首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Lithos》1986,19(1):11-25
A variety of granitic rocks from granodiorite to alkaline granite is developed in Mahé island, Seychelles, Microprobe analyses were made on amphiboles and coexisting minerals.Amphibole constitutes the most prominent ferromagnesian minerals in the Seychelles granitic rocks. Its chemical composition ranges widely from calcic through sodic-calcic to alkali amphiboles and amphibole composition evolves systematically from Fe-poor to Fe-rich: magnesiohornblende → ferrohornblende → ferroedenite → silicic ferroedenite → ferrorichterite and ferrowinchite → riebeckite. Riebeckite occurs abundantly in the alkaline rocks as subsolidus minerals. Throughout the evolution two types of isomorphous substitution, Mg ⇌ Fe2+ and Al + Ca ⇌ Si + Na principally took place. Compositions of clinopyroxene and biotite also evolve from Fe-poor to Fe-rich varieties. All these compositional evolutions of the constituent minerals suggest a comagmatic origin of the Seychelles granitic rocks studied.In the Seychelles alkaline magma, ferrorichterite crystallized at the late-magmatic stage under conditions of 650–700°C in temperature and of slightly above the QFM buffer in oxygen fugacity. With falling temperature, oxidizing condition prevailed and riebeckite crystallized.Generally, in alkaline granite and quartz syenite magmas, ferrorichterite evolves continuously to arfvedsonitic compositions when oxygen fugacity is defined by QFM buffer even during subsolidus stage. On the other hand, ferrorichterite evolves to riebeckite composition when oxidizing condition prevails. But, in this case, continuous solid solution between ferrorichterite and riebeckite is not found, presumably owing to an existence of a compositional gap between them.  相似文献   

2.
The south Ardestan plutonic rocks constitute major outcrops in the central part of Iran’s Cenozoic magmatic belt and encompass a wide compositional spectrum from gabbro to granodiorite. U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) dating of zircon three granodiorites yielded ages of 24.6 ± 0.1, 24.6 ± 0.1, and 24.5 ± 0.1 Ma. For tonalitic rocks, internal Rb–Sr isochron ages (biotite, feldspars) indicate cooling ages of 20.4 ± 0.1, 20.5 ± 0.1, and 22.3 ± 0.1 Ma, which are slightly younger than the zircons’ ages. The limited variations in their Sr–Nd isotope ratios indicate derivation from an asthenospheric mantle source. A geodynamic model is presented in which late Oligocene–Miocene rollback of the Neotethyan subducting slab triggered asthenospheric upwelling and partial melting in the south Ardestan. These melts were subsequently modified through fractional crystallization and minor crustal contamination en-route to the surface. Plagioclase + orthopyroxene-dominated fractional crystallization accounts for differentiation of gabbro to gabbroic diorite, whereas fractionation of clinopyroxene, titanomagnetite, and orthopyroxene led to differentiation of gabbroic diorite to diorite. Amphibole fractionation at deeper levels led to the development of tonalites.  相似文献   

3.
西秦岭天水北道地区位于西秦岭造山带北缘,地处秦岭造山带和祁连造山带的结合部位。近来,我们在该地区秦岭杂岩中识别出一套麻粒岩相岩石(石榴夕线黑云片麻岩),峰期矿物组合为石榴子石+钛铁矿+金红石+夕线石+钾长石+石英,相平衡模拟计算结果显示其峰期温压条件为P=1.02GPa,T=820℃,经历了进变质阶段以升温升压为特征,峰期之后以大致近等温降压为特征的顺时针P-T轨迹。独居石原位LA-ICP-MS U-Pb年代学结果显示石榴夕线黑云片麻岩经历了~421Ma、~388Ma和368~362Ma三期构造热事件。结合独居石的产出位置,我们推测421Ma代表了麻粒岩相变质作用的时代,这与天水花庙地区获得的麻粒岩峰期年龄一致;388Ma近似代表了峰期之后大致近等温降压至固相线附近的年龄;368~362Ma与区域韧性剪切作用的时代一致,可能记录了与新阳-元龙韧性剪切变形作用相关的热事件的时代。结合区域地质资料和本研究成果(矿物演化特征、顺时针的P-T演化轨迹和独居石原位定年结果),我们推测西秦岭造山带北缘天水北道地区的麻粒岩可能是早古生代陆-陆碰撞造山过程的产物。  相似文献   

4.
The present day South Tibetan Detachment (STD) of Higher Himalaya is a system of low-angle normal faults. In the Himachal High Himalaya, the STD hanging wall is characterized by the presence of S-type per-aluminous Paleozoic (~475 Ma) granite called the Kinnaur Kailash Granite (KKG). This granite is later intruded by Cenozoic leucogranites (~18 Ma) in vicinity of the STD zone. In this work, microstructures, anisotropy of magnetic susceptibility (AMS), and U–Pb geochronology were carried out on the KKG and the leucogranites with an aim to (a) understand the conditions of fabric development and (b) decipher the tectonic relationship between deformation along the STD and the evolution of these granites. Microstructural features and magnetic anisotropy indicate that the granites are intensely deformed in vicinity of the STD and preserve their emplacement-related fabric in the interior parts. It is inferred that close to the STD zone, fabrics of both the KKG and the leucogranite are tectonic and are modified by the Cenozoic (~20 Ma) right-lateral slip and extensional tectonics. Magnetic fabric in the interior parts of the KKG is related to its emplacement indicating that original fabric was preserved. U–Pb geochronology of zircons from two samples of the KKG yields crystallization age of 477.6 ± 3.4 and 472 ± 4 Ma. The leucogranite gives a crystallization age of 18.5 ± 0.6 Ma. Zircons from the KKG also reveal signatures of a deformation event (20.6 ± 2.3 Ma) at its rim. It is inferred that deformation of the external rim of the KKG and crystallization of the leucogranites are synchronous and triggered by ductile deformation along the STD.  相似文献   

5.
The Hongshi gold deposit is located in the southwestern margin of the Kanggur–Huangshan ductile shear zone in Eastern Tianshan, Northwest China. The gold ore bodies are predominantly hosted in the volcanogenic metasedimentary rocks of the Lower Carboniferous Gandun Formation and the Carboniferous syenogranite and alkali-feldspar granite. The syenogranite and the alkali-feldspar granite yield SHRIMP zircon U–Pb ages of 337.6 ± 4.5 Ma (2σ, MSWD = 1.3) and 334.0 ± 3.7 Ma (2σ, MSWD = 1.1), respectively, indicating that the Hongshi gold deposit is younger than 334 Ma. The granitoids belong to shoshonitic series and are relatively enriched in large ion lithophile elements (Rb, K, Ba, and Pb) and depleted in high field-strength elements (Nb, Ta, P, and Ti). Moreover, these granitoids have high SiO2, Al2O3, and K2O contents, low Na2O, MgO, and TiO2 contents, low Nb/Ta ratios, and slightly positive Eu anomalies. The εHf(t) values of the zircons from a syenogranite sample vary from + 1.5 to + 8.8 with an average of + 5.6; the εHf(t) values of the zircons from an alkali-feldspar granite sample vary from + 5.0 and + 10.1 with an average of + 7.9. The δ34S values of 10 sulfide samples ranged from − 11.5‰ to + 4.2‰, with peaks in the range of + 1‰ to + 4‰. The above-mentioned data suggest that the Hongshi granitoids were derived from the melting of juvenile lower crust mixed with mantle components formed by the southward subduction of the paleo-Tianshan ocean plate beneath the Aqishan–Yamansu island arc during the Early Carboniferous. The Hongshi gold deposit was formed by post-collisional tectonism during the Permian. The granitoids most likely acted as impermeable barriers that prevented the leakage and runoff of ore-bearing fluids. Thus, the granitoids probably played an important role in controlling gold mineralization.  相似文献   

6.

Granulite facies rocks on Else Platform in the northern Prince Charles Mountains, east Antarctica, consist of metasedimentary gneiss extensively intruded by granitic rocks. The dominant rock type is a layered garnetbiotite‐bearing gneiss intercalated with minor garnet‐cordierite‐sillimanite gneiss and calc‐silicate. Voluminous megacrystic granite intruded early during a mid‐Proterozoic (ca 1000 Ma) granulite event, M1, widely recognized in east Antarctica. Peak metamorphic conditions for M1 are in the range of 650–750 MPa at ~800°C and were associated with the development of a gneissic foliation, S1 and steep east‐plunging lineation, L1. Strain partitioning during progressive non‐coaxial deformation formed large D2 granulite facies south‐dipping thrusts, with a steep, east‐plunging lineation. In areas of lower D2 strain, large‐scale upright, steep east‐plunging fold structures formed synchronously with the D2 high‐strain zones. Voluminous garnet‐bearing leucogneiss intruded at 940 ±20 Ma and was deformed in the D2 high‐strain zones. Textural relationships in pelitic rocks show that peak‐M2 assemblages formed during increasing temperatures via reactions such as biotite + sillimanite + quartz ± plagioclase = spinel + cordierite + ilmenite + K‐feldspar + melt. In biotite‐absent rocks, re‐equilibration of deformed M1 garnet‐sillimanite‐ilmenite assemblages occurred through decompressive reactions of the form, garnet + sillimanite + ilmenite = cordierite + spinel + quartz. Pressure/temperature estimates indicate that peak‐M2 conditions were 500–600 MPa and 700±50°C. At about 500 Ma, north‐trending granitic dykes intruded and were deformed during D3‐M3 at probable upper amphibolite facies conditions. Cooling from peak D3‐M3 conditions was associated with the formation of narrow greenschist facies shear zones, and the intrusion of pegmatite. Cross‐cutting all features are abundant north‐south trending alkaline mafic dykes that were emplaced over the interval ca 310–145 Ma, reflecting prolonged intrusive activity. Some of the dykes are associated with steeply dipping faults that may be related to basin formation during Permian times and later extension, synchronous with the formation of the Lambert Graben in the Cretaceous.  相似文献   

7.
Abstract

The origin of elevated geothermal gradients in the subsurface Thomson Orogen and the nature of the crustal basement beneath it, whether oceanic or continental, remain enigmatic. Previous studies have demonstrated that a higher crustal radiogenic input is required to explain these anomalous thermal gradients. In this study, we have investigated the nature and age of this crustal input by undertaking geochemical, geochronological and Hf and O isotope analyses of buried granitic rocks as well as evaluating the heat-producing potential of metasedimentary rocks. The mineralogy, composition and Neoproterozoic/Cambrian to Devonian age of the low to moderate heat-producing I- and S-type granitic rocks strongly contrast with the Carboniferous A-type high-heat-producing granites of the Big Lake Suite, which have been suggested to be an important contributor to the elevated geothermal gradients, near the southwest corner of the Thomson Orogen. These differences suggest the Big Lake Suite rocks do not extend into the Queensland part of the temperature anomaly. Heat production of the metasedimentary rocks is also low to moderate. Based on Hf isotope compositions of zircons characterised by mantle-like oxygen signature (?Hf(t) = –12 to +2), we propose the temperature anomaly results from the occurrence of Mesoproterozoic and/or Paleoproterozoic high-heat-producing rocks beneath the Thomson Orogen. Precambrian crust, therefore, lies well east of the Tasman line. The results do not support a Neoproterozoic to Cambrian oceanic crust, as previously suggested, but instead point to a continental substrate for the Thomson Orogen. Hf isotopes indicate an overall trend towards more isotopically juvenile compositions with a progressive reduction in the contribution of older crustal sources to granitic magmas towards the present time. Different Hf isotopic signatures for the Lachlan (?Hf(t) = –13 to +15), Thomson (?Hf(t) = –14 to +5) and Delamerian (?Hf(t) = –7 to +4) orogens highlight lateral variations in the age structures of crustal basement beneath these orogens.  相似文献   

8.
The East-Ujimqin complex, located north of the Erenhot–Hegenshan fault, North China, is composed of mafic–ultramafic and granitic rocks including peridotite, gabbro, alkali granite, and syenite. We investigated the tectonic setting, age, and anorogenic characteristics of the Xing’an–Mongolian Orogenic Belt (XMOB) through field investigation and microscopic and geochemical analyses of samples from the East-Ujimqin complex and LA-MC-ICP-MS zircon U–Pb dating of gabbro and alkali granite. Petrographic and geochemical studies of the complex indicate that this multiphase plutonic suite developed through a combination of fractional crystallization, assimilation processes, and magma mixing. The mafic–ultramafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from a mantle source. The mafic–ultramafic magmas triggered partial melting of the crust and generated the granitic rocks. The granitic rocks are alkali and metaluminous and have high Fe/(Fe + Mg) characteristics, all of which are common features of within-plate plutons. Zircon U–Pb geochronological dating of two samples of gabbro and alkali granite yielded ages of 280.8 ± 1.5 and 276.4 ± 0.7 Ma, placing them within the Early Permian. The zircon Hf isotopic data give inhomogeneous εHf(t) values of 8.2–14.7 for gabbroic zircons and extraordinary high εHf(t) values (8.9–12.5) for the alkali granite in magmatic zircons. Thus, we consider the East-Ujimqin mafic–ultramafic and granitic rocks to have been formed in an extensional tectonic setting caused by asthenospheric upwelling and lithospheric thinning. The sources of mafic–ultramafic and granitic rocks could be depleted garnet lherzolite mantle and juvenile continental lower crust, respectively. All the above indicate that an anorogenic magma event may have occurred in part of the XMOB during 280–276 Ma.  相似文献   

9.
Major and trace element data, U–Pb zircon ages, and initial isotopic compositions of Sr, Nd, and Pb are reported for ten granitic and one rhyolitic rock sample from the neo-Proterozoic Nakasib suture in NE Sudan. Chemical data indicate that the samples are medium- to high-K, "I-type" granitic rocks that mostly plot as "volcanic arc granites" on discriminant diagrams. Geochronologic data indicate that rifting occurred 790±2?Ma and constrain the time of deformation associated with suturing of the Gebeit and Haya terranes to have ended by approximately 740?Ma. Isotopic data show a limited range, with initial 87Sr/86Sr=0.7021 to 0.7032 (mean=0.7025), εNd(t) =+5.5 to +7.0 (mean=+6.4), and 206Pb/204Pb = 17.50–17.62. Neodymium model ages (TDM; 0.69–0.85?Ga; mean = 0.76?Ga) are indistinguishable from crystallization ages (0.79–0.71?Ga; mean=0.76?Ga), and the isotopic data considered together indicate derivation from homogeneously depleted mantle. The geochronologic data indicate that the terrane accretion to form the Arabian–Nubian shield began just prior to 750?Ma. The isotopic data reinforces models for the generation of large volumes of juvenile continental crust during neo-Proterozoic time, probably at intra-oceanic convergent margins. The data also indicate that crust formation was associated with two cycles of incompatible element enrichment in granitic rocks, with an earlier cycle beginning approximately 870?Ma and culminating approximately 740?Ma, and the second cycle beginning after pervasive high-degree melts – possibly hot-spot related – were emplaced approximately 690–720?Ma.  相似文献   

10.
We have studied the controls on the Aluminum Saturation Index (ASI = molec. Al2O3/[(CaO)+(Na2O)+(K2O)]) and the concentration of normative corundum of granitic liquids saturated in alumina by equilibrating peraluminous minerals with initially metaluminous haplogranitic minimum composition liquids at 700–800 °C and 200 MPa, at, and below H2O saturation. The ASI and normative corundum increase with increasing H2O concentration in the melt (0.04 to 0.10 moles excess Al2O3 per mole of H2O), temperature, and with addition of the non-haplogranitic components Fe, Mg, and B. The ASI parameter and concentration of normative corundum cannot be used to monitor aAl2O3 between different mineral assemblages and melt because other components that affect the solubility of alumina, including H2O, Fe, Mg, and B, do not appear in their formulations. ASI and normative corundum, however, provide petrogenetic information about magmas generated by partial melting of strongly peraluminous protoliths by virtue of their regular and predictable variation with melt composition (e.g., H2O concentration) and temperature. For the application of these data to natural rocks it is necessary to choose as an analogue system the ASI-solubility or normative corundum-solubility relations of the most chemically complex peraluminous mineral present in the rock. Comparison of ASI values of anatectic leucosomes and allochthonous leucogranites with experimentally predicted values suggests low H2O concentrations in melt during crustal partial melting. Rapid melt segregation before equilibration with restitic peraluminous phases is also suggested in some cases.Editorial responsibility: I. Carmichael  相似文献   

11.
12.
A synthesis of the petrological characters of granulite facies rocks that contain equilibrium sapphirine + quartz assemblage from two localities (Tonagh Island (TI) and Priestley Peak (PP)) in the Napier Complex,East Antarctica,provides unequivocal evidence for extreme crustal metamorphism possibly associated with the collisional orogeny during Neoarchean.The reaction microstructures associated with sapphirine + quartz vary among the samples,probably suggesting different tectonic conditions during the metamorphic evolution.Sapphirine and quartz in TI sample were probably in equilibrium at the peak stage,but now separated by corona of Grt + Sil + Opx suggesting near isobaric cooling after the peak metamorphism,whereas the Spr + Qtz + Sil + Crd + Spl assemblage replaces garnet in PP sample suggesting post-peak decompression.The application of mineral equilibrium modeling in NCKFMASHTO system demonstrated that Spr + Qtz stability is lowered down to 930 ℃ due to small Fe3+ contents in the rocks (mole Fe2O3/(FeO + Fe2O3) =0.02).The TI sample yields a peak p-T range of 950-1100 ℃ and 7.5-11 kbar,followed by cooling toward a retrograde stage of 800-950 ℃ and 8-10 kbar,possibly along a counterclockwise p-T path.In contrast,the peak condition of the PP sample shows 1000-1050 ℃ and >12 kbar,which was followed by the formation ofSpr + Qtz corona around garnet at 930-970 ℃ and 6.7-7.7 kbar,suggesting decompression possibly along a clockwise p-T trajectory.Such contrasting p-T paths are consistent with a recent model on the structural framework of the Napier Complex that correlates the two areas to different crustal blocks.The different p-T paths obtained from the two localities might reflect the difference in the tectonic framework of these rocks within a complex Neoarchean subduction/collision belt.  相似文献   

13.
14.
1 Introduction As a linkage between the biosphere and the geosphere, organic geochemistry, especially molecular markers, has become a powerful tool for investigating important geological events and the evolutionary history of ancient life on Earth (Kvenvo…  相似文献   

15.
Fu  Jiangang  Li  Guangming  Wang  Genhou  Zhang  Linkui  Liang  Wei  Zhang  Zhi  Zhang  Xiaoqiong  Huang  Yong 《International Journal of Earth Sciences》2018,107(6):2023-2041
International Journal of Earth Sciences - The Tethys Himalaya sedimentary sequence (THS) is characterized by N–S trending extensional rifts (NSTR) and the North Himalayan gneiss domes (NHGD)....  相似文献   

16.
Ivan G. Wong 《Natural Hazards》2014,72(3):1299-1309
The occurrence of several recent “extreme” earthquakes with their significant loss of life and the apparent failure to have been prepared for such disasters has raised the question of whether such events are accounted for in modern seismic hazard analyses. In light of the great 2011 Tohoku-Oki earthquake, were the questions of “how big, how bad, and how often” addressed in probabilistic seismic hazard analyses (PSHA) in Japan, one of the most earthquake-prone but most earthquake-prepared countries in the world? The guidance on how to properly perform PSHAs exists but may not be followed for a whole range of reasons, not all technical. One of the major emphases of these guidelines is that it must be recognized that there are significant uncertainties in our knowledge of earthquake processes and these uncertainties need to be fully incorporated into PSHAs. If such uncertainties are properly accounted for in PSHA, extreme events can be accounted for more often than not. This is not to say that no surprises will occur. That is the nature of trying to characterize a natural process such as earthquake generation whose properties also have random (aleatory) uncertainties. It must be stressed that no PSHA is ever final because new information and data need to be continuously monitored and addressed, often requiring an updated PSHA.  相似文献   

17.
As the boundary between the Indochina and the South China blocks, the Ailao Shan-Red River (ASRR) shear zone underwent a sinistral strike-slip shearing which is characterized by ductile deformation structures along the Ailao Shan range. The timing issue of left-lateral shearing along the ASRR shear zone is of first-order importance in constraining the nature and regional significance of the shear zone. It has been, therefore, focused on by many previous studies, but debates still exist on the age of initiation and termination of shearing along the shear zone. In this paper, we dated 5 samples of granitic plutons (dykes) along the Ailao Shan shear zone. Zircon U–Pb ages of four sheared or partly sheared granitic rocks give ages of 30.9 ± 0.7, 36.6 ± 0.1, 25.9 ± 1.0 and 27.2 ± 0.2 Ma, respectively. An undeformed granitic dyke intruding mylonitic foliation gives crystallization age of 21.8 ± 1 Ma. The Th/U ratios of zircon grains from these rocks fall into two populations (0.17–1.01 and 0.07–0.08), reflecting magmatic and metamorphic origins of the zircons. Detailed structural and microstructural analysis reveals that the granitic intrusions are ascribed to pre-, syn- and post-shearing magmatisms. The zircon U–Pb ages of these granites provide constraints on timing of the initiation (later than 31 Ma from pre-shearing granitic plutons, but earlier than 27 Ma from syn-shearing granitic dykes) and termination (ca. 21 Ma from the post-shearing granitic dykes) of strong ductile left-lateral shearing, which is consistent with previous results on the Diancang Shan and Day Nui Con Voi massifs in the literature. We also conclude that the left-lateral shearing along the ASRR shear zone is the result of southeastward extrusion of the Indochina block during the Indian–Eurasian plate collision. Furthermore, the left-lateral shearing was accompanied by the ridge jump, postdating the opening, of the South China Sea.  相似文献   

18.
Prominent erosional scars on hillslopes along the Red River Valley have steep, denuded slopes and associated down-gradient debris fans. The scars developed naturally on stockwork-veined, quartz-sericite-pyrite (QSP)-altered volcanic rocks proximal to porphyry-Mo deposits, including those mined at the Molycorp's Questa mine. Downcutting of the Red River, following development of the Rio Grande rift to the west, initiated scar formation. Mineralized rocks in the scars were decomposed chemically (by pyrite oxidation and acid weathering) and physically (by freeze-thaw action and volume expansion from secondary gypsum formation) to produce a weathered veneer of sand- to pebble-size fragments of unweathered rock in a matrix of secondary gypsum, clays, and jarosite. Unoxidized QSP-altered bedrock crops out in steep scar gully bottoms, indicating that the weathered veneer is at most 3-30 m thick. Acidic (pH 2.6 to 4.4), metal-rich waters develop in the weathered veneer and near-surface bedrock of the scars. Carbonates in the unweathered, QSP-altered bedrock are sufficient to neutralize acid in deeper ground waters, which have near-neutral pH (5.7 to 7.6) and lower metal contents. The scars grow along steep headwalls by slope failure of the weathered veneer.  相似文献   

19.
In order to constrain the timing and petrogenesis of both the hosting rocks and the inner mafic microgranular enclaves (MMEs) of the Liangnong pluton, SE China, we have performed a series of bulk-rock geochemistry, zircon U–Pb, and Hf isotopic analysis, respectively. Zircon laser ablation–inductively coupled plasma–mass spectrometry U–Pb isotopic analysis yielded ages of 106.3 ± 1.1 Ma for the granodiorite and 103.9 ± 1.6 to 105 ± 1.8 Ma for monzogranite phases within the hosting pluton, as well as an age of 104.7 ± 0.8 Ma for the associated MMEs. The host rocks are metaluminous, have A/CNK values of 0.91–1.09, contain relatively high concentrations of SiO2 and K2O, are enriched in Rb, Th, Ba, Zr, and Hf, are depleted of Sr, P, Ti, Nd, and Ta, contain high concentrations of the rare earth elements (REE) and the light REE, and have moderately negative Eu anomalies (Eu*/Eu = 0.6–0.8). In comparison, the MMEs contain high concentrations of Al2O3, FeO, MgO, and TiO2, are relatively enriched in Ba, U, and Sr, and are depleted in Th, Nd, and Zr. They have lower total REE concentrations and higher Eu*/Eu values than the hosting granites. The zircons within the hosting granites have Hf crustal model ages (TDMC) that show a peak at 1.29–1.85 Ga. Zircons within the MMEs have different εHf(t) values (–3.7 to +4.9) than the zircons within the hosting granites (–10.8 to –1.9). The results indicate that the MMEs and the hosting granites crystallized from magmas with different sources, thereby showing that the Early Cretaceous magmatism in the coastal areas of SE China was generated by the widespread injection of mantle-derived magmas caused by rollback of the subducting palaeo-Pacific Plate.  相似文献   

20.
Greenstone belts in the northern Murchison Terrane of the Yilgarn Craton contain an extensive suite of 2.9–3.0 Ga, porphyritic komatiites and komatiitic volcaniclastic rocks. These unusual Ti–rich Al–depleted komatiites have been sampled at Gabanintha and are characterised by higher incompatible‐element abundances than most suites of Barberton‐type Al–depleted komatiites. They form a petrogenetically related group with similar Ti– and incompatible‐element‐rich, Al–depleted porphyritic komatiites and komatiitic volcaniclastic rocks from Karasjok in Norway, Dachine in French Guiana and Steep Rock‐Lumby Lake in Canada (here called Karasjok‐type komatiites). Their Al–depletion results from magma generation at depths of >250 km in the presence of residual majorite‐garnet. The porphyritic textures and abundance of amygdales and volcaniclastic rocks typical of this type of komatiite are features of hydrous ultramafic magmas. The incompatible‐element‐rich ultramafic rocks from Dachine contain diamonds that were most likely picked up as parent magmas interacted with mantle lithosphere that had been hydrated and chemically modified. Consequently the interaction of Karasjok‐type komatiite magmas with thick, island arc or continental mantle lithosphere may have resulted in their elevated water and incompatible‐element contents. The occurrence of Karasjok‐type komatiite lavas and volcaniclastic rocks in the northern Murchison Terrane suggests that during the Late Archaean that terrane had a hydrated, metasomatised or subduction‐modified mantle lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号