首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The polar magnetic field on the Sun changes its sign during the maximum of solar cycles. It is known that the phenomenon of three-fold reversal of the polar magnetic field occurred in solar cycle 20. Using the magnetograph data of the Mount Wilson Observatory from 1967 to 1993, we confirm a previously suggested topological model of the three-fold magnetic-field reversal (Benevolenskaya, 1991). From the data set we have found that cycles with three-fold polar magnetic field reversals are characterized by a pronounced high-frequency component of the magnetic field compared with cycles with single polar magnetic-field reversals.  相似文献   

3.
The Mount Wilson synoptic magnetic data from CRs 1815 to 1866 are used to describe the reversal of the solar polar magnetic fields during the period May 1989–March 1993. These are compared with simulations based on the observed fields for CR 1815 using the flux transport equation. Simulations including the emergence of small bipoles with preferred poleward orientations are also described. It is shown that, while the former can provide a qualitative account of the evolution of the southern fields between CRs 1815 and 1860, only the latter can describe the evolution of the northern fields between CRs 1815 and 1865.  相似文献   

4.
Kress  J.M.  Wilson  P.R. 《Solar physics》2000,194(1):1-17
The revised Mount Wilson synoptic magnetic data for the period September 1987 through March 1996 are used as the basis of numerical simulations of the evolution of both the northern and southern polar magnetic fields during the reversal and declining phases of cycle 22. The simulations are based on numerical solutions of the flux-transport equation which involve, as parameters, the maximum meridional flow speed, v 0, and the supergranule diffusivity, . By matching characteristics of the observed and simulated fields, such as the observed reversal times, the evolution of the net flux above 60 °, and the migration of the polar crown, empirical values of these parameters, i.e., v 0=11 m s–1,=600 km2 s–1, may be determined. Further, the observed decrease in the mean net flux above 60 ° during the late declining phase of cycle 22 can be simulated only by increasing the diffusivity to 900 km2 s–1. However, direct observations of the supergranule velocities yield values of the diffusivity of order 200 km2 s–1, and we show that the inclusion of a pattern of emerging bipoles in the simulations can increase the diffusion of these fields and that, together with a more realistic value of the diffusivity, it is possible to reproduce qualitatively the features of the observed polar field reversals.  相似文献   

5.
Durrant  C.J.  Wilson  P.R. 《Solar physics》2003,214(1):23-39
We have used observations obtained by the National Solar Observatory at Kitt Peak to study the reversals of the polar magnetic fields in Cycle 23. We have compared them with corresponding data obtained by the Mt. Wilson Observatory, when these are available, testing both data sets against the locations of H filaments. Because of the unreliability of the data at extreme latitudes and because the apparent time of reversal varies with the degree of smoothing applied to the data, it is difficult to determine precise reversal time in each hemisphere from direct observations. However, we show that it is possible to obtain a better-defined and more precise reversal time using polar maps derived from simulations of the synoptic fields. These indirect values, however, depend critically on the diffusivity used in the simulations. We applied various tests to confirm an empirical value for the diffusivity parameter of about 600 km 2 s –1 and hence determined empirical reversal times of CR 1976 in the northern hemisphere and CR 1981 in the south.  相似文献   

6.
Observations of the polar magnetic fields were made during the period July 3–August 23, 1968, with the Mt. Wilson magnetograph. The scanning aperture was 5 × 5. The magnetic field was found to be ofS polarity near the heliographic north pole and ofN polarity near the south pole. At lower latitudes the polarity was the opposite. The polarity reversal occurred at a latitude of about +70° in the north and -55° in the south hemisphere. This coincides with the position of the polar prominence zones at that time. The observations indicate that the average field strength at the south pole was well above 5 G.Synoptic charts of the magnetic fields have been plotted in a polar coordinate system for two consecutive solar rotations.  相似文献   

7.
The Mechanism involved in the Reversals of the Sun's Polar Magnetic Fields   总被引:2,自引:0,他引:2  
Durrant  C.J.  Turner  J.P.R.  Wilson  P.R. 《Solar physics》2004,222(2):345-362
Models of the polarity reversals of the Sun's polar magnetic fields based on the surface transport of flux are discussed and are tested using observations of the polar fields during Cycle 23 obtained by the National Solar Observatory at Kitt Peak. We have extended earlier measurements of the net radial flux polewards of ±60° and confirm that, despite fluctuations of 20%, there is a steady decline in the old polarity polar flux which begins shortly after sunspot minimum (although not at the same time in each hemisphere), crosses the zero level near sunspot maximum, and increases, with reversed polarity during the remainder of the cycle. We have also measured the net transport of the radial field by both meridional flow and diffusion across several latitude zones at various phases of the Cycle. We can confirm that there was a net transport of leader flux across the solar equator during Cycle 23 and have used statistical tests to show that it began during the rising phase of this cycle rather than after sunspot maximum. This may explain the early decrease of the mean polar flux after sunspot minimum. We also found an outward flow of net flux across latitudes ±60° which is consistent with the onset of the decline of the old polarity flux. Thus the polar polarity reversals during Cycle 23 are not inconsistent with the surface flux-transport models but the large empirical values required for the magnetic diffusivity require further investigation.  相似文献   

8.
Makarov  V.I.  Tlatov  A.G.  Sivaraman  K.R. 《Solar physics》2003,214(1):41-54
We have defined the duration of polar magnetic activity as the time interval between two successive polar reversals. The epochs of the polarity reversals of the magnetic field at the poles of the Sun have been determined (1) by the time of the final disappearance of the polar crown filaments and (2) by the time between the two neighbouring reversals of the magnetic dipole configuration (l=1) from the H synoptic charts covering the period 1870–2001. It is shown that the reversals for the magnetic dipole configuration (l=1) occur on an average 3.3±0.5 years after the sunspot minimum according to the H synoptic charts (Table I) and the Stanford magnetograms (Table III). If we set the time of the final disappearance of the polar crown filaments (determined from the latitude migration of filaments) as the criterion for deciding the epoch of the polarity reversal of the polar fields, then the reversal occurs on an average 5.8±0.6 years from sunspot minimum (last column of Table I). We consider this as the most reliable diagnostic for fixing the epoch of reversals, as the final disappearance of the polar crown filaments can be observed without ambiguity. We show that shorter the duration of the polar activity cycle (i.e., the shorter the duration between two neighbouring reversals), the more intense is the next sunspot cycle. We also notice that the duration of polar activity is always more in even solar cycles than in odd cycles whereas the maximum Wolf numbers W \max is always higher for odd solar cycles than for even cycles. Furthermore, we assume there is a secular change in the duration of the polar cycle. It has decreased by 1.2 times during the last 120 years.  相似文献   

9.
A spatiotemporal analysis of long-term measurements of the Sun’s magnetic field was carried out to study changes in its zonal structure and reversals of the polar fields in Cycles 21?–?24. A causal relationship between activity complexes, their remnant magnetic fields, and high-latitude magnetic fields has been demonstrated in the current cycle. The appearance of unipolar magnetic regions near the poles is largely determined by the decay of long-lived activity complexes. The nonuniform distribution of sunspot activity and its north–south asymmetry result in the asymmetry of remnant fields that are transported poleward due to meridional circulation. The asymmetry of high-latitude magnetic fields leads to an asynchrony of polar-field reversals in both hemispheres. The interaction of high-latitude unipolar magnetic regions with the polar fields affects the embedded coronal holes. The evolution of large-scale magnetic fields was also studied in a time–latitude aspect. It is shown that regular reversals of the Sun’s polar fields resulted from cyclic changes in high-latitude magnetic fields. A triple polarity reversal of the polar fields in Cycle 21 and short-term polarity alternations at the poles were interpreted taking into account the interaction of the remnant fields with the Sun’s polar fields.  相似文献   

10.
Observations of the magnetic fields in the polar regions of the Sun are presented for the period 1960–1971. At the start of this interval the fields at the two poles were consistently of opposite sign and averaged around 1 G. Early in 1961 the field in the south decreased suddenly and the field in the north decreased in strength slowly over the next few years. By the mid-1960's the fields at both poles were quite weak and irregular. Throughout the period of these observations the fields at both poles often showed a remarkable tendency to vary in unison. About the middle of 1971 the north polar field became significantly positive, first at lower latitudes, then above 70 °. An autocorrelation analysis of the polar fields in the north shows a weak rotation peak, indicating significant features in these regions. A comparison of field strengths in the east and west quadrants in the north suggests that even at the extreme polar latitudes the following polarity fields are inclined slightly toward the rotation and the preceding polarity field lines are inclined slightly to trail the rotation.  相似文献   

11.
The Sun’s general magnetic field has shown polarity reversal three times during the last three solar cycles. We attempt to estimate the upcoming polarity reversal time of the solar magnetic dipole by using the coronal field model and synoptic data of the photospheric magnetic field. The scalar magnetic potential of the coronal magnetic field is expanded into a spherical harmonic series. The long-term variations of the dipole component ( $g^{0}_{1}$ ) calculated from the data of National Solar Observatory/Kitt Peak and Wilcox Solar Observatory are compared with each other. It is found that the two $g^{0}_{1}$ values show a similar tendency and an approximately linear increase between the Carrington rotation periods CR 2070 and CR 2118. The next polarity reversal is estimated by linear extrapolation to be between CR 2132.2 (December 2012) and CR2134.8 (March 2013).  相似文献   

12.
High-resolution magnetograph observations of the polar magnetic fields have been obtained at intervals of time since the end of 1986 at Big Bear Solar Observatory. The Big Bear data differ from the low-resolution, full-disk magnetograph observations in that the 2 arc sec resolution makes it possible to resolve concentrated field upward of 100 G. The purpose of this ongoing observation is to examine the evolution of polar fields during the expected polarity reversal as cycle 22 passes its maximum phase, and secondly, to study the polar magnetic field: its true field strength, distribution, and how it compares to other parts of the quiet Sun.We find that the >70° net polar flux of both poles has not reversed as of the end of 1989. However, in the lower latitudes of both poles, 50° to 70°, there are signs reminiscent of those preceding the reversals in cycles 19 and 20. These include: decreasing field intensity in the old polarity fluctuations in net flux between the old and new polarities.We find that the net average longitudinal polar fields (above 50°) are 1–2 G, in agreement with results found in cycles 19 and 20. For individual elements, however, the strongest observed field strength poleward of 70° is over 100 G.We compare the polar fields with the equatorial limb as a function of latitute and longitude, respectively, and find the polar fields are comparable to (or stronger than) the quiet equatorial limb. When the observed mean flux density of the polar field as a function of latitude is corrected for limb-darkening and projection effects (assuming the field is radial), the result is nearly constant. These results suggest that despite the high latitudes, the polar fields have field strength and distribution similar to other parts of the quiet Sun.  相似文献   

13.
Surface magnetic fields during the solar activity cycle   总被引:1,自引:0,他引:1  
We examine magnetic field measurements from Mount Wilson that cover the solar surface over a 13 1/2 year interval, from 1967 to mid-1980. Seen in long-term averages, the sunspot latitudes are characterized by fields of preceding polarity, while the polar fields are built up by a few discrete flows of following polarity fields. These drift speeds average about 10 m s-1 in latitude - slower early in the cycle and faster later in the cycle - and result from a large-scale poleward displacement of field lines, not diffusion. Weak field plots show essentially the same pattern as the stronger fields, and both data indicate that the large-scale field patterns result only from fields emerging at active region latitudes. The total magnetic flux over the solar surface varies only by a factor of about 3 from minimum to a very strong maximum (1979). Magnetic flux is highly concentrated toward the solar equator; only about 1% of the flux is at the poles. Magnetic flux appears at the solar surface at a rate which is sufficient to create all the flux that is seen at the solar surface within a period of only 10 days. Flux can spread relatively rapidly over the solar surface from outbreaks of activity. This is presumably caused by diffusion. In general, magnetic field lines at the photospheric level are nearly radial.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

14.
Solar activity and recurrences in magnetic-field distribution   总被引:1,自引:0,他引:1  
A study of the Mount Wilson magnetic-field synoptic chart material divided into latitude zones for the interval 1959–67, and a comparison of the data with sunspot groups have provided a better understanding of the structure of the background-field pattern and its relation to activity. The interaction of old and new fields within the pattern seems to result in long-lived sections of alternating polarity in both hemispheres. We postulate subsurface sources with rotation periods of about 27 days which produce active regions over a longitude zone of some tens of degrees. There is a tendency for the background-field features with strong fields to resist to some extent the shearing effects of differential rotation. A prediction is made concerning the nature of the interplanetary magnetic field above the ecliptic.On leave from the Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, Calif., U.S.A.  相似文献   

15.
Measurements of the polar magnetic fields of the sun made in August 1968 with the Crimean and Mt Wilson magnetographs are compared. The agreement between the results obtained at the two observatories is rather satisfactory. The correlation coefficient between the Crimean and Mt Wilson values of the observed average field strength at different latitudes is 0.7 for the north and 0.5 for the south polar region. The earlier conclusion based on the Mt Wilson material that a polarity reversal of the field occurred at latitudes +70° and -55° in the north and south hemispheres (Stenflo, 1970) is confirmed by the Crimean data.  相似文献   

16.
Varsik  J.R.  Wilson  P.R.  Li  Y. 《Solar physics》1999,184(2):223-237
We present high-resolution studies of the solar polar magnetic fields near sunspot maximum in 1989 and towards sunspot minimum in 1995. We show that, in 1989, the polar latitudes were covered by several unipolar regions of both polarities. In 1995, however, after the polar field reversal was complete, each pole exhibited only one dominant polarity region.Each unipolar region contains magnetic knots of both polarities but the number count of the knots of the dominant polarity exceeds that of the opposite polarity by a ratio of order 4:1, and it is rare to find opposite polarity pairs, i.e., magnetic bipoles.These knots have lifetimes greater than 7 hours but less than 24 hours. We interpret the longitudinal displacement of the knots over a 7-hour period as a measure of the local rotation rate. This rotation rate is found to be generally consistent with Snodgrass' (1983) magnetic rotation law.In an attempt to obtain some insight into the operation of the solar dynamo, sketches of postulated subsurface field configurations corresponding to the observed surface fields at these two epochs of the solar cycle are presented.  相似文献   

17.
Properties of a latitude zonal component of the large-scale solar magnetic field are analyzed on the basis of H charts for 1905–1982. Poleward migration of prominences is used to determine the time of reversal of the polar magnetic field for 1870–1905. It is shown that in each hemisphere the polar, middle latitude and equatorial zones of the predominant polarity of large-scale magnetic field can be detected by calculating the average latitude of prominence samples referred to one boundary of the large-scale magnetic field. The cases of a single and three-fold polar magnetic field reversal are investigated. It is shown that prominence samples referred to one boundary of the large-scale magnetic field do not have any regular equatorward drift. They manifest a poleward migration with a variable velocity up to 30 m s-1 depending on the phase of the cycle. The direction of migration is the same for both low-latitude and high-latitude zones. Two different time intervals of poleward migration are found. One lasts from the beginning of the cycle to the time of polar magnetic field reversal and the other lasts from the time of reversal to the time of minimum activity. The velocity of poleward migration of prominences during the first period is from 5 m s-1 to 30 m s-1 and the second period is devoid of regular latitude drift.  相似文献   

18.
The Mount Wilson daily magnetogram data set is used in its coarse format to determine various statistical properties of magnetic regions. The method of defining magnetic regions is described, and also the criteria for a return of a magnetic region from one day to the next are given. Region sizes, polarity separations, total and net magnetic fluxes, magnetic complexities, and polarity orientations are defined. A relationship is found between polarity orientation and region size in the sense that regions with less magnetic flux tend to show greater deviation on average from the usual polarity orientation.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

19.
Polar Coronal Holes During Cycles 22 and 23   总被引:3,自引:0,他引:3  
Harvey  Karen L.  Recely  Frank 《Solar physics》2002,211(1-2):31-52
The National Solar Observatory/Kitt Peak synoptic rotation maps of the magnetic field and of the equivalent width of the He i 1083 nm line are used to identify and measure polar coronal holes from September 1989 to the present. This period covers the entire lifetime of the northern and southern polar holes present during cycles 22 and 23 and includes the disappearance of the previous southern polar coronal hole in 1990 and and formation of the new northern polar hole in 2001. From this sample of polar hole observations, we found that polar coronal holes evolve from high-latitude (60° ) isolated holes. The isolated pre-polar holes form in the follower of the remnants of old active region fields just before the polar magnetic fields complete their reversal during the maximum phase of a cycle, and expand to cover the poles within 3 solar rotations after the reversal of the polar fields. During the initial 1.2–1.4 years, the polar holes are asymmetric about the pole and frequently have lobes extending into the active region latitudes. During this period, the area and magnetic flux of the polar holes increase rapidly. The surface areas, and in one case the net magnetic flux, reach an initial brief maximum within a few months. Following this initial phase, the areas (and in one case magnetic flux) decrease and then increase more slowly reaching their maxima during the cycle minimum. Over much of the lifetime of the measured polar holes, the area of the southern polar hole was smaller than the northern hole and had a significantly higher magnetic flux density. Both polar holes had essentially the same amount of magnetic flux at the time of cycle minimum. The decline in area and magnetic flux begins with the first new cycle regions with the holes disappearing about 1.1–1.8 years before the polar fields complete their reversal. The lifetime of the two polar coronal holes observed in their entirety during cycles 22 and 23 was 8.7 years for the northern polar hole and 8.3 years for the southern polar hole.  相似文献   

20.
We have compared the latitudinal distributions of polar faculae, green coronal emission maxima, prominences and of a new index of enhanced geomagnetic recurrence with the distribution of magnetic fields during the cycles Nos. 20 and 21.We did not find a distinct high-latitude initial stage of an extended cycle in the corona, prominences and polar faculae distribution. On the contrary, it seems that the polar faculae and their following polarity magnetic fields represent the last evolutionary phase of a magnetic activity cycle lasting 15–17 years. The enhanced recurrent geomagnetic activity seems to be related to the old cycle fields.All studied phenomena clearly display two types of latitudinal distribution: the polar belts, into which the old following polarity fields have been transported from the equatorial belt where both the polarities developin situ simultaneously, but in which the leading polarity fields only remain, crossing the equator during the minimum of activity, to play the same role on the opposite hemispheres in the new cycle.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号