首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   

2.
When protoplanets growing by accretion of planetesimals have atmospheres, small planetesimals approaching the protoplanets lose their energy by gas drag from the atmospheres, which leads them to be captured within the Hill sphere of the protoplanets. As a result, growth rates of the protoplanets are enhanced. In order to study the effect of an atmosphere on planetary growth rates, we performed numerical integration of orbits of planetesimals for a wide range of orbital elements and obtained the effective accretion rates of planetesimals onto planets that have atmospheres. Numerical results are obtained as a function of planetesimals’ eccentricity, inclination, planet’s radius, and non-dimensional gas-drag parameters which can be expressed by several physical quantities such as the radius of planetesimals and the mass of the protoplanet. Assuming that the radial distribution of the gas density near the surface can be approximated by a power-law, we performed analytic calculation for the loss of planetesimals’ kinetic energy due to gas drag, and confirmed agreement with numerical results. We confirmed that the above approximation of the power-law density distribution is reasonable for accretion rate of protoplanets with 1-10 Earth masses, unless the size of planetesimals is too small. We also calculated the accretion rates of planetesimals averaged over a Rayleigh distribution of eccentricities and inclinations, and derived a semi-analytical formula of accretion rates, which reproduces the numerical results very well. Using the obtained expression of the accretion rate, we examined the growth of protoplanets in nebular gas. We found that the effect of atmospheric gas drag can enhance the growth rate significantly, depending on the size of planetesimals.  相似文献   

3.
In this paper we present a new semianalytical model of oligarchic growth of planets considering a distribution of planetesimal sizes, fragmentation of planetesimals in mutual collisions, sublimation of ices through the snow line, random velocities out of equilibrium and merging of planetary embryos. We show that the presence of several planetary embryos growing simultaneously at different locations in the protoplanetary disk affects the whole accretion history, specially for the innermost planets. The results presented here clearly indicate the relevance of considering a distribution of planetesimal sizes. Fragmentation occurring during planetesimal-planetesimal collisions represent only a marginal effect in shaping the surface density of solid material in the protoplanetary disc.  相似文献   

4.
S. Inaba  G.W. Wetherill 《Icarus》2003,166(1):46-62
We have calculated formation of gas giant planets based on the standard core accretion model including effects of fragmentation and planetary envelope. The accretion process is found to proceed as follows. As a result of runaway growth of planetesimals with initial radii of ∼10 km, planetary embryos with a mass of ∼1027 g (∼ Mars mass) are found to form in ∼105 years at Jupiter's position (5.2 AU), assuming a large enough value of the surface density of solid material (25 g/cm2) in the accretion disk at that distance. Strong gravitational perturbations between the runaway planetary embryos and the remaining planetesimals cause the random velocities of the planetesimals to become large enough for collisions between small planetesimals to lead to their catastrophic disruption. This produces a large number of fragments. At the same time, the planetary embryos have envelopes, that reduce energies of fragments by gas drag and capture them. The large radius of the envelope increases the collision rate between them, resulting in rapid growth of the planetary embryos. By the combined effects of fragmentation and planetary envelope, the largest planetary embryo with 21M forms at 5.2 AU in 3.8×106 years. The planetary embryo is massive enough to start a rapid gas accretion and forms a gas giant planet.  相似文献   

5.
We investigate the populations of main-sequence stars within 25 pc that have debris discs and/or giant planets detected by Doppler shift. The metallicity distribution of the debris sample is a very close match to that of stars in general, but differs with >99 per cent confidence from the giant planet sample, which favours stars of above average metallicity. This result is not due to differences in age of the two samples. The formation of debris-generating planetesimals at tens of au thus appears independent of the metal fraction of the primordial disc, in contrast to the growth and migration history of giant planets within a few au. The data generally fit a core accumulation model, with outer planetesimals forming eventually even from a disc low in solids, while inner planets require fast core growth for gas to still be present to make an atmosphere.  相似文献   

6.
We compute the growth of isolated gaseous giant planets for several values of the density of the protoplanetary disk, several distances from the central star and two values for the (fixed) radii of accreted planetesimals. Calculations were performed in the frame of the core instability mechanism and the solids accretion rate adopted is that corresponding to the oligarchic growth regime. We find that for massive disks and/or for protoplanets far from the star and/or for large planetesimals, the planetary growth occurs smoothly. However, notably, there are some cases for which we find an envelope instability in which the planet exchanges gas with the surrounding protoplanetary nebula. The timescale of this instability shows that it is associated with the process of planetesimals accretion. The presence of this instability makes it more difficult the formation of gaseous giant planets.  相似文献   

7.
8.
We have performed N -body numerical simulations of the exchange of angular momentum between a massive planet and a 3D Keplerian disc of planetesimals. Our interest is directed at the study of the classical analytical expressions of the lineal theory of density waves, as representative of the dynamical friction in discs 'dominated by the planet' and the orbital migration of the planets with regard to this effect. By means of a numerical integration of the equations of motion, we have carried out a set of numerical experiments with a large number of particles  ( N ≥10 000)  , and planets with the mass of Jupiter, Saturn and one core mass of the giant planets in the Solar system  ( M c=10 M)  . The torque, measured in a phase in which a 'steady forcing' is clearly measurable, yields inward migration in a minimum-mass solar disc  (Σ∼10 g cm-2  ), with a characteristic drift time of ∼ a few 106 yr. The planets predate the disc, but the orbital decay rate is not sufficient to allow accretion in a time-scale relevant to the formation of giant planets. We found reductions of the measured torque on the planet, with respect to the linear theory, by a factor of 0.38 for M c, 0.04 for Saturn and 0.01 for Jupiter, due to the increase in the perturbation on the disc. The behaviour of planets whose mass is larger than M c is similar to the one of type II migrators in gaseous discs. Our results suggest that, in a minimum mass, solar planetesimals disc, type I migrations occur for masses smaller than M c, whereas for this mass value it could be a transition zone between the two types of migration.  相似文献   

9.
We investigate the gravitational interaction between a planet and an optically thin protoplanetary disc, performing local three-dimensional hydrodynamical simulations. In the present study, we take account of radiative energy transfer in optically thin discs. Before the stage of planetary accretion, dust opacity is expected to decrease significantly because of grain growth and planetesimal formation. Thus, it would be reasonable to consider optically thin discs in the disc–planet interaction. Furthermore, we focus on small planets that can neither capture disc gas nor open a disc gap. The one-sided torque exerted on a planet by an optically thin disc is examined for various values of the disc optical thickness (<1). In optically thin discs, the temperature behind the density waves is lower than the unperturbed value because of radiative cooling. Heating due to shock dissipation is less effective than radiative cooling. Because of radiative cooling, the density distribution around the planet is not axisymmetric, which exerts an additional torque on the planet. The torque enhancement becomes maximum when the cooling time is comparable with the Keplerian period. The enhancement is significant for low-mass planets. For planets with  3 M  , the additional one-sided torque can be 40 per cent of the torque in the isothermal case. The radiative cooling is expected to change the differential torque and the migration speed of planets, too.  相似文献   

10.
We present results from a suite of N-body simulations that follow the formation and accretion history of the terrestrial planets using a new parallel treecode that we have developed. We initially place 2000 equal size planetesimals between 0.5 and 4.0 AU and the collisional growth is followed until the completion of planetary accretion (>100 Myr). A total of 64 simulations were carried out to explore sensitivity to the key parameters and initial conditions. All the important effect of gas in laminar disks are taken into account: the aerodynamic gas drag, the disk-planet interaction including Type I migration, and the global disk potential which causes inward migration of secular resonances as the gas dissipates. We vary the initial total mass and spatial distribution of the planetesimals, the time scale of dissipation of nebular gas (which dissipates uniformly in space and exponentially in time), and orbits of Jupiter and Saturn. We end up with 1-5 planets in the terrestrial region. In order to maintain sufficient mass in this region in the presence of Type I migration, the time scale of gas dissipation needs to be 1-2 Myr. The final configurations and collisional histories strongly depend on the orbital eccentricity of Jupiter. If today’s eccentricity of Jupiter is used, then most of bodies in the asteroidal region are swept up within the terrestrial region owing to the inward migration of the secular resonance, and giant impacts between protoplanets occur most commonly around 10 Myr. If the orbital eccentricity of Jupiter is close to zero, as suggested in the Nice model, the effect of the secular resonance is negligible and a large amount of mass stays for a long period of time in the asteroidal region. With a circular orbit for Jupiter, giant impacts usually occur around 100 Myr, consistent with the accretion time scale indicated from isotope records. However, we inevitably have an Earth size planet at around 2 AU in this case. It is very difficult to obtain spatially concentrated terrestrial planets together with very late giant impacts, as long as we include all the above effects of gas and assume initial disks similar to the minimum mass solar nebular.  相似文献   

11.
Recent observations point to the presence of structured dust grains in the discs surrounding young brown dwarfs, thus implying that the first stages of planet formation take place also in the substellar regime. Here, we investigate the potential for planet formation around brown dwarfs and very low-mass stars according to the sequential core accretion model of planet formation. We find that, for a brown dwarf mass 0.05 M, our models predict a maximum planetary mass of  ∼5   M  , orbiting with semimajor axis ∼ 1 au. However, we note that the predictions for the mass–semimajor axis distribution are strongly dependent upon the models chosen for the disc surface density profiles and the assumed distribution of disc masses. In particular, if brown dwarf disc masses are of the order of a few Jupiter masses, Earth-mass planets might be relatively frequent, while if typical disc masses are only a fraction of Jupiter mass, we predict that planet formation would be extremely rare in the substellar regime. As the observational constraints on disc profiles, mass dependencies and their distributions are poor in the brown dwarf regime, we advise caution in validating theoretical models only on stars similar to the Sun and emphasize the need for observational data on planetary systems around a wide range of stellar masses. We also find that, unlike the situation around solar-like stars, Type II migration is totally absent from the planet formation process around brown dwarfs, suggesting that any future observations of planets around brown dwarfs would provide a direct measure of the role of other types of migration.  相似文献   

12.
Planets orbiting a planetesimal circumstellar disc can migrate inward from their initial positions because of dynamical friction between planets and planetesimals. The migration rate depends on the disc mass and on its time evolution. Planets that are embedded in long-lived planetesimal discs, having total mass of 10−4– 0.01 M , can migrate inward a large distance and can survive only if the inner disc is truncated or as a result of tidal interaction with the star. In this case the semimajor axis, a , of the planetary orbit is less than 0.1 au. Orbits with larger a are obtained for smaller values of the disc mass or for a rapid evolution (depletion) of the disc. This model may explain not only several of the orbital features of the giant planets that have been discovered in recent years orbiting nearby stars, but also the metallicity enhancement found in several stars associated with short-period planets.  相似文献   

13.
To date, two planetary systems have been discovered with close-in, terrestrial-mass planets     . Many more such discoveries are anticipated in the coming years with radial velocity and transit searches. Here we investigate the different mechanisms that could form 'hot Earths' and their observable predictions. Models include: (1) in situ accretion; (2) formation at larger orbital distance followed by inward 'type 1' migration; (3) formation from material being 'shepherded' inward by a migrating gas giant planet; (4) formation from material being shepherded by moving secular resonances during dispersal of the protoplanetary disc; (5) tidal circularization of eccentric terrestrial planets with close-in perihelion distances and (6) photoevaporative mass-loss of a close-in giant planet. Models 1–4 have been validated in previous work. We show that tidal circularization can form hot Earths, but only for relatively massive planets     with very close-in perihelion distances (≲0.025 au), and even then the net inward movement in orbital distance is at most only 0.1–0.15 au. For planets of less than     , photoevaporation can remove the planet's envelope and leave behind the solid core on a Gyr time-scale, but only for planets inside 0.025–0.05 au. Using two quantities that are observable by current and upcoming missions, we show that these models each produce unique signatures, and can be observationally distinguished. These observables are the planetary system architecture (detectable with radial velocities, transits and transit timing) and the bulk composition of transiting close-in terrestrial planets (measured by transits via the planet's radius).  相似文献   

14.
We explore the cross section of giant planet envelopes at capturing planetesimals of different sizes. For this purpose we employ two sets of realistic planetary envelope models (computed assuming for the protoplanetary nebula masses of 10 and 5 times the mass of the minimum mass solar nebula), account for drag and ablation effects and study the trajectories along which planetesimals move. The core accretion of these models has been computed in the oligarchic growth regime [Fortier, A., Benvenuto, O.G., Brunini, A., 2007. Astron. Astrophys. 473, 311-322], which has also been considered for the velocities of the incoming planetesimals. This regime predicts velocities larger that those used in previous studies of this problem. As the rate of ablation is dependent on the third power of velocity, ablation is more important in the oligarchic growth regime. We compute energy and mass deposition, fractional ablated masses and the total cross section of planets for a wide range of values of the critical parameter of ablation. In computing the total cross section of the planet we have included the contributions due to mass deposited by planetesimals moving along unbound orbits. Our results indicate that, for the case of small planetary cores and low velocities for the incoming planetesimals, ablation has a negligible impact on the capture cross section in agreement with the results presented in Inaba and Ikoma [Inaba, S., Ikoma, M., 2003. Astron. Astrophys. 410, 711-723]. However for the case of larger cores and high velocities of the incoming planetesimals as predicted by the oligarchic growth regime, we find that ablation is important in determining the planetary cross section, being several times larger than the value corresponding ignoring ablation. This is so regardless of the size of the incoming planetesimals.  相似文献   

15.
There is evidence for the existence of massive planets at orbital radii of several hundred au from their parent stars where the time-scale for planet formation by core accretion is longer than the disc lifetime. These planets could have formed close to their star and then migrated outwards. We consider how the transfer of angular momentum by viscous disc interactions from a massive inner planet could cause significant outward migration of a smaller outer planet. We find that it is in principle possible for planets to migrate to large radii. We note, however, a number of effects which may render the process somewhat problematic.  相似文献   

16.
We use numerical simulations to model the migration of massive planets at small radii and compare the results with the known properties of 'hot Jupiters' (extrasolar planets with semimajor axes   a < 0.1  au). For planet masses   M pl sin  i > 0.5 M J  , the evidence for any 'pile-up' at small radii is weak (statistically insignificant), and although the mass function of hot Jupiters is deficient in high-mass planets as compared to a reference sample located further out, the small sample size precludes definitive conclusions. We suggest that these properties are consistent with disc migration followed by entry into a magnetospheric cavity close to the star. Entry into the cavity results in a slowing of migration, accompanied by a growth in orbital eccentricity. For planet masses in excess of 1 Jupiter mass we find eccentricity growth time-scales of a few ×105 yr, suggesting that these planets may often be rapidly destroyed. Eccentricity growth appears to be faster for more massive planets which may explain changes in the planetary mass function at small radii and may also predict a pile-up of lower mass planets, the sample of which is still incomplete.  相似文献   

17.
As planetary embryos grow, gravitational stirring of planetesimals by embryos strongly enhances random velocities of planetesimals and makes collisions between planetesimals destructive. The resulting fragments are ground down by successive collisions. Eventually the smallest fragments are removed by the inward drift due to gas drag. Therefore, the collisional disruption depletes the planetesimal disk and inhibits embryo growth. We provide analytical formulae for the final masses of planetary embryos, taking into account planetesimal depletion due to collisional disruption. Furthermore, we perform the statistical simulations for embryo growth (which excellently reproduce results of direct N-body simulations if disruption is neglected). These analytical formulae are consistent with the outcome of our statistical simulations. Our results indicate that the final embryo mass at several AU in the minimum-mass solar nebula can reach about ∼0.1 Earth mass within 107 years. This brings another difficulty in formation of gas giant planets, which requires cores with ∼10 Earth masses for gas accretion. However, if the nebular disk is 10 times more massive than the minimum-mass solar nebula and the initial planetesimal size is larger than 100 km, as suggested by some models of planetesimal formation, the final embryo mass reaches about 10 Earth masses at 3-4 AU. The enhancement of embryos’ collisional cross sections by their atmosphere could further increase their final mass to form gas giant planets at 5-10 AU in the Solar System.  相似文献   

18.
R. Helled  P. Bodenheimer 《Icarus》2011,211(2):939-947
Giant protoplanets formed by gravitational instability in the outer regions of circumstellar disks go through an early phase of quasi-static contraction during which radii are large (∼1 AU) and internal temperatures are low (<2000 K). The main source of opacity in these objects is dust grains. We investigate two problems involving the effect of opacity on the evolution of isolated, non-accreting planets of 3, 5, and 7 MJ. First, we pick three different overall metallicities for the planet and simply scale the opacity accordingly. We show that higher metallicity results in slower contraction as a result of higher opacity. It is found that the pre-collapse time scale is proportional to the metallicity. In this scenario, survival of giant planets formed by gravitational instability is predicted to be more likely around low-metallicity stars, since they evolve to the point of collapse to small size on shorter time scales. But metal-rich planets, as a result of longer contraction times, have the best opportunity to capture planetesimals and form heavy-element cores. Second, we investigate the effects of opacity reduction as a result of grain growth and settling, for the same three planetary masses and for three different values of overall metallicity. When these processes are included, the pre-collapse time scale is found to be of order 1000 years for the three masses, significantly shorter than the time scale calculated without these effects. In this case the time scale is found to be relatively insensitive to planetary mass and composition. However, the effects of planetary rotation and accretion of gas and dust, which could increase the timescale, are not included in the calculation. The short time scale we find would preclude metal enrichment by planetesimal capture, as well as heavy-element core formation, over a large range of planetary masses and metallicities.  相似文献   

19.
In this paper, we extend our numerical method for simulating terrestrial planet formation to include dynamical friction from the unresolved debris component. In the previous work, we implemented a rubble pile planetesimal collision model into direct N -body simulations of terrestrial planet formation. The new collision model treated both accretion and erosion of planetesimals but did not include dynamical friction from debris particles smaller than the resolution limit for the simulation. By extending our numerical model to include dynamical friction from the unresolved debris, we can simulate the dynamical effect of debris produced during collisions and can also investigate the effect of initial debris mass on terrestrial planet formation. We find that significant initial debris mass, 10 per cent or more of the total disc mass, changes the mode of planetesimal growth. Specifically, planetesimals in this situation do not go through a runaway growth phase. Instead, they grow concurrently, similar to oligarchic growth. The dynamical friction from the unresolved debris damps the eccentricities of the planetesimals, reducing the mean impact speeds and causing all collisions to result in merging with no mass loss. As a result, there is no debris production. The mass in debris slowly decreases with time. In addition to including the dynamical friction from the unresolved debris, we have implemented particle tracking as a proxy for monitoring compositional mixing. Although there is much less mixing due to collisions and gravitational scattering when dynamical friction of the background debris is included, there is significant inward migration of the largest protoplanets in the most extreme initial conditions (for which the initial mass in unresolved debris is at least equal to the mass in resolved planetesimals).  相似文献   

20.
Here we show preliminary calculations of the cooling and contraction of a 2 MJ planet. These calculations, which are being extended to 1–10 MJ, differ from other published “cooling tracks” in that they include a core accretion‐gas capture formation scenario, the leading theory for the formation of gas giant planets.We find that the initial post‐accretionary intrinsic luminosity of the planet is ∼3 times less than previously published models which use arbitrary initial conditions. These differences last a few tens of millions of years. Young giant planets are intrinsically fainter than has been previously appreciated. We also discuss how uncertainties in atmospheric chemistry and the duration of the formation time of giant planets lead to challenges in deriving planetary physical properties from comparison with tabulated model values. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号