首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The submarine Healy volcano (southern Kermadec arc), with a 2-2.5 km wide caldera, is pervasively mantled with highly vesicular silicic pumice within a water depth of 1,150-1,800 m. Pumices comprise type 1 white-light grey pumice with ⢾ mm vesicles and weak-moderate foliation, type 2 grey pumice with millimetre-scale laminae, flow banded foliation, including stretched vesicles ⣗ mm in length, and a minor finely vesicular type 3 pumice. All types are sparsely porphyritic, with undevitrified glassy groundmass (68-70% SiO2), which is microlite and lithic free. Coexisting pyroxenes yield magma temperatures of ~950 °C. Pumice density is А.5 g cm-3 and vesicularity is 78-83%. Vesicle size distributions for types 1 and 2 pumice, range from ~20 µm to >20 mm, with a strong power-law relation (with d=-2.5ǂ.4) for vesicles <1-2 mm. Larger vesicles have variable size modes. The vesicle size distribution and packing indicates rapid magma decompression and ascent. Consideration of the pressure dependent, solubility of H2O at a magma temperature of 𙧶 °C and water content of Ж wt%, with pumice petrography and vesicle granulometry, strongly suggests a pyroclastic eruption. Reconstructions of the submarine edifice between water depths of 1,000 and 550 m constrain the ambient hydrostatic pressure to ~6-9 MPa. Pressures >~9 MPa will limit vesicularity to less than the observed 78-83%, whereas pressure <~6 MPa require a more shallower reconstruction of the edifice and larger-volume syn-eruptive collapse. Uniformly high vesicularity is interpreted as evidence of insulation within an eruption column comprising steam and hot pyroclasts. Most pyroclasts cool, condensing and ingesting water into steam-inflated vesicles, and then sink. Progression into pyroclastic mode would expand the eruption column, displace ambient water, reduce the hydrostatic load, and further promote vesiculation and fragmentation. Pyroclasts within the column would quench at these reduced pressures. We argue that Healy eruptions deeper than ~1,000 m cannot be pyroclastic. Volumes for the lower and upper bounds of edifice size are 2.36 and 3.58 km3, respectively, but do not account for intra-caldera pumice fill. These volumes are considered to be predominantly primary eruption output, as shown by a dearth of accessory lithics in all pumice, yielding (at an average 81% vesicularity) eruptive pumice volumes of between 10 and 15 km3. Some pyroclasts may have risen to the sea surface and be a correlative of the sea-rafted Loisels pumice; the latter occurs in some New Zealand Holocene beach sequences and has a estimated age of 590ᇤ calendar years.  相似文献   

2.
Eruption styles on the subaerial East Rift Zone (ERZ) of Kilauea volcano are reviewed and a classification scheme for the different types of eruption is proposed. The various eruption types are produced by differing thermal and driving pressure behaviour in the feeder dikes. Existing evidence is reviewed and new evidence presented of the types and volumes of eruptions on the Puna Ridge, which is the submarine extension of the ERZ. Eruptions on the Puna Ridge fall into the same five classes as, and are of comparable volume to, those on the subaerial ERZ. Evidence is presented which suggests that feeder dikes for Puna Ridge eruptions are more thermally viable than those feeding subaerial eruptions, and this difference causes long-lived, large-volume eruptions to be more common on the Puna Ridge than on the subaerial ERZ. This systematic variation in thermal viability may be due to increased dike width for Puna Ridge dikes or increased pressure gradients driving magma flow. Lateral dike emplacement is common to many basaltic systems including on other Hawaiian volcanoes, in Iceland and at mid-ocean ridges. The systematic trend inferred for the ERZ of Kilauea implies that in the other systems large-volume eruptions may also be more common at great distances than they are close to the magma centre.  相似文献   

3.
Cores recovered from the Iceland Basin show evidence of transport and deposition of volcaniclastic sediment from the Eastern Volcanic Zone of Iceland during the Holocene and last glacial period. Three types of deposits have been identified: tephra fall, sediment gravity flows, and bottom-current-controlled deposits. Tephra fall layers contain basaltic glass of composition that suggests Katla volcano as the major source. A chronology of the volcano activity is reconstructed, back to isotopic stage 5d (120,000 yr). Glass chemistry of tephra in sediment gravity flows deposited south of Myrdalsjökull Canyon indicates a source in the Grímsvötn–Lakagígar volcanic system. These volcaniclastic gravity flows were most likely derived from jökulhlaups or large glacial floods, at a time of a more extensive ice cover over the volcanic zone. Deposition of the sediment gravity flows has created a deep-sea fan south of the canyon. Basalt glass composition, age, and depositional environment suggest that one early Holocene turbidite sequence was derived from a large jökulhlaup of the Grímsvötn area. The volcanogenic sediment gravity flows were influenced by a strong contour current, moving across the Katla sediment ridges. The contour current has winnowed the silt fraction and transported it downstream as suspended load. The recovery of numerous silty volcaniclastic layers, enriched in detrital crystals, indicates that they contributed to the sedimentation of contourite drifts.  相似文献   

4.
This study investigates the types of subaqueous deposits that occur when hot pyroclastic flows turbulently mix with water at the shoreline through field studies of the Znp marine tephra in Japan and flume experiments where hot tephra sample interacted with water. The Znp is a very thick, pumice-rich density current deposit that was sourced from subaerial pyroclastic flows entering the Japan Sea in the Pliocene. Notable characteristics are well-developed grain size and density grading (lithic-rich base, pumice-rich middle, and ash-rich top), preponderance of sedimentary lithic clasts picked up from the seafloor during transport, fine ash depletion in coarse facies, and presence of curviplanar pumice clasts. Flume experiments provide a framework for interpreting the origin and proximity to source of the Znp tephra. On contact of hot tephra sample with water, steam explosions produced a gas-supported pyroclastic density current that advanced over the water while a water-supported density current was produced on the tank floor from the base of a turbulent mixing zone. Experimental deposits comprise proximal lithic breccia, medial pumice breccia, and distal fine ash. Experiments undertaken with cold, water-saturated slurries of tephra sample and water did not produce proximal lithic breccias but a medial basal lithic breccia beneath an upper pumice breccia. Results suggest the characteristics and variations in Znp facies were strongly controlled by turbulent mixing and quenching, proximity to the shoreline, and depositional setting within the basin. Presence of abundant curviplanar pumice clasts in submarine breccias reflects brittle fracture and dismembering that can occur during fragmentation at the vent or during quenching. Subsequent transport in water-supported pumiceous density currents preserves the fragmental textures. Careful study is needed to distinguish the products of subaerial versus subaqueous eruptions.  相似文献   

5.
We discuss the chemical compositions of rhyolites from three distinct tectonic settings: (i) the continental rift from Ethiopia (both Oligocene–Miocene and Quaternary rhyolites); (ii) the early Miocene continental arc of Japan (the Mt Wasso rhyolites related to the rifting of the Japan Sea); and (iii) the oceanic Izu–Bonin Island Arc. The comparison reveals that the oceanic island arc rhyolites have high contents of CaO, Al2O3, and Sr, and extremely low abundance of trace elements including K2O. In contrast, the Ethiopian continental rift rhyolites are characterized by low contents of CaO, Al2O3, and Sr, and high contents of K2O, and are enriched in the whole range of trace elements. The continental arc Mt Wasso rhyolites are apparently low in Nb content, although they display similar chemical trends to those of the Ethiopian rhyolites. This obvious difference in the chemical signatures of the rhyolites from the three tectonic settings is the consequence of their derivation from different sources. The implication of this result is that fractional crystallization processes were dominant in the rift‐related rhyolites both from continental rift and continental arc regardless of the prevailing tectonic setting and the nature of the crust (age, thickness, composition), whereas the oceanic island arc rhyolites may form through partial melting of young, mafic crust.  相似文献   

6.
 The 1992 eruption of Crater Peak, Mount Spurr, Alaska, involved three subplinian tephra-producing events of similar volume and duration. The tephra consists of two dense juvenile clast types that are identified by color, one tan and one gray, of similar chemistry, mineral assemblage, and glass composition. In two of the eruptive events, the clast types are strongly stratified with tan clasts dominating the basal two thirds of the deposits and gray clasts the upper one third. Tan clasts have average densities between 1.5 and 1.7 g/cc and vesicularities (phenocryst free) of approximately 42%. Gray clasts have average densities between 2.1 and 2.3 g/cc, and vesicularities of approximately 20%; both contain abundant microlites. Average maximum plagioclase microlite lengths (13–15 μm) in gray clasts in the upper layer are similar regardless of eruptive event (and therefore the repose time between them) and are larger than average maximum plagioclase microlite lengths (9–11 μm) in the tan clasts in the lower layer. This suggests that microlite growth is a response to eruptive processes and not to magma reservoir heterogeneity or dynamics. Furthermore, we suggest that the low vesicularities of the clasts are due to syneruptive magmatic degassing resulting in microlitic growth prior to fragmentation and not to quenching of clasts by external groundwater. Received: 5 September 1997 / Accepted: 1 February 1998  相似文献   

7.
Igneous rocks from the Philippine tectonic plate recovered on Deep Sea Drilling Project Legs 31, 58 and 59 have been analyzed for Sr, Nd and Pb isotope ratios. Samples include rocks from the West Philippine Basin, Daito Basin and Benham Rise (40–60 m.y.), the Palau-Kyushu Ridge (29–44 m.y.) and the Parece Vela and Shikoku basins (17–30 m.y.). Samples from the West Philippine, Parece Vela and Shikoku basins are MORB (mid-ocean ridge basalt)-like with 87Sr/86Sr= 0.7026−0.7032, 143Nd/144Nd= 0.51300−0.51315, and 206Pb/204Pb= 17.8−18.1. Samples from the Daito Basin and Benham Rise are OIB (oceanic island basalt)-like with 87Sr/86Sr= 0.7038−0.7040, 143Nd/144Nd= 0.51285−0.51291 and 206Pb/204Pb= 18.8−19.2. All of these rocks have elevated 207Pb/204Pb and 208Pb/204Pb compared to the Northern Hemisphere Regression Line (NHRL) and have δ207Pb values of 0 to +6 and δ208Pb values of +32 to +65. Lavas from the Palau-Kyushu Ridge, a remnant island arc, have 87Sr/86Sr= 7032−0.7035, 143Nd/144Nd= 0.51308−0.51310 and 206Pb/204Pb= 18.4−18.5. Unlike the basin magmas erupted before and after them, these lavas plot along the NHRL and have Pb-isotope ratios similar to modern Pacific plate MORB's. This characteristic is shared by other Palau-Kyushu Arc volcanic rocks that have been sampled from submerged and subaerial portions of the Mariana fore-arc.At least four geochemically distinct magma sources are required for these Philippine plate magmas. The basin magmas tap Source 1, a MORB-mantle source that was contaminated by EMI (enriched mantle component 1 [31]) and Source 2, an OIB-like mantle source with some characteristics of EMII (enriched mantle component 2 [31]). The arc lavas are derived from Source 3, a MORB-source or residue mantle including Sr and Pb from the subducted oceanic crust, and Source 4, MORB-source or residue mantle including a component with characteristics of HIMU (mantle component with high U/Pb [31]). These same sources can account for many of the isotopic characteristics of recent Philippine plate arc and basin lavas. The enriched components in these sources which are associated with the DUPAL anomaly were probably introduced into the asthenosphere from the deep mantle when the Philippine plate was located in the Southern Hemisphere 60 m.y.b.p.  相似文献   

8.
9.
Intense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1-AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapilli-bearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3-AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma-water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard.  相似文献   

10.
The March 1981 eruption of Mount Etna occurred on the northern slopes of the volcano in an area previously inactive for more than 400 a. A radial fissure system extending 7.5 km and producing 20±2×106 m3 of basic hawaiite lava, opened at 2600 m a.s.l. on 17th March and migrated downslope to 1125 m a.s.l. where activity ceased on 23rd March. Gravity evidence points to the draining of a radial storage-dyke, located between sea-level and +1 km a.s.l. Whole-rock chemistry and petrography suggests that the magma in the dyke was a hybrid supporting crystal and compositional gradients developed as a result of progressively greater mixing of residual 1979 basic hawaiite magma with fresh basic hawaiite magma during permissive filling of the dyke around September 1980. These mixing gradients caused the eruption to display a significant contrast in the concentrations of Al2O3, Sr, CaO, MgO and Fe2O3 (total) between early, high-altitude and later, low-altitude products. The fresh magma which entered the high-level system around September 1980 ascended rapidly from a deep storage region at 16–24 km depth. On a FMA plot, the composition range of the 1981 lava lies at the end of a temporal variation trend defined by the composition of successive flank eruptions back to 1971 and appears to be repeated by successive eruptions between 1923 and 1949. This suggest that the chemistry of historic lavas may, in a general way, reflect the evolution path of magma in the deep storage region despite masking of detail by high-level processes such as mixing. These temporal trends may, if real, reflect successive batches of freshly generated magma from the mantle source region entering into and subsequently differentiating within the deep storage region. Paper presented to the Symp. on Formation and Evolution of Magma Chambers: Physical and Chemical Processes, 18th IUGGIAVCEI Gen. Assembly, Hamburg, F.R.G., August 1983.  相似文献   

11.
The deposits of three eruptions in the last 5000 years are described in detail in order to constrain eruptive parameters and allow a quantitative assessment of the hazard from a range of explosive eruption types at Sete Cidades volcano, São Miguel, Azores. These deposits include: the Caldeira Seca eruption (P17) which occurred around 600 yr BP, which was the last explosive event from inside the Sete Cidades caldera, the P11 eruption, dated at 2220 ± 70 yr BP, and the undated P8 eruption (< 3000 yr BP). These deposits were chosen to represent the range of likely explosive activity from the caldera.  相似文献   

12.
Fifty-three major explosive eruptions on Iceland and Jan Mayen island were identified in 0–6-Ma-old sediments of the North Atlantic and Arctic oceans by the age and the chemical composition of silicic tephra. The depositional age of the tephra was estimated using the continuous record in sediment of paleomagnetic reversals for the last 6 Ma and paleoclimatic proxies (δ18O, ice-rafted debris) for the last 1 Ma. Major element and normative compositions of glasses were used to assign the sources of the tephra to the rift and off-rift volcanic zones in Iceland, and to the Jan Mayen volcanic system. The tholeiitic central volcanoes along the Iceland rift zones were steadily active with the longest interruption in activity recorded between 4 and 4.9 Ma. They were the source of at least 26 eruptions of dominant rhyolitic magma composition, including the late Pleistocene explosive eruption of Krafla volcano of the Eastern Rift Zone at about 201 ka. The central volcanoes along the off-rift volcanic zones in Iceland were the source of at least 19 eruptions of dominant alkali rhyolitic composition, with three distinct episodes recorded at 4.6–5.3, 3.5–3.6, and 0–1.8 Ma. The longest and last episode recorded 11 Pleistocene major events including the two explosive eruptions of Tindfjallajökull volcano (Thórsmörk, ca. 54.5 ka) and Katla volcano (Sólheimar, ca. 11.9 ka) of the Southeastern Transgressive Zone. Eight major explosive eruptions from the Jan Mayen volcanic system are recorded in terms of the distinctive grain-size, mineralogy and chemistry of the tephra. The tephra contain K-rich glasses (K2O/SiO2>0.06) ranging from trachytic to alkali rhyolitic composition. Their normative trends (Ab–Q–Or) and their depleted concentrations of Ba, Eu and heavy-REE reflect fractional crystallisation of K-feldspar, biotite and hornblende. In contrast, their enrichment in highly incompatible and water-mobile trace elements such as Rb, Th, Nb and Ta most likely reflect crustal contamination. One late Pleistocene tephra from Jan Mayen was recorded in the marine sequence. Its age, estimated between 617 and 620 ka, and its composition support a common source with the Borga pumice formation at Sør Jan in the south of the island.  相似文献   

13.
We use a simple model of the formation, growth, coalescence and migration of veins of basaltic melt generated by partial melting in chondritic asteroids to deduce the sizes of, and pressures within, the fluid-filled dikes reaching the surfaces of such bodies. The gas contents ( 1000 ppm of mainly CO and N2) of the asteroids were high enough that bubbles of free gas trapped in the melt veins gave the basaltic melts significant buoyancy; expansion of these gases as a dike opened to the vacuum at the surface led to fragmentation of the melts into liquid droplets which were transported upwards by the accelerating gases to the surface. The sizes of these droplets and, hence, of the pyroclastic glass beads into which they cooled, are calculated to lie in the range 30 μm to 4 mm; this range is essentially independent of the size or gas content of the asteroid parent and only weakly dependent on the internal pressure of the erupting fluid. The fate of the pyroclasts, however, does depend on all of these factors. At very low internal pressures, significant separation of the gas and liquid in a rising dike may take place and not all of the liquid will be expelled from the dike when it opens to the surface. For relatively large ( 100 km radius) asteroids with relatively low ( 300 ppm) gas contents, the larger clasts are too heavy to be lifted from the level at which magma fragmentation takes place by the gas flow and so would also remain behind to form basaltic veins. The apparent absence of basaltic veins in meteorites then implies both that internal pressures in near-surface dikes were generally greater than 0.3 MPa and that low gas contents were not common. Finally, as long as pyroclasts are lofted from the magma fragmentation level, they will be accelerated to at least 90% of the final gas speed. If this speed exceeds the escape speed from the asteroid (as happens readily for high gas contents and small asteroids), the pyroclasts will be expelled into space and lost from the meteorite record. Otherwise (low gas contents or large asteroids), they will eventually fall back to be incorporated into the surface regolith, modifying the chemical and physical properties of meteorites subsequently derived from it.  相似文献   

14.
Historic and recent (last 2,000?years) eruptions on the active volcanic island of Tenerife have been predominantly effusive, indicating that this is the most probable type of activity to be expected in the near future. In the past, lava flow invasion caused major damage on the island, and as the population and infrastructure have increased dramatically since the last eruption, lava flows are the most important short-term volcanic risk on Tenerife. Hence, an understanding of lava flow behaviour is vital to manage risks from lava flows and minimise future losses on the island. This paper focuses on the lava flows from the historic eruptions in Tenerife, providing new data on the volumes emitted, advance rates and the timing of the emplacement of flows. The studies show three main stages in the development of unconfined flow fields: the first stage, corresponding to the fast advance of the initial fronts during the first 24?C36?h of eruption (reaching calculated velocities of up to 1.1?m/s); the second stage, in which fronts stagnate; and a third stage, in which secondary lava flows develop from breakouts 4?C7?days after the initial eruption and farther extend the flow field (velocities of up to 0.02?m/s have been calculated for this stage). The breakouts identified originated at sites both proximal and distal to the vent and, in both cases, caused damage through lengthening and widening the original flow field. Hence, the probability of damage from lavas to land and property is highest during stages 1 and 3, and this should be accounted for when planning the response to a future effusive eruption. Tenerife??s lava flows display a similar behaviour to that of lava flows on volcanoes characterised by basaltic effusive activity (such as Etna or Kilauea), indicating the possibility of applying forecasting models developed at those frequently active volcanoes to Tenerife.  相似文献   

15.
Examination of glass and crystal chemistry in the Rotoiti Pyroclastics (>100 km3 of magma) demonstrates that compositional diversity was produced by mingling of the main rhyolite magma body with small volumes of other magmas that had been crystallizing in separate stagnant magma chambers. Most (>90%) of the Rotoiti deposits were derived from a low-K2O, cummingtonite-bearing, rhyolitic magma (T1) discharged throughout the eruption sequence. T1 magma is homogeneous in composition (melt SiO2=77.80±0.28 wt.%), temperature (766±13 °C) and oxygen fugacity (NNO+0.92±0.09). Most T1 phenocrysts formed in a shallow (∼200 MPa), near water-saturated (awater=0.8) storage chamber shortly before eruption. Basaltic scoria erupted immediately before the rhyolites, and glass-bearing microdiorite inclusions within the rhyolite deposits, suggest that basalt emplaced on the floor of the chamber drove vigorous convection to produce the well-mixed T1 magma. Lithic lag breccias contain melt-bearing biotite granitoid inclusions that are compositionally distinct from T1 magma. The breccias which overlie the voluminous T1 pyroclastic flow deposits resulted from collapse of the syn-Rotoiti caldera. Post-collapse Rotoiti pumices contain T1 magma mingled with another magma (T2) that is characterized by high-K glass and biotite, and was cooler and less oxidised (712±16 °C; NNO−0.16±0.16). The mingled clasts contain bimodal disequilibrium populations of all crystal phases. The granitoid inclusions and the T2 magma are interpreted as derived from high-K magma bodies of varying ages and states of crystallization, which were adjacent to but not part of the large T1 magma body. We demonstrate that these high-K magmas contaminated the erupting T1 magma on a single pumice clast scale. This contamination could explain the reported wide range of zircon U–Th ages in Rotoiti pumices, rather than slow crystallization of a single large magma body.  相似文献   

16.
17.
The late Tertiary-Recent collision of the d'Entrecasteaux Zone with the Vanuatu (New Hebrides) Island Arc appears to have been associated with a shift to generally more potassic compositions. Glass shards analysed from Quaternary volcanic ashes recovered from ODP Leg 134 drill sites follow distinct shoshonitic and calc-alkaline trends, consistent with those previously recognised onshore. In the Aoba Basin (Site 832) a marked compositional change is recognised at 37 m below sea floor (mbsf). From estimates of sedimentation rates this is equivalent to an age of about 100 ka and may be associated with the development of the Central Basin volcanoes of Santa Maria, Aoba and Ambrym on fracture zones transverse to the island arc. Deeper than 37 mbsf differentiated compositions fall on a medium-K calc-alkaline trend but the associated basaltic glasses are strongly potassic. Conversely, above this level the differentiated glasses follow a shoshonitic trend but the basaltic glasses are medium-K calc-alkaline. Separate sources are envisaged, associated with subduction and rifting. Episodic subduction of the d'Entrecasteaux Zone exercises tectonic control over the release of magma from different depths. In contrast, shoshonitic glasses are sparsely represented in the Vanuatu forearc where relatively low-K calc-alkaline compositions probably correspond to the ashes in the lower part of the Aoba Basin sequence. This is consistent with their age (> 100 ka) estimated from lower sedimentation rates at these sites. The scarcity of younger shoshonitic ashes at the forearc sites is attributed to the influence of high-level westerly winds transporting ash from the Central Chain volcanoes eastwards across the North Fiji Basin.  相似文献   

18.
The Kos Plateau Tuff consists of pyroclastic deposits from a major Quaternary explosive rhyolitic eruption, centred about 10 km south of the island of Kos in the eastern Aegean, Greece. Five main units are present, the first two (units A and B) were the product of a phreatoplinian eruption. The eruption style then changed to `dry' explosive style as the eruption intensity increased forming a sequence of ignimbrites and initiating caldera collapse. The final waning phase returned to phreatomagmatic eruptive conditions (unit F). The phreatomagmatic units are fine grained, poorly sorted, and dominated by blocky vitric ash, thickly ash-coated lapilli and accretionary lapilli. They are non-welded and were probably deposited at temperatures below 100°C. All existing exposures occur at distances between 10 km and 40 km from the inferred source. Unit A is a widespread (>42 km from source), thin (upwind on Kos) to very thick (downwind), internally laminated, dominantly ash bed with mantling, sheet-like form. Upwind unit A and the lower and middle part of downwind unit A are ash-rich (ash-rich facies) whereas the upper part of downwind unit A includes thin beds of well sorted fine pumice lapilli (pumice-rich facies). Unit A is interpreted to be a phreatoplinian fall deposit. Although locally the bedforms were influenced by wind, surface water and topography. The nature and position of the pumice-rich facies suggests that the eruption style alternated between `wet' phreatoplinian and `dry' plinian during the final stages of unit A deposition.Unit B is exposed 10–19 km north of the inferred source on Kos, overlying unit A. It is a thick to very thick, internally stratified bed, dominated by ash-coated, medium and fine pumice lapilli in an ash matrix. Unit B shows a decrease in thickness and grain size and variations in bedforms downcurrent that allow definition of several different facies and laterally equivalent facies associations. Unit B ranges from being very thick, coarse and massive or wavy bedded in the closest outcrops to source, to being partly massive and partly diffusely stratified or cross-bedded in medial locations. Pinch and swell, clast-supported pumice layers are also present in medial locations. In the most distal sections, unit B is stratified or massive, and thinner and finer grained than elsewhere and dominated by thickly armoured lapilli. Unit B is interpreted to have been deposited from an unsteady, density stratified, pyroclastic density current which decelerated and progressively decreased its particle load with distance from source. Condensation of steam during outflow of the current promoted the early deposition of ash and resulted in the coarser pyroclasts being thickly ash-coated. The distribution, texture and stratigraphic position of unit B suggest that the pyroclastic density current was generated from collapse of the phreatoplinian column following a period of fluctuating discharge when the eruptive activity alternated between `wet' and `dry'. The pyroclastic density current was transitional in particle concentration between a dilute pyroclastic surge and a high particle concentration pyroclastic flow. Unidirectional bedforms in unit B suggest that the depositional boundary was commonly turbulent and in this respect did not resemble conventional pyroclastic flows. However, unit B is relatively thick and poorly sorted, and was deposited more than 19 km from source, implying that the current comprised a relatively high particle concentration and in this respect, did not resemble a typical pyroclastic surge.  相似文献   

19.
 The Cerro Chascon-Runtu Jarita Complex is a group of ten Late Pleistocene (∼85 ka) lava domes located in the Andean Central Volcanic Zone of Bolivia. These domes display considerable macroscopic and microscopic evidence of magma mixing. Two groups of domes are defined chemically and geographically. A northern group, the Chascon, consists of four lava bodies of dominantly rhyodacite composition. These bodies contain 43–48% phenocrysts of plagioclase, quartz, sanidine, biotite, and amphibole in a microlite-poor, rhyolitic glass. Rare mafic enclaves and selvages are present. Mineral equilibria yield temperatures from 640 to 750  °C and log ƒO2 of –16. Geochemical data indicate that the pre-eruption magma chamber was zoned from a dominant volume of 68% to minor amounts of 76% SiO2. This zonation is best explained by fractional crystallization and some mixing between rhyodacite and more evolved compositions. The mafic enclaves represent magma that intruded but did not chemically interact much with the evolved magmas. A southern group, the Runtu Jarita, is a linear chain of six small domes (<1 km3 total volume) that probably is the surface expression of a dike. The five most northerly domes are composites of dacitic and rhyolitic compositions. The southernmost dome is dominantly rhyolite with rare mafic enclaves. The composite domes have lower flanks of porphyritic dacite with ∼35 vol.% phenocrysts of plagioclase, orthopyroxene, and hornblende in a microlite-rich, rhyodacitic glass. Sieve-textured plagioclase, mixed populations of disequilibrium plagioclase compositions, xenocrystic quartz, and sanidine with ternary composition reaction rims indicate that the dacite is a hybrid. The central cores of the composite domes are rhyolitic and contain up to 48 vol.% phenocrysts of plagioclase, quartz, sanidine, biotite, and amphibole. This is separated from the dacitic flanks by a banded zone of mingled lava. Macroscopic, microscopic, and petrologic evidence suggest scavenging of phenocrysts from the silicic lava. Mineral equilibria yield temperatures of 625–727  °C and log ƒO2 of –16 for the rhyolite and 926–1000  °C and log ƒO2 of –9.5 for the dacite. The rhyolite is zoned from 73 to 76% SiO2, and fractionation within the rhyolite composition produced this variation. Most of the 63–73% SiO2 compositional range of the lava in this group is the result of mixing between the hybrid dacite and the rhyolite. Eruption of both groups of lavas apparently was triggered by mafic recharge. A paucity of explosive activity suggests that volatile and thermal exchanges between reservoir and recharge magmas were less important than volume increase and the lubricating effects of recharge by mafic magmas. For the Runtu Jarita group, the eruption is best explained by intrusion of a dike of dacite into a chamber of crystal-rich rhyolite close to its solidus. The rhyolite was encapsulated and transported to the surface by the less-viscous dacite magma, which also acted as a lubricant. Simultaneous effusion of the lavas produced the composite domes, and their zonation reflects the subsurface zonation. The role of recharge by hotter, more fluid mafic magma appears to be critical to the eruption of some highly viscous silicic magmas. Received: 23 August 1998 / Accepted: 10 March 1999  相似文献   

20.
The climactic event of Mount Pinatubo represents one of the most thoroughly studied eruptions of the century and has provided important insights into the dynamics of explosive volcanism. We have performed detailed textural analyses of the white and gray pumices of the plinian and pyroclastic flow deposits, and found that differences in color and clast density reflect different crystal and vesicle amounts and size distributions. White pumice has higher vesicularity, deformed and highly coalesced vesicles with thin walls, euhedral phenocrysts and microlite-free groundmass. Gray pumice shows lower vesicularity, wider ranges in vesicle number density, limited coalescence, vesicles with thick walls that are less deformed, phenocrysts and microphenocrysts with abundant solution pitting, and groundmass containing ubiquitous microlites and crystal fragments. The presence of white and gray pumice varieties and the broad range in vesicularity and vesicle number density that characterizes both of them appear to record the complexities of conduit processes such as magma vesiculation and fragmentation and the development of conduit regions marked by different rheological behaviors. In particular, the results of this study suggest the likely importance of intense shear and viscous dissipation at the conduit walls, a mechanism that may be responsible for the creation and discharge of the gray pumice of this eruption along with the dominant white variety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号