首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Embankment dams are important and costly civil engineering structures that provide an essential infrastructure for the management of water. One of the critical aspects of dam design is the analysis of stability and safety of the earth structure under various operating and environmental conditions. Traditionally, a deterministic approach is used for such analysis. However, the determination of variables such as soil strength parameters, pore pressure and other pertinent properties involves uncertainties, which cannot be handled in the traditional deterministic methods. It is, therefore, highly desirable to develop a reliability based analytical/numerical methodology for stability analysis of dams taking into account these uncertainties. Reliability and probability theories are developed in this paper for assessing the reliability index and the corresponding probability of failure of multi-layered embankment dams and slopes. Two definitions were used to calculate the reliability index (i.e. the normal distribution and the log–normal distribution). The computer program was developed and validated by the Congress Street open cut failure case. The developed approach was used to study the stability of the King Talal embankment dam. The results are discussed and conclusions drawn.  相似文献   

2.

Slope stability analysis is one of the most intricate problems of geotechnical engineering because it is mathematically difficult to search the critical slip surface of earth slopes with complex strata owing to the involved multimodal function optimization problem. At present, a minimum factor of safety for a non-circular slip surface in a uniform and unreinforced earth slope can be calculated using several methods; however, for a reinforced soil slope, it cannot be easily calculated because of the additional effect of the reinforcement. One efficient method to search the critical slip surface is particle swarm optimization (PSO). PSO can solve complex non-differentiable problems, and its increasing ease of use has facilitated its application to multimodal function optimization problems in a variety of fields. However, the recommended PSO parameters to calculate the safety factors of unreinforced and reinforced soil slopes, namely the inertia and local and global best solution weighting coefficients, have not been sufficiently investigated. Moreover, the computational efficiency of PSO for safety factor calculation, including computational accuracy and time, has not been clarified. To calculate the unreinforced and reinforced soil slope safety factors, this study considers force and moment equilibriums, including the tensile force of the reinforcement. Firstly, the computational efficiency of the calculation process by PSO was shown to increase the maximum number of slip surface nodes in the calculation of the safety factor. Then, an analysis was carried out to investigate the safety factor sensitivity to the PSO parameters. Based on this analysis, appropriate PSO parameters for the safety factor calculation of unreinforced and reinforced soil slopes were proposed.

  相似文献   

3.
A series of geotechnical centrifuge physical modeling tests were performed to assess the potential use of a new cost-effective mechanically stabilized earth system for retrofitting marginally stable cohesive slopes. The proposed system utilizes the dual functions of reinforcement and drainage by directly inserting high strength non-woven geotextile strips into slopes, with little or no excavation required behind the slope face. The system significantly increases the factor of safety of potentially unstable cohesive slopes, and can be constructed at less expense and more rapidly than conventional mechanically stabilized earth systems.  相似文献   

4.
In the geotechnical field, the risk related to slope instabilities or collapse of geotechnical structures are increasingly being faced by early warning systems, capable of: (1) predicting the incipient collapse based on the interpretation of a continuous monitoring of the structure and (2) spreading alarm promptly to reduce people exposure. Compared with structural approaches, early warning systems have two important advantages: a faster, simpler and less expensive implementation and environmental compatibility. Past experience indicates that vulnerability of earth dams is generally low under both static and seismic loading conditions. In spite of this, earth dams are characterized by a high-risk level, due to the high exposure factor. Nowadays, the application of early warning systems to dams is fully supported by the technological progress achieved in the telecommunication field, since it is possible to install and automate recordings and transmission of all physical variables significant to check dam safety: accelerations, displacements, pore-water pressures, total stresses, seepage flows. A considerable lack still arises in the predictive models for interpreting monitoring data and providing indicators on dam safety soon after a strong earthquake. The present work illustrates the basic concepts of an earthquake early warning (EEW) system for earth dams and the main features that should characterize a predictive model to such a scope. An application to a real case is finally provided, enhancing the role played by each monitored physical variable for the aims of EEW.  相似文献   

5.
Internal erosion is the most common reason which induces failure of embankment dams besides overtopping. Relatively large leakage is frequently concentrated at defects of impervious element, and this will lead to eventual failure. The amount of leakage depends not only on integrity of impervious element, but also on dam height, shape of valley, shape of impervious element and water level in reservoir. The integrity of impervious element, which represents the relative level of seepage safety, is not easy to be determined quantitatively. A simple method for generalization of steady seepage state of embankment dams with thin impervious element is proposed in this paper. The apparent overall value of permeability coefficient for impervious element can be obtained by this method with reasonable accuracy and efficiency. A defect parameter of impervious element is defined as an index to characterize seepage safety of embankment dams. It equals the ratio of the apparent overall value of permeability coefficient to the measured value in laboratory for intact materials. Subsequently, seepage safety of three dams is evaluated and the evolution of defect level of impervious element of dams is investigated. It is proved that the newly proposed method in this paper is feasible in the evaluation of relative seepage safety level of embankment dams with thin impervious element.  相似文献   

6.
Slope stability analysis during rapid drawdown is an important consideration in the design of embankment dams. During rapid drawdown, the stabilizing effect of the water on the upstream face is lost, but the pore water pressures within the embankment may remain high. As a result, the stability of the upstream face of the dam can be much reduced. Installing horizontal drains is a very efficient and cost-effective method for reducing the pore water pressure and increasing the stability of the upstream slope. The theory of horizontal drains in the upstream shell of earth dams is well established, but there seems to be limited resources available for the design of this type of horizontal drains. Hence, this study is focused on the performance of horizontal drains in the upstream shell of the slope of earth dams on the upstream slope stability during rapid drawdown conditions. The parametric study has been conducted on the variation of horizontal drain parameters such as the number of drains, their length, and their location. In this study, ten scenarios were analyzed based on different drainage configurations and the performance of each scenario is investigated on the seepage and the upstream slope stability during rapid drawdown conditions using finite element and limit equilibrium methods. The results demonstrated that the stability of the upstream slope during rapid drawdown conditions increases by increasing the number of drains. The length of drains extending further from its intersection with the critical failure surface does not provide any significant change in the factor of safety. Finally, the study also found that installing drains in the lower region of the upstream shell of earth dams gives more stability than those installed in higher elevations.  相似文献   

7.
Adaptive neuro-fuzzy modeling for the swelling potential of compacted soils   总被引:1,自引:1,他引:0  
This paper aims to present the usability of an adaptive neuro fuzzy inference system (ANFIS) for the prediction swelling potential of the compacted soils that are important materials for geotechnical purposes such as engineered barriers for municipal solid waste, earth dams, embankment and roads. In this study the swelling potential that is also one of significant parameters for compacted soils was modeled by ANFIS. For the training and testing of ANFIS model, data sets were collected from the tests performed on compacted soils for different geotechnical application in Nigde. Four parameters such as coarse-grained fraction ratio (CG), fine-grained fraction ratio (FG), plasticity index (PI) and maximum dry density (MDD) were presented to ANFIS model as inputs. The results obtained from the ANFIS models were validated with the data sets which are not used for the training stage. The analyses revealed that the predictions from ANFIS model are in sufficient agreement with test results.  相似文献   

8.
考虑饱和-非饱和渗流的土坡极限分析   总被引:2,自引:1,他引:1  
给出了均质土坝的下游坝坡的安全系数的计算方法。均质土坝的下游坝坡有可能会通过滑裂面发生破坏。土坝中的土坡通常处于非饱和状态。非饱和土坡的安全系数计算需要考虑吸力对抗剪强度的贡献以及土坡中的非饱和渗流。给出处于饱和-非饱和渗流状态下的土坡的安全系数,有助于评价均质土坝的安全系数。下游坝坡的安全系数计算方法有:极限平衡法、上限解法和下限解法,该算法适用于非饱和土坡,且是在饱和土坡安全系数的计算方法上修正得到的。算例中非饱和土坡安全系数的计算考虑了吸力对抗剪强度的贡献。考虑非饱和渗流理论的土坡安全系数计算方法通常更加接近现场实际情况,并且对于同一坝坡,考虑非饱和渗流计算出的土坡安全系数要比饱和渗流理论计算出的安全系数大。  相似文献   

9.
吴兴正  蒋良潍  罗强  孔德惠  张良 《岩土力学》2015,36(Z2):665-672
基于均质路堤边坡Monte Carlo法的稳定可靠度计算,分析了临界滑面搜索策略和稳定分析方法两类模型不确定性对边坡可靠度的影响特性,讨论了边坡失效概率随土工参数变异性的变化规律。研究表明,选用不同的临界滑面搜索策略所得可靠度结果差异不大,参数滑面法(overall slope)的失效概率略大于均值滑面法(global minimum),但差别对边坡稳定性分析没有实质性影响;土性参数变异水平是影响边坡可靠度的最重要因素,边坡在相同设计参数安全系数下的可靠度指标随参数变异性增大而急剧降低;不同稳定性分析方法对应的安全系数概率密度函数曲线形态基本一致,但失效概率差异明显,因此目标可靠度指标取值应与稳定性分析方法相适应。提出的考虑土工参数变异水平的安全系数取值修正原则,对改进确定性设计的边坡稳定分析技术有积极意义。  相似文献   

10.

Embankment dams are one of the most important geotechnical structures that their failures can lead to disastrous damages. One of the main causes of dam failure is its slope instability. Slope Stability analysis has traditionally been performed using the deterministic approaches. These approaches show the safety of slope only with factor of safety that this factor cannot take into account the uncertainty in soil parameters. Hence, to investigate the impact of uncertainties in soil parameters on slope stability, probabilistic analysis by Monte Carlo Simulation (MCS) method was used in this research. MCS method is a computational algorithm that uses random sampling to compute the results. This method studies the probability of slope failure using the distribution function of soil parameters. Stability analysis of upstream and downstream slopes of Alborz dam in all different design modes was done in both static and quasi-static condition. Probability of failure and reliability index were investigated for critical failure surfaces. Based on the reliability index obtained in different conditions, it can be said that the downstream and upstream slope of the Alborz dam is stable. The results show that although the factor of safety for upstream slope in the state of earthquake loading was enough, but the results derived from probabilistic analysis indicate that the factor of safety is not adequate. Also the upstream slope of the Alborz dam is unstable under high and uncontrolled explosions conditions in steady seepage from different levels under quasi-static terms.

  相似文献   

11.
土工格栅在青藏铁路多年冻土区路基工程中的应用   总被引:3,自引:0,他引:3  
王引生 《冰川冻土》2003,25(3):355-358
以青藏铁路多年冻土区清水河冻土加筋路堤试验段为例,对土工格栅在铁路路基工程中的应用原理及设计思路进行了叙述.通过对路基裂缝进行调查、分析和比较,土工格栅对加强路基整体稳的作用是肯定的.在多年冻土区路堤中,使用土工格栅加筋层对防止路堤纵向裂缝的产生、抑制横向寒冻裂缝具有明显的作用.  相似文献   

12.
Empirical criteria have been used successfully to design filters of most embankment large dam projects throughout the world. However, these empirical rules are only applicable to a particular range of soils tested in laboratory and do not take into account the variability of the base material and filter particle sizes. In addition, it is widely accepted that the safety of fill dams is mainly dependent on the reliability of their filter performance. The work herein presented consists in a new general method for assessing the probability of fulfilling any empirical filter design criteria accounting for base and filter heterogeneity by means of first‐order reliability methods (FORM), so that reliability indexes and probabilities of fulfilling any particular criteria are obtained. This method will allow engineers to estimate the safety of existing filters in terms of probability of fulfilling their design criteria and might also be used as a decision tool on sampling needs and material size tolerances during construction. In addition, sensitivity analysis makes possible to analyse how reliabilities are influenced by different sources of input data. Finally, in case of a portfolio risk assessment, this method will allow engineers to compare the safety of several existing dams in order to prioritize safety investments and it is expected to be a very useful tool to evaluate probabilities of failure due to internal erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The safety of the center-core type of fill dam structure was assessed by examining the effects of the distortion of electrical response verified in terms of two-dimensional (2D) apparent resistivity and its inverted sections from three-dimensional (3D) modeling for the embankment. The distortion effect is due to 2D interpretation of the 3D structure of the embankment. From the analysis, it was found that water level was correctly described by the resistivity section around the middle part rather than each side at the end of the embankment. This is due to the 3D terrain effect when the material of the embankment is assumed to be horizontally uniform. In addition, when the slope of the outer rock-fill section is set as uniform, the resistivity section is more similar for sharper center-core slopes. On the other hand, when the rock-fill slope is steep, the resistivity section shows the water level at a lower position than the real one, and the 3D distortion effect at the end of the embankment is enhanced.  相似文献   

14.
Nowadays, there are many new methods for slope stability analysis; including probabilistic methods assessing geotechnical uncertainties to develop safety factors. In this paper, a reliability index analysis for the Sungun copper mine slope stability is evaluated based on three methods of uncertainties consisting Taylor series method, Rosenblueth point estimate method and Monte-Carlo simulation method. Sungun copper mine will be one of the Iran’s biggest mines with final pit’s height of 700 meters. For this study two of its main slopes were assessed, one dipping to the NE (030) and the other to the SE (140). Probability density function of cohesion and angle of friction for the slopes were developed using limit equilibrium methods. These shear strengths were then used to determine the probability density function of safety factor and reliability index using the probabilistic methods. Results of the probabilistic analysis indicate that with ascending values of the uncertainties the reliability index decreases. Furthermore, it was determined that with the Monte Carlo simulation the seed number used has little effect on the reliability index of the safety factor especially with seed numbers in excess of 1200. Variations in the overall reliability index of safety factor were observed between the two slopes and this difference is explained by the differences in complexities of the geology within the cross-section.  相似文献   

15.
The standard procedure in Quebec, Canada, for evaluating the failure of an embankment dam, per the Loi sur la sécurité des barrages, specifies a 30-min-long failure scenario with a breach width equal to four times the maximal height of the dam. We demonstrate a new method for evaluating the flood overtopping failure scenario for embankment dams with concrete upstream slope protection, using Toulnustouc dam for example computations. Our new methodology computes safety factors for a range of potential failure mechanisms taking into account geotechnical, hydraulic, and structural factors. We compile the results of our investigations of the various dam failure mechanisms and compare the corresponding dam failure hydrographs to the current hydrograph specified in the standard analysis procedures. Our investigations tend to invalidate the current standard procedures for evaluating the failure of rock-fill dams with concrete upstream faces, by indicating that the current standard procedures underestimate the peak failure discharge and overestimate the time to the peak discharge.  相似文献   

16.
天然土石坝稳定性初步研究   总被引:13,自引:0,他引:13  
滑坡堵塞江河形成的天然土石坝是自然作用的产物,不同于人工土石坝,天然土石坝形成后有些存在几十年,几百年,有些形成后不久就溃决,这与坝体本身的性质和河水入流量有关,依据野外实测资料,证了土石坝的稳定性的主要是同土石坝的物质组成,几何形状和堰塞湖入流量等因素决定的,这一研究为天然土石坝的稳定性预测奠定了基础。  相似文献   

17.
Geotechnical and Geological Engineering - Two-layered cohesive slopes are encountered in geotechnical applications involving embankments, dams, levees, and natural cut slopes. The reliability of...  相似文献   

18.
Collapse settlement is one of the main geotechnical hazards, which should be controlled during first impoundment stage in embankment dams. Imposing large deformations and significant damages to dams makes it an important phenomenon, which should be checked during design phases. Also, existence of a variety of contributing parameters in this phenomenon makes it difficult and complicated to well predict the potential of collapse settlement. Thus, artificial neural networks, which are commonly applied by majority of geotechnical engineers in predicting various perplexing problems, can be efficiently used to calculate the value of collapse settlement. In this paper, feedforward backpropagation neural networks are considered. And three-layered FFBPNNs with the architectures of 4–6–2 and 4–9–2 accurately predicted the coefficient of stress release and collapse settlement value, respectively. These networks were trained using 180 datasets gained from large-scale direct shear test, which were carried out on gravel materials. High correlation between measured and predicted values for both collapse settlement and coefficient of stress release can be easily understood from the coefficient of determination and root mean square error. It is shown that sand content and normal stress applied to the specimens, respectively, are most effective parameters on the collapse settlement value and coefficient of stress release.  相似文献   

19.
Analysis of stability of earthen dams in kachchh region, Gujarat, India   总被引:2,自引:0,他引:2  
The Kachchh region of Gujarat, India bore the brunt of a disastrous earthquake of magnitude Mw = 7.6 that occurred on January 26, 2001. The major cause of failure of various structures including earthen dams was noted to be the presence of liquefiable alluvium in the foundation soil. Results of back-analysis of failures of Chang, Tappar, Kaswati and Rudramata earth dams using pseudo-static limit equilibrium approach presented in this paper confirm that the presence of liquefiable layer contributed to lesser factors of safety leading to a base type of failure that was also observed in the field. Following the earthquake, earth dams have been rehabilitated by the concerned authority and it is imperative that the reconstructed sections of earth dams be reanalyzed. It is also increasingly realized that risk assessment of dams in view of the large-scale investment made and probabilistic analysis is necessary. In this study, it is demonstrated that the probabilistic approach when used in conjunction with deterministic approach helps in providing a rational solution for quantification of safety of the dam and in the estimation of risk associated with the dam construction.  相似文献   

20.
边坡变形破坏过程的大变形有限元分析   总被引:34,自引:14,他引:34  
在用有限元法分析边坡稳定性时,引入计算大变形问题的更新的拉格朗日方法,推导了边坡大变形弹塑性有限元分析的方程式。采用边坡某一幅值的等效塑性剪应变区,从坡脚到坡顶贯通前的折减系数作为边坡安全系数。在此基础上,采用弹塑性大变形有限元分析软件计算了均质土坡不同坡角的安全系数,将其与小变形分析的结果进行了对比分析,结果表明:用弹塑性大变形有限元分析边坡失稳破坏的过程中,既考虑了岩土材料的非线性,又考虑了边坡的几何非线性,使计算结果更趋合理。并结合东深供水改造工程BIII2边坡进行了大变形有限元分析,计算结果与勘查到的实际边坡的滑动面分布位置比较接近。研究表明:该方法尤其适宜于软土类边坡或基坑的稳定性分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号