months (December–February), the vast Indo-Gangetic Plain south of the Himalaya is affected by dense fog. This fog is considered as radiational fog, and sometime it becomes smog (when it mixes with smoke). The typical meteorological, topographic and increasing pollution conditions over the Indo-Gangetic Plain are perhaps the common contributing factors for fog formation. In the present study, the North Indian fog has been successfully mapped and analysed using NOAA-AVHRR satellite data. In the winter seasons of 2005–06, 2006–07 and 2007–08, the fog-affected area has been found to cover about 575,800 km2, 594,100 km2 and 478,000 km2, respectively. Less fog in 2007–08 may be the consequence of high fluctuations in the meteorological parameters like temperature, relative humidity and wind speed as related to the prevailing synoptic regime for that season. The dissipation and migration pattern of fog in the study area has also been interpreted on the basis of the analysis of both meteorological and satellite data. Further analysis of the fog-affected area allowed identifying more fog-prone regions. Analysis of past fog-affected days and corresponding meteorological conditions enabled us to identify favourable conditions for fog formation viz. air temperature 3–13°C, relative humidity >87%, wind speed <2 m/s and elevation <300 m. Based on the observations of past fog formation and corresponding governing parameters, fog for few selected days could be predicted in hind-sight and later verified with NOAA images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号