首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
With more and more exoplanets being detected, it is paid closer attention to whether there are lives outside solar system. We try to obtain habitable zones and the probability distribution of terrestrial planets in habitable zones around host stars. Using Eggleton’s code, we calculate the evolution of stars with masses less than 4.00 M . We also use the fitting formulae of stellar luminosity and radius, the boundary flux of habitable zones, the distribution of semimajor axis and mass of planets and the initial mass function of stars. We obtain the luminosity and radius of stars with masses from 0.08 to 4.00 M , and calculate the habitable zones of host stars, affected by stellar effective temperature. We achieve the probability distribution of terrestrial planets in habitable zones around host stars. We also calculate that the number of terrestrial planets in habitable zones of host stars is 45.5 billion, and the number of terrestrial planets in habitable zones around K type stars is the most, in the Milky Way.  相似文献   

2.
A star will become brighter and brighter with stellar evolution, and the distance of its habitable zone will become larger and larger. Some planets outside the habitable zone of a host star during the main sequence phase may enter the habitable zone of the host star during other evolutionary phases. A terrestrial planet within the habitable zone of its host star is generally thought to be suitable for the existence of life. Furthermore, a rocky moon around a giant planet may be also suitable for life to survive, provided that the planet–moon system is within the habitable zone of its host star. Using Eggleton’s code and the boundary flux of the habitable zone, we calculate the habitable zone of our Solar system after the main sequence phase. It is found that Mars’ orbit and Jupiter’s orbit will enter the habitable zone of the Solar system during the subgiant branch phase and the red giant branch phase, respectively. And the orbit of Saturn will enter the habitable zone of Solar during the He-burning phase for about 137 million years. Life is unlikely at any time on Saturn, as it is a giant gaseous planet. However, Titan, the rocky moon of Saturn, may be suitable for biological evolution and become another Earth during that time. For low-mass stars, there are similar habitable zones during the He-burning phase as our Solar, because there are similar core masses and luminosities for these stars during that phase.  相似文献   

3.
Habitable zones about main sequence stars   总被引:1,自引:0,他引:1  
Michael H. Hart 《Icarus》1979,37(1):351-357
Calculations show that a main sequence star which is less massive than the Sun has a continuously habitable zone about it which is not only closer in than the corresponding zone about the Sun, but is also relatively narrower. Let L(t) represent the luminosity after t billion years of a main sequence star of mass M, and let rinner and router represent the boundaries of the continuously habitable zone about such a star—that is, the zone in which an Earthlike planet will undergo neither a runaway greenhouse effect in the early stages of its history nor runaway glaciation after it develops an oxidizing atmosphere. Then our computer results indicate that routerrinner is roughly proportional to [L(3.5)L(1.0)]12. This ratio is smaller for stars less massive than the Sun (because they evolve more slowly), and the width of the continuously habitable zone about a main sequence star is therefore a strong function of the initial stellar mass. Our calculations show that rinner = router for M~0.83M? (i.e., K1 stars), and it therefore appears that there is no continuously habitable zone about most K stars, nor any about M stars.  相似文献   

4.
During the last decade there was a change in paradigm, which led to consider that terrestrial-type planets within liquid-water habitable zones (LW-HZ) around M stars can also be suitable places for the emergence and evolution of life. Since many dMe stars emit large amount of UV radiation during flares, in this work we analyze the UV constrains for living systems on Earth-like planets around dM stars. We apply our model of UV habitable zone (UV-HZ; Buccino, A.P., Lemarchand, G.A., Mauas, P.J.D., 2006. Icarus 183, 491–503) to the three planetary systems around dM stars (HIP 74995, HIP 109388 and HIP 113020) observed by IUE and to two M-flare stars (AD Leo and EV Lac). In particular, HIP 74995 hosts a terrestrial planet in the LW-HZ, which is the exoplanet that most resembles our own Earth. We show, in general, that during the quiescent state there would not be enough UV radiation within the LW-HZ to trigger the biogenic processes and that this energy could be provided by flares of moderate intensity, while strong flares do not necessarily rule-out the possibility of life-bearing planets.  相似文献   

5.
Habitable zones around main sequence stars   总被引:1,自引:0,他引:1  
Kasting JF  Whitmire DP  Reynolds RT 《Icarus》1993,101(1):108-128
A one-dimensional climate model is used to estimate the width of the habitable zone (HZ) around our Sun and around other main sequence stars. Our basic premise is that we are dealing with Earth-like planets with CO2/H2O/N2 atmospheres and that habitability requires the presence of liquid water on the planet's surface. The inner edge of the HZ is determined in our model by loss of water via photolysis and hydrogen escape. The outer edge of the HZ is determined by the formation of CO2 clouds, which cool a planet's surface by increasing its albedo and by lowering the convective lapse rate. Conservative estimates for these distances in our own Solar System are 0.95 and 1.37 AU, respectively; the actual width of the present HZ could be much greater. Between these two limits, climate stability is ensured by a feedback mechanism in which atmospheric CO2 concentrations vary inversely with planetary surface temperature. The width of the HZ is slightly greater for planets that are larger than Earth and for planets which have higher N2 partial pressures. The HZ evolves outward in time because the Sun increases in luminosity as it ages. A conservative estimate for the width of the 4.6-Gyr continuously habitable zone (CHZ) is 0.95 to 1.15 AU. Stars later than F0 have main sequence lifetimes exceeding 2 Gyr and, so, are also potential candidates for harboring habitable planets. The HZ around an F star is larger and occurs farther out than for our Sun; the HZ around K and M stars is smaller and occurs farther in. Nevertheless, the widths of all of these HZs are approximately the same if distance is expressed on a logarithmic scale. A log distance scale is probably the appropriate scale for this problem because the planets in our own Solar System are spaced logarithmically and because the distance at which another star would be expected to form planets should be related to the star's mass. The width of the CHZ around other stars depends on the time that a planet is required to remain habitable and on whether a planet that is initially frozen can be thawed by modest increases in stellar luminosity. For a specified period of habitability, CHZs around K and M stars are wider (in log distance) than for our Sun because these stars evolve more slowly. Planets orbiting late K stars and M stars may not be habitable, however, b ecause they can become trapped in synchronous rotation as a consequence of tidal damping. F stars have narrower (log distance) CHZ's than our Sun because they evolve more rapidly. Our results suggest that mid-to-early K stars should be considered along with G stars as optimal candidates in the search for extraterrestrial life.  相似文献   

6.
The EUV (200–911 Å), FUV (912–1750 Å), and NUV (1750–3200 Å) spectral energy distribution of exoplanet host stars has a profound influence on the atmospheres of Earth-like planets in the habitable zone. The stellar EUV radiation drives atmospheric heating, while the FUV (in particular, Lyα) and NUV radiation fields regulate the atmospheric chemistry: the dissociation of H2O and CO2, the production of O2 and O3, and may determine the ultimate habitability of these worlds. Despite the importance of this information for atmospheric modeling of exoplanetary systems, the EUV/FUV/NUV radiation fields of cool (K and M dwarf) exoplanet host stars are almost completely unconstrained by observation or theory. We present observational results from a Hubble Space Telescope survey of M dwarf exoplanet host stars, highlighting the importance of realistic UV radiation fields for the formation of potential biomarker molecules, O2 and O3. We conclude by describing preliminary results on the characterization of the UV time variability of these sources.  相似文献   

7.
Photospheric models were calculated for 90 stars with effective temperatures between 2500 K and 41600 K for five logg-values ranging from 1 to 5. Molecule formation was taken into account. In order to have an idea about possible instabilities in the different stellar layers some quantities, characteristic for convection and turbulence were calculated, such as the Rayleigh-, Reynolds-, Prandtl- and Péclet-numbers. It turned out that all the investigated stars contain unstable layers, including the hottest. Nevertheless, only stars with effective temperatures of 8300 K or less contain layers where the convective energy transport is important. For all stars the convective velocities were calculated and also the generated mechanical fluxes in the convection zones were tabulated.Under the hypothesis that this mechanical energy flux is responsible for the heating of the corona, coronal models were constructed for the Sun and for some stars with effective temperatures between 5000 K and 8320 K for logg-values of 4 or 5.For Main Sequence stars the largest fluxes are generated in F-stars; stars withT eff=7130 K and logg=4 possess also the hottest and most dense coronas with a computed temperature of 3.7·106 K and logN e =10.5.The solar corona computed in this way, on the basis of a photospheric mechanical flux of 0.14·108 erg cm–2 sec–1, has a temperature of 1.3·106 K and logN e =9.8. This density is apparently too high, but even when including in the computations all theoretical refinements proposed in the last few years by various authors it does not appear possible to obtain a solar coronal model with a smaller density.However, when taking into account the inhomogeneous structure of the chromosphere and by associating the calculated mechanical fluxes to the coarse mottles, and lower fluxes to the undisturbed regions we find a mean coronal temperature of 1.1·106 K and a mean logN e -values of 9. The computed velocity of the solar wind at a distance of 104 km above the photosphere has a value between 7 and 11 km sec–1. These latter values are in fair agreement with the observations.  相似文献   

8.
Ultraviolet radiation is known to inhibit photosynthesis, induce DNA destruction and cause damage to a wide variety of proteins and lipids. In particular, UV radiation between 200 and 300 nm becomes energetically very damaging to most of the terrestrial biological systems. On the other hand, UV radiation is usually considered one of the most important energy source on the primitive Earth for the synthesis of many biochemical compounds and, therefore, essential for several biogenesis processes. In this work, we use these properties of the UV radiation to define the boundaries of an ultraviolet habitable zone. We also analyze the evolution of the UV habitable zone during the main sequence stage of the star. We apply these criteria to study the UV habitable zone for those extrasolar planetary systems that were observed by the International Ultraviolet Explorer (IUE). We analyze the possibility that extrasolar planets and moons could be suitable for life, according to the UV constrains presented in this work and other accepted criteria of habitability (liquid water, orbital stability, etc.).  相似文献   

9.
It is at first reported that certain kinds of stars which have been classified as T Tauri stars or related objects are in reality not of this type. After the exclusion of those objects, the infrared measurements accessible in the literature permit to draw some astrophysical inferences. It is then possible to distinguish three classes of light variations. All T Tauri stars have an infrared excess. From the colour indices HK and KL it can be deduced that the infrared excess for more than one half of the objects is due to the thermal radiation of the circumstellar dust envelope; for the remaining stars also free-free radiation from the gas envelope can play an essential part. The largest infrared excesses EH–K were found with the hotter stars (spectral type A) and the strongest emission lines with the cooler stars (spectral types G, K, M). This can finally be explained by the fact that the convection zone in cooler stars reaches far down into their interior than in hotter stars.  相似文献   

10.
Exo-zodiacal dust, exozodi for short, is warm (~300 K) or hot (up to ~2000 K) dust found in the inner regions of planetary systems around main sequence stars. In analogy to our own zodiacal dust, it may be located in or near the habitable zone or closer in, down to the dust sublimation distance. The study of the properties, distribution, and evolution of exozodis can inform about the architecture and dynamics of the innermost regions of planetary systems, close to their habitable zones. On the other hand, the presence of large amounts of exo-zodiacal dust may be an obstacle for future space missions aiming to image Earth-like exoplanets. The dust can be the most luminous component of extrasolar planetary systems, but predominantly emits in the near- to mid-infrared where it is outshone by the host star. Interferometry provides a unique method of separating the dusty from the stellar emission. We discuss the prospects of exozodi observations with the next generation VLTI instruments and summarize critical instrument specifications.  相似文献   

11.
It is shown that the infrared flux method for determining stellar effective temperatures (Blackwell and Shallis 1977; Blackwell, Petford and Shallis 1980) can be applied to cool carbon stars. Although the spectra of cool carbon stars are highly line blanketed, the spectral region between 3 and 4 μm (L-band in the infrared photometry system) is found to be relatively free from strong line absorption. The ratioR L of bolometric flux toL flux can then be used as a measure of effective temperature. On the basis of the predicted line-blanketed flux based on model atmospheres, with an empirical correction for the effect of 3 μm absorption due to polyatomic species (HCN, C2H2), it is shown thatR L is roughly proportional to T3 eff. The high sensitivity ofR L to Teff makes it a very good measure of effective temperature, and the usual difficulty due to differential line blanketing effect in the analyses of photometric indices of cool carbon stars can be minimized. It is found that the majority of N-type carbon stars with small variability (SRb and Lb variables) are confined to the effective temperature range between 2400 and 3200 K, in contrast to M-giant stars (M0 III - M6 III, including SRb and Lb variables) that are confined to the effective temperature range between 3200 and 3900 K. The effective temperatures based on the infrared flux method show good agreement with those derived directly from angular diameter measurements of 5 carbon stars. On the basis of the new effective temperature scale for carbon stars, it is shown that the well known C-classification does not represent a temperature sequence. On the other hand, colour temperatures based on various photometric indices all show good correlations with our derived effective temperatures. An erratum to this article is available at .  相似文献   

12.
In order to evaluate and develop mission concepts for a search for Terrestrial Exoplanets, we have prepared a list of potential target systems. In this paper we present and discuss the criteria for selecting potential target stars, suitable for the search for Earth-like planets, with a special emphasis on the aspects of the habitable zone for these stellar systems. Planets found within these zones would be potentially able to host complex life forms. We derive a final target star sample of potential target stars, the Darwin All Sky Star Catalogue (DASSC). The DASSC contains a sample of 2303 identified objects of which 284 are F-, 464 G-, 883 K- and 615 M-type stars and 57 stars without B-V index. Of these objects 949 objects are flagged in the DASSC as multiple systems, resulting in 1229 single main sequence stars of which 107 are F, 235 are G, 536 are K, and 351 are M type. We derive configuration dependent sub-catalogues from the DASSC for two technical designs, the initial baseline design and the advanced Emma design as well as a catalogue using an inner working angle cutoff. We discuss the selection criteria, derived parameters and completeness of sample for different classes of stars.  相似文献   

13.
Although there are considerable technical challenges to be overcome during this decade, the prospects for the detection of Earth-like planets (ELPs) orbiting nearby stars are encouraging. If life has developed on some of the ELPs that may be discovered by sophisticated telescope systems, such as the Terrestrial Planet Finder, the detection of photosynthesis is an attractive possibility. Here we discuss the likely preconditions and subsequent events that have led to the occurrence of O2-producing photosynthesis on Earth and then extend this discussion to how this may have occurred on ELPs orbiting in the habitable zone of a variety of main-sequence stars from spectral type F0V to M0V. We point out how the need for liquid water and the need to avoid UV radiation have influenced the evolution of photosynthesis on Earth, how the absorption spectra of the dominant (chlorophyll) photosynthetic pigments may have been determined in natural selection, and how and when the evolution of the ability to use water as an electron donor took place. Models for the photosynthetic productivity of ELPs orbiting at the inner edge of the habitable zone are discussed both from aquatic and land-based photosynthesis, making some allowance for global cloud cover on the ELP. The photosynthetic generation of O2 is greatest on cloud-free planets with hot (e.g., F0V) parent stars, though the advantage over cooler stars depends on the fraction of the planet covered by oceans. The low O2 generation in ELPs orbiting cooler stars is due to the poor match between the parent star's spectral energy distribution and the assumption of terrestrial pigment properties. We discuss the possibility that a three- or four-photon mechanism might operate on such planets (as opposed to the two-photon system on Earth) and how it could influence the spectral properties of the ELP. We also emphasize the role of tectonic and other geological processes as well as biology in determining the O2 level on Earth and on ELPs.  相似文献   

14.
It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionizationS H; and external, with a radius greater thanS H, by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and B0 class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%).  相似文献   

15.
Hong  Zhenxiang  Li  Dong  Zhang  Minghui  Tan  Chengming  Ma  Suli  Ji  Haisheng 《Solar physics》2021,296(11):1-28

We have performed a search for flares and quasi-periodic pulsations (QPPs) from low-mass M-dwarf stars using Transient Exoplanet Survey Satellite (TESS) two-minute cadence data. We find seven stars that show evidence of QPPs. Using Fourier and empirical mode decomposition techniques, we confirm the presence of 11 QPPs in these seven stars with a period between 10.2 and 71.9 minutes, including an oscillation with strong drift in the period and a double-mode oscillation. The fraction of flares that showed QPPs (7%) is higher than other studies of stellar flares, but it is very similar to the fraction of solar C-class flares. Based on the stellar parameters taken from the TESS Input Catalog, we determine the lengths and magnetic-field strengths of the flare coronal loops using the period of the QPPs and various assumptions about the origin of the QPPs. We also use a scaling relationship based on flares from the Sun and solar-type stars and the observed energy, plus the duration of the flares, finding that the different approaches predict loop lengths that are consistent to within a factor of about two. We also discuss the flare frequency of the seven stars determining whether this could result in ozone depletion or abiogenesis in any orbiting exoplanet. Three of our stars have a sufficiently high rate of energetic flares, which are likely to cause abiogenesis. However, two of these stars are also in the range where ozone depletion is likely to occur. We speculate on the implications of the flare rates, loop lengths, and QPPs for life on potential exoplanets orbiting in their host star’s habitable zone.

  相似文献   

16.
Currently we are aware of only one biosphere in the entire Universe, our own. Various ongoing observational programmes are, however, attempting to locate more. These searches for extraterrestrial life are among the most challenging and interesting tasks of modern science. The Universe is immense, and even the distances to the nearest stars are beyond our present capabilities to traverse, so that search strategies must be thought through carefully in terms of how, where and what to search for. Life is undoubtedly more likely in some environments than others, and environmental criteria must be fulfilled for life to arise, survive, evolve and thrive. As search resources are limited we should concentrate our search on habitable zones that are suitable for the kind of life we can most easily recognise, in other words, searches should be guided by our own biosphere.  相似文献   

17.
Dave Waltham 《Icarus》2011,215(2):518-521
The Earth may have untypical characteristics which were necessary preconditions for the emergence of life and, ultimately, intelligent observers. This paper presents a rigorous procedure for quantifying such “anthropic selection” effects by comparing Earth’s properties to those of exoplanets. The hypothesis that there is anthropic selection for stellar mass (i.e. planets orbiting stars with masses within a particular range are more favourable for the emergence of observers) is then tested. The results rule out the expected strong selection for low mass stars which would result, all else being equal, if the typical timescale for the emergence of intelligent observers is very long. This indicates that the habitable zone of small stars may be less hospitable for intelligent life than the habitable zone of solar-mass stars. Additional planetary properties can also be analyzed, using the approach introduced here, once relatively complete and unbiased statistics are made available by current and planned exoplanet characterization projects.  相似文献   

18.
According to the work of Truran and Cameron, and of others, on the chemical evolution of the Galaxy, the first generation of stars in the Galaxy contained principally massive objects. If big-bang nucleosynthesis was responsible for the formation of helium, the first generation of stars would contain about 80% hydrogen and 20% helium, to be consistent with the approximately 22% helium found in recent stellar evolutionary studies of the Sun. The present investigation has followed the pre-main sequence evolution and the main sequence evolution of stars of 5, 10, 20, 30, 100, and 200M . Normal stars in this entire mass range normally convert hydrogen into helium by the CN-cycle on the main sequence. the present hydrogen-helium stars of 5 and 10M must reach higher central temperatures in order to convert hydrogen to helium by the proton-proton chains. Consequently, the mean densities in the stars are greater, and the surface temperatures are higher than in normal stars. In the stars of 20M and larger, the proton-proton chains do not succed in supplying the necessary luminosity of the stars by the time the contraction has produced a central temperature near 108K. At that point triple-alpha reactions generate small amounts of C12, which then acts as a catalyst in the CN-cycle, the rate of which is then limited by the beta-decays occurring within the cycle. During the evolution of these more massive stars, the central temperature remains in the vicinity of 108 K, and the surface temperature on the main sequence approaches 105 K. The star of 200M becomes unstable against surface mass loss through radiation pressure in the later stages of its main sequence evolution, and these mass loss effects were not followed. Young galaxies containing these massive stars will have a very high luminosity, but if they have formed at one-tenth the present age of the universe or later, then the light from them will mainly reside in the visible or ultraviolet, rather than in the infrared as has been suggested by Partridge and Peebles.  相似文献   

19.
On the basis of the effective temperature scale proposed previously for cool carbon stars (Paper I), other intrinsic properties of them are examined in detail. It is shown that the major spectroscopic properties of cool carbon stars, including those of molecular bands due to polyatomic species (SiC2, HCN, C2H2 etc.), can most consistently be understood on the basis of our new effective temperature scale and the theoretical prediction of chemical equilibrium. Various photometric indices of cool carbon stars also appear to be well correlated with the new effective temperatures. Furthermore, as effective temperatures of some 30 carbon stars are now obtained, the calibration of any photometric index is straightforward, and some examples of such a calibration are given. In general, colour index-effective temperature calibrations for carbon stars are quite different from those for K-M giant stars. It is found that the intrinsic (RI)0 colour is nearly the same for N-irregular variables in spite of a considerable spread in effective temperatures, and this fact is used to estimate the interstellar reddening of carbon stars. An observational HR diagram of red giant stars, including carbon stars as well as K-M giant stars, is obtained on the basis of our colour index-effective temperature calibrations and the best estimations of luminosities. It is shown that carbon stars and M giant stars are sharply divided in the HR diagram by a nearly vertical line at aboutT eff = 3200 K (logT eff = 3.50) and the carbon stars occupy the upper right region of M giant stars (except for some high luminosity, high temperature J-type stars in the Magellanic Clouds; also Mira variables are not considered). Such an observational HR diagram of red giant stars shows rather a poor agreement with the current stellar evolution models. Especially, a more efficient mixing process in red giant stars, as compared with those ever proposed, is required to explain the formation of carbon stars.  相似文献   

20.
A list of selected binary stars is presented that have been observed for several decades using a 26-inch refractor at the Pulkovo Observatory. These stars are at a distance from 3.5 to 25 pc from the Sun. They belong to spectral classes F, G, K, and M. Their masses range from 0.3 to 1.5 solar masses. We have analyzed them as possible parent stars for exoplanets taking into account the physical characteristics of these stars. In view of dynamic parameters and orbital elements that we have obtained by Pulkovo observations, ephemerides of positions for the coming years are calculated. The boundaries of the habitable zones around these stars are calculated. The astrometric signal that depends on the gravitational influence of hypothetical planets is estimated. Space telescopes for astrometric observations with microsecond accuracy can be used to detect Earth-like planets near the closest stars of this program. This paper presents an overview of astrometric programs of searches for exoplanets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号