首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The SW England Rhenohercynian passive margin initiated with rift-related non-marine sedimentation and bimodal magmatism (Late Lockhovian). Continued lithospheric extension resulted in the exhumation of mantle peridotites and limited seafloor spreading (Emsian-Eifelian). Variscan convergence commenced during the Late Eifelian and was coeval with rifting further north. Collision was marked by the Early Carboniferous emergence of deep marine sedimentary/volcanic rocks from the distal continental margin, oceanic lithosphere, pre-rift basement and upper plate gneisses (correlated with the Mid-German Crystalline High of the Saxothuringian Zone). Progressive inversion of the passive margin was strongly influenced by rift basin geometry. Convergence ceased in the Late Carboniferous and was replaced by an extensional regime that reactivated basin controlling/thrust faults and reorientated earlier fabrics (Start-Perranporth Zone). The resultant exhumation of the lower plate was accompanied by emplacement of the Early Permian SW England granites and was contemporaneous with upper plate sedimentary basin formation above the reactivated Rhenohercynian suture. The Rhenohercynian passive margin probably developed in a marginal basin north of the Rheic Ocean or, possibly, a successor basin following its closure. The Lizard ophiolite is unlikely to represent Rheic Ocean floor or associated forearc (SSZ) crust. The Rheic and Rhenohercynian sutures may be coincident or the Rheic suture may be located further south in the Léon Domain.  相似文献   

2.
Several small outcrops along the western Rhinegraben escarpment expose rocks which represent the western prolongation of the so-called Mid-German Crystalline Rise. This basement ridge separates the Rhenohercynian and Saxothuringian zones of the Variscan belt of Europe and thus marks the boundary between the external and the internal zones. The variable rock association includes an orthogneissamphibolite complex, weakly deformed low grade sediments (?Devonian and Visean), and a number of different syn- to post-orogenic granodioritic to granitic intrusives, all crosscut by Late Lower Carboniferous undeformed lamprophyric dikes and unconformable overlain by Permian sediments and volcanics. Largely isothermal decompression during coaxial fabric evolution in the orthogneiss complex marks an early stage of deformation possibly due to crustal attenuation. Peak metamorphism (amphibolite/greenschist facies) in the other sequences with only minor orogenic shortening is succeeded by retrogressive strike-slip deformation associated to peak intrusive activity. The encountered typically low-P high-T metamorphism, the predominant strike-slip type kinematic pattern, and the preservation of parts of the Devono-Carboniferous sedimentary cover of the Rise preclude major crustal thickening and subsequent exhumation. An exception is the probably thrust-bounded juxtaposition of the Albersweiler orthogneisses and Burrweiler schists which is supported by their respective PT-paths. The orogenic imprint in the sedimentary cover of the crystalline rise appears to be thermal rather than strain-induced, suggesting a dominant role of the abundant pre- to late-orogenic intrusives. The essential aspects of this sequence of related structural and thermal events as well as the rock type association suggest a largely submarine incipient magmatic arc type of orogenic environment for this part of the Variscan belt. Its evolution probably started during the Upper Devonian on a disintegrating continental platform and proceeded through the Lower Carboniferous continental collision with the Rhenohercynian zone entailing a concomittant switch in deformation mode of the upper plate.  相似文献   

3.
The architecture of the European Variscides has been subdivided by Kossmat (1927) into paleogeographically coherent units which are presently interpreted as former plate fragments. The Mid-German Crystalline Rise (MGCR) separates two fragments (Rhenohercynian and Saxothuringian belts) at the site of an inferred plate boundary and reequilibrated orogenic root. The commonly favoured model interprets the MGCR as the magmatic arc on Saxothuringian crust above a south-dipping subduction zone in Upper Devonian and Carboniferous times. Data from the MGCR, the kinematic evolution of the Mid-European Variscides, and first order volume balancing suggest a reinterpretation of this unit which challenges classical views on the MGCR as well as on the subdivision of Variscan architecture. The MGCR is composed of two rock groups with different tectonic identity. A Lower Carboniferous low pressure-high temperature magmatic arc association on Lower Paleozoic basement rests tectonically on a stack of medium pressuremedium temperature rocks of inferred Rhenohercynian origin. The latter were tectonically accreted to the base of the overriding plate by tectonic underplating. The entire process was controlled by oblique convergence. This led to regional partitioning of the plate kinematic vector into contractional domains (lower Rhenohercynian plate and back-arc area of the upper Saxothuringian plate), bulk heterogeneous plate margin parallel extensional domains (MGCR), and plate margin parallel wrench domains (MGCR boundaries). During this process material was continually transferred from the lower plate to the upper plate, uplifted and exhumed by net crustal extension. The concomitant removal of parts of the former arc and the entire orogenic root necessitates a reappraisal of Variscan architecture and evolution.  相似文献   

4.
The Halle Volcanic Complex (HVC) is part of the transtensional intracontinental Saale Basin, which formed on the Mid-German Crystalline Rise located at the southern margin of the late Carboniferous/early Permian volcanic province of central Europe. Magmatic activity ranged from early trachybasalts, trachyandesites, and trachydacites followed by calc-alkaline, mildly peraluminous low-Si rhyolites, the latter of which had intruded at a very shallow crustal level. Two groups of geochemically heterogeneous and isotopically distinct mafic-intermediate rocks have to be distinguished, which originated from enriched mantle (lower crustal) sources and experienced crustal contamination to various extents. These rocks preceded the emplacement of rhyolites that are remarkably uniform in major and trace element chemistry as well as Nd isotope composition. Distinctly negative )Nd(T=300 Ma) (-6.7 to -7.0) of the rhyolites implies significant involvement of crustal material. The Pb isotopic composition of K-feldspar and trace element content of the rhyolites are compatible with remelting of Saxothuringian rather than Rhenohercynian crustal domains of the Variscan orogen. Slightly differing REE abundances in the rhyolites are attributed to an inhomogeneous distribution of accessory minerals. In conflict with their generation in an extensional environment, the trace element signature of the HVC rocks indicates a magmatic arc or collisional setting rather than an intracontinental within-plate setting. The composition of rhyolites from extensional settings at Halle and the adjacent Northeast German Basin demonstrates that trace element composition and geodynamic environment may not be correlated. Furthermore, the geochemistry of these rocks implies that the same type of magmatism may take entirely different chemical expressions in dependence of the structural and chemical composition of the underlying lithospheric block, which might be used to map hidden destroyed terrain boundaries in ancient orogens.  相似文献   

5.
The Permocarboniferous basins in Northeast Germany formed on the heterogeneous and eroded parts of the Variscan orogene and its deformed northern foreland. Transtensional tectonic movements and thermal re-equilibration lead to medium-scale crustal fragmentation, fast subsidence rates and regional emplacement of large amounts of mostly acidic volcanics. The later basin formation and differentiation was triggered by reversals of the large-scale stress field and reactivation of prominent zones of weakness like the Elbe Fault System and the Rhenohercynian/Saxothuringian boundary that separate different Variscan basement domains in the area. The geomechanical behaviour of the latter plays an important role for the geodynamic evolution of the medium to large-scale structural units, which we can observe today in three dimensions on structural maps, geophysical recordings and digital models. This study concentrates on an area that comprises the southern Northeast German Basin, the Saale Basin, the Flechtingen High, the Harz Mountains High and the Subhercynian Basin. The presented data include re-evaluations of special geological and structural maps, the most recent interpretation of the DEKORP BASIN 9601 seismic profile and observations of exposed rock sections in Northeast Germany. On the basis of different structural inventories and different basement properties, we distinguish two structural units to the south and one structural unit to the north of the Elbe Fault System. For each unit, we propose a geomechanical model of basin formation and basin inversion, and show that the Rhenohercynian Fold and Thrust Belt domain is deformed in a thin-skinned manner, while the Mid-German Crystalline Rise Domain, which is the western part of the Saxothuringian Zone, rather shows a thick-skinned deformation pattern. The geomechanical model for the unit north to the Elbe Fault System takes account to the fact that the base of the Zechstein beneath the present Northeast German basin shows hardly any evidence for brittle deformation, which indicates a relative stable basement. Our geomechanical model suggests that the Permocarboniferous deposits may have contributed to the structural stiffness by covering small to medium scale structures of the upper parts of the brittle basement. It is further suggested that the pre-Zechstein successions underneath the present Northeast German basin were possibly strengthening during the Cretaceous basin inversion, which resulted in stress transfer to the long-lived master faults, as indicated for example by the shape of the salt domes in the vicinity of the latter faults. Contrary to this, post-Zechstein successions deformed in a different and rather complex way that was strongly biased by intensive salt tectonic movements.  相似文献   

6.
The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionU–Pb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690–750°C and 5–7 kbar, corresponding toan intrusion depth of 19–25 km. At 337 ± 1 Ma themagmatic–metamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 7–11 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 5–7 to 2–4 kbar at 690–750°C.Subsequently, the metamorphic–magmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published K–Ar muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; U–Pb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection  相似文献   

7.
The Armorican Massif (western France) provides an excellent record of the Palaeozoic history of the Variscan belt. Following the Late Neoproterozoic Cadomian orogeny, the Cambro-Ordovician rifting was associated with oceanic spreading. The Central- and North-Amorican domains (which together constitute the core of the Armorica microplate) are bounded by two composite suture zones. To the north, the Léon domain (correlated with the “Normannian High” and the “Mid-German Crystalline Rise” in the Saxo-Thuringian Zone) records the development of a nappe stack along the northern suture zone, and was backthrusted over the central-Armorican domain during the Carboniferous. To the south, an intermediate block (“Upper Allochthon”) records a complex, polyorogenic history, with an early high-temperature event followed by the first generation of eclogites (Essarts). This intermediate block overthrusts to the north the Armorica microplate (Saint-Georges-sur-Loire), to the south: (i) relics of an oceanic domain; and (ii) the Gondwana palaeomargin. The collision occurred during a Late Devonian event, associated with a second generation of eclogites (Cellier).  相似文献   

8.
《地学前缘(英文版)》2019,10(6):2189-2202
Apatite fission-track analysis and thermochronologic statistical modeling of Precambrian-Oligocenc plutonic and metamorphic rocks from the Lesser Caucasus resolve two discrete cooling episodes.Cooling occurred during incremental crustal shortening due to obduction and continental accretion along the margins of the northern branch of the Neotethys.(1) The thermochronometric record of a Late Cretaceous(Turonian-Maastrichtian) cooling/exhumation event,coeval to widespread ophiolite obduction,is still present only in a relatively small area of the upper plate of the Amasia-Sevan-Akera(ASA) suture zone,i.e.the suture marking the final closure of the northern Neotethys during the Paleogene.Such area has not been affected by significant later exhumation.(2) Rapid cooling/exhumation occurred in the Early-Middle Miocene in both the lower and upper plates of the ASA suture zone,obscuring previous thermochronologic signatures over most of the study area.Miocene contractional reactivation of the ASA suture zone occurred contemporaneously with the main phase of shortening and exhumation along the Bitlis suture zone marking the closure of the southern branch of the Neotethys and the ensuing ArabiaEurasia collision.Miocene collisional stress from the Bitlis suture zone was transmitted northward across the Anatolian hinterland,which was left relatively undeformed,and focused along preexisting structural discontinuities such as the eastern Pontides and the ASA suture zone.  相似文献   

9.
The Qinling Mountains separating the northern from the southern China plate is a key region for the study of structural evolution of eastern Asia. It is composed of the Palaeozoic fold belt in its northern part and the Variscan and Indosinian fold belts in its southern part. The evolution of the former is marked by the closure of a northward subducting oceanic basin in the early stage, followed by southward obduction of ophiolites and intracontinental thrusting during the Variscan; whereas that of the latter is represented by intracontinental, shallow crustal deformation on the basis of a large-scale detachment structure(with a horizontal slip of at least of 100 km). Since the late Palaeozoic, however, both of the belts have been cut by a series of east-west sinistral strike-slip faults.  相似文献   

10.
The Saar-Nahe-Basin in SW-Germany is one of the largest Permo-Carboniferous basins in the internal zone of the Variscides. Its evolution is closely related to movements along the Hunsrück Boundary Fault, which separates the Rhenohercynian and the Saxothuringian zones. Recent deep seismic surveys indicate that the Saar-Nahe-Basin formed in the hanging wall of a major detachment which soles out at lower crustal levels at about 16 km depth. Oblique extension along an inverted Variscan thrust resulted in the formation of a half-graben, within more than 8 km of entirely continental strata accumulated. The structural style within the basin is characterized by normal faults parallel to the basin axis and orthogonal transfer fault zones. Balanced cross-section construction and subsidence analysis indicate extension of the orogenically thickened lithosphere by 35%. Subsidence modeling shows discontinuous depth-dependent extension with laterally varying extension factors for crust and mantle lithosphere. Thus, the offset between maximum rift and thermal subsidence can be explained by a zone of mantle extension shifted laterally with respect to the zone of maximum crustal extension.
  相似文献   

11.
A new 140‐km‐long seismic reflection profile provides a high‐resolution crustal‐scale image of the southern Dabieshan high‐pressure (HP) metamorphic belt and the Yangtze foreland fold‐and‐thrust belt. The seismic image of the stacked section shows that the southern Dabieshan metamorphic terrane and Yangtze foreland belt are separated by a large north‐dipping fault. In the foreland the upper crust is dominated by a series of folds and thrusts formed during the collisional stage in the mid‐Triassic; it was reworked by crustal extension resulting in the formation of a late Jurassic and Cretaceous red‐bed basin. The southern Dabieshan profile shows stacked crustal slabs developed along the margin of the collisional orogenic belt. The Moho reflectors at 10–11 s (~30–33 km) are seismically prominent and segmented by a number of south‐verging thrusts that were probably developed by foreland‐directed thrusting of the deeply subducted continental crust during exhumation. The seismic reflection profile suggests that structures related to the Triassic–Jurassic subduction and exhumation of the Yangtze plate are preserved despite the severe crustal extension superimposed during the late Mesozoic and Cenozoic.  相似文献   

12.
《Geodinamica Acta》1999,12(2):97-111
In the southwestern part of the Belledonne Massif (External Crystalline Massifs, French Alps), superimposition of three distinct crustal units has been interpreted as the consequence of Late Devonian-Early Carboniferous thrusting toward the ENE under typical collisional metamorphic conditions (9-7 kbar, 600–650 °C). Structural relationships between the different units and the kinematic analysis of microstructures suggest that ductile extensional tectonics with a sinistral component towards the southwest is responsible for the late structure of this domain. Extensional tectonics are responsible for the exhumation of the deep level of the nappe pile (Allemont unit) that recorded an earlier HP-LT tectonometamorphic evolution ( 10 ± 1 kbar, 550 ± 50 °C and for the syn-kinematic adiabatic decompression path recorded in the two lowest units (Livet and Allemont). Such isothermal decompression may have been related to rapid thinning (~ 3mm y−1) and led to local decompressional melting at the base of the nappe pile. The thinning is best explained by extensional tectonics processes affecting the previously thickened Variscan crust during the Upper Carboniferous prior to its restoration to normal thickness.  相似文献   

13.
The Odra Fault Zone of southwestern Poland is a NW-trending horst marked by gravimetric and magnetic anomalies and composed of high- to low-grade metamorphic and igneous rocks which are only known from boreholes. This zone embraces a concealed border between Variscan internides and externides. It also contains an array of several I-type, metaluminous to peraluminous, high potassic granitoid bodies which intruded earlier metamorphosed rocks. Except for one case, they remain unfoliated and undeformed, and presumably play a role of stitching plutons at the suture between two obliquely colliding terranes. U–Pb TIMS dating of single zircons from one foliated and one unfoliated granitoid samples yielded identical concordant ages of 344±1 Ma (Tournaisian). They resemble a Pb–Pb age of 350±5 Ma obtained for S-type granitoids from the Luckau area further west in Germany, which is generally regarded as an eastern segment of the Mid-German Crystalline High. Carboniferous granitic intrusions in the high are generally younger (340–290 Ma). Correlations of the the Odra Fault Zone with the Mid-German Crystalline High appear plausible, but by no means certain and require further confirmation.  相似文献   

14.
Abstract

U-Pb. systematics of detrital zircons carry a mineral-specific information summarizing important geologic events during the preelastic slate of the minerals. Comparisons with U/Pb isotope rati of zircons from potential provenances reveal relationships between source areas of the zircons and their final location of deposition in a sedimentary basin. The Palaeozoic zircon detritus accumulated in sedimentary basins on the Rhenohercynian crustal segment is taken as an example to elucidate the plate-tectonical induced changes of the source areas by significant changes of the 206Pb/238 vs. 207Pb/235ratios in the zircons.

The U-Pb systematic of detrital zircon- from the Cambrian sediments deposited in the Brabant Massif and in the Ardennes indicale two source areas. Part of the detritus derived from an area. where strong Cadomian-Panafrican events influenced the U-Pb systems of the zircons. The oilier part reflects a source, in which the U-Pb systems were able to preserve their Arehaean to Early Proterozoic age information. Zircons of the latter source record the most ancient ages so far observed in detrital zircons of the later Rhenohercynian crustal seg ment. The similarities with the U/Pb isotope ratios of zircons from the Armorican Massif, the Bohemian Massif. and certain regions of the Mps indicate a geotectonic position of the sedimentar) basin during Cambrian times in the periphery of the Condwana mega-continent.

The detrital zircons accumulated in the Variscan Rhenish basin during the Lower Devonian show a completely different summarizing age information. The majority of the zircons reflect a Laurussian-type origin. which suggests a palaeogeographic position of the Variscan Rhenohercynian basin close to Laurussia. Euhedral zircons crystallized during Caledonian times document the erosion of Caledonian granitoids from structural highs in the Mid European Caledonides.

Zircons of the Lower Carboniferous flysch sediments of todays Eastern Rhenish Massif originate from two source areas characterised by very different geologic histories. Euhedral zircons represent a rather young component of about 410 Ma in the detritus, whereas. in contrast. the well rounded crystals show a summarizing age-information identical to that of the zircons found in the Cambrian sandstones. The low ages resemble intrusion ages as recorded from the Mid-German-Crystalline-Rise, the high age reflect a Gondwana-type input into the Rhenohercynian sedimentary basin during Lower Carboniferous times. The detritus thus documents the Variscan collision and a renewed coherence of the Rhenohercynian crustal segment to Cnndwana.

The zircon population from Upper Carboniferous molasse deposits is comprised of Condwana-tуpc material and of mate rial with similar U/Pb ratios as recorded in the Lower Devonian zircons. In parts the Variscan molasse must have been derived from sediments once deposited in a southern part of the Rhenohercynian basin and in the Saxothurìngian basin. U/Pb ratios of euhedral and round diamond-like lustrous zircons indicate a major geologic event at the Namurian/Westphalian boundary (310-315 Ma). These zircons thus reflect an influx of detritus into the molasse from other source rocks, probably synsedimentary volcanics.  相似文献   

15.
Abstract

Variscan convergence produced two-sided (bivergent) crustal-scale thrusting in the Vosges Mountains. In the northern Vosges the central polymetamorphic crystallines were thrust to the NW over Cambrian to Silurian low-grade and very low-grade metamorphic clastics. Synorogenic upper Devonian - lower Carboniferous turbidites and volcanics were folded into NW-vergent structures which display SE-dipping slaty cleavage. The entire sequence shows increasing metamorphism and deformation from NW to SE. Late right-lateral strike-slip faulting along the Lalaye-Lubine fault zone outlasted thrusting. In the southern Vosges a lower Carboniferous turbiditic basin that was fringed on the south by a volcanic arc was tectonically shortened by south-directed tectonic imbrication of slivers of varied rocks including ultramafics, gneissic basement, and synorogenic elastics. The increasing degree of deformation and metamorphism towards the north suggests a thrust contact with the polymetamorphic gneisses of the central Vosges. The final stages of Variscan convergence were accompanied by voluminous granitic plutonism and by faulting along NNE-SSW and E-W-trending strike-slip faults. The tectonic evolution reflects progressive Variscan closure of a previously extended basinal crust in a high-temperature regime.  相似文献   

16.
Abstract

In the southwestern part of the Belledonne Massif (External Crystalline Massifs, French Alps), superimposition of three distinct crustal units has been interpreted as the consequence of Late Devonian-Early Carboniferous thrusting toward the ENE under typical collisional metamorphic conditions (9–7 kbar, 600–650 °C). Structural relationships between the different units and the kinematic analysis of microstructures suggest that ductile extensional tectonics with a sinistral component towards the southwest is responsible for the late structure of this domain. Extensional tectonics are responsible for the exhumation of the deep level of the nappe pile (Allemont unit) that recorded an earlier HP-LT tectonometamorphic evolution (10 ± 1 kbar, 550 ± 50 °C) and for the syn-kinematic adiabatic decompression path recorded in the two lowest units (Livet and Allemont). Such isothermal decompression may have been related to rapid thinning (~ 3mm y?1) and led to local decompressional melting at the base of the nappe pile. The thinning is best explained by extensional tectonics processes affecting the previously thickened Variscan crust during the Upper Carboniferous prior to its restoration to normal thickness. © Elsevier, Paris  相似文献   

17.
The timing of motion on major thrusts in the Western Himalaya shows an extremely complex sequence that spans approximately 70 Ma from the latest Cretaceous throughout the Tertiary. Three major phases of thrusting can be distinguished. The earliest phase (T1) is associated with emplacement of Tethyan basin thrust sheets (Lamayuru sediments and Spontang ophiolite) south and south-westwards onto the submerged northern passive margin of India (75-60 Ma). Collision between India and Asia occurred at 50-36 Ma and was followed immediately by the major phase (T2) of crustal shortening involving large-scale south and south-westward directed thrusting of the complete Palaeozoic, Mesozoic and Late Tertiary Tibetan—Tethys zone rocks. Preliminary balanced cross-sections show a minimum shortening of 126 km of these rocks across the Zanskar Range. The late collision phase (T3) involved re-thrusting of the previously stacked pile (breaching or leap-frog thrusting) reversing the earlier stacking order in places, and widespread steepening, overturning and backthrusting along the whole northern margin of the Tibetan—Tethys zone and throughout the Indus suture zone.  相似文献   

18.
New chemical, petrological and structural data characterize the pre- to Early Variscan evolution of the Eastern or Böllstein Odenwald, which forms a part of the Mid-German Crystalline Rise. This part of the Odenwald Crystalline Complex is different to the Western or Bergsträsser Odenwald with respect to the age of the magmatic events, the structures, chemistry and metamorphism. The complex is formed by a large anticline composed of an older metamorphosed volcano-sedimentary unit and a younger metagranitoid core. The volcano-sedimentary sequence represents a relic of a pre-Variscan accretionary prism with relics of older island-arc volcanics, formed in front of a continental margin. During the Silurian to Lower Devonian the prism was intruded by S-type granitoids. The acidic intrusions were followed by a series of basic intrusives with an island-arc signature. After the magmatic phases the complex was metamorphosed under probably pre-Variscan medium pressure and high temperature conditions. During Variscan times the rocks underwent multiple penetrative deformations under pressure-temperature conditions or partial melting. The main deformation produced isoclinal folds and had a sense of movement of top to the west. During subsequent deformation the anticlinal structure and the Otzberg fault zone were formed and later overprinted by two generations of open folds with vertical and horizontal axes.The rocks of the Böllstein Odenwald document multiple plate convergences of pre- to Early Variscan to Upper Visean age. Correspondence to: U. Altenberger  相似文献   

19.
Abstract

Detailed structural analysis in the southwestern part of the Variscan Sehwarzwald Massif (SW Germany) indicates polyphase, synmetamorphic deformation in ductile shear zones. The tectono-melainnrphir evolution is characterized by orogenic crustal shortening and subsequent late- orogenic crustal extension in Carboniferous times. Convergence is responsible for an KSK trending, north dipping thrust zone with intense deformation in orthogneissic S-C type mylonites Superposed on schistose and folded metasediments presumably lower Carboniferous in age. Southeastward thrust-’“g parallel to pervasive stretching lineation, similar to the pre-dominant oblique convergent structures ill the central part of the massif, is related to crustal stacking. Relations of early granite intrusions with the outlasting retrograde tectonics Point to a Lower Carboniferous (Late-Visean) age of shortening.

Subsequent crustal extension is indicated by a broad N-S trending and west dipping ductile shear zone within high grade meetamorphic (I1T7LP) gneisses. Retrograde stretching lineatone marked by sillimanite to chlorite anr consistent with a top-to-the-west shearing on the western flank of a large progressively warping domai structure. Intensely sheared and boudinaged granitic rocks are syn-tectonic and seal the age of extension at about 325 Ma (Lower/ Upper Carboniferous boundary). During progressively cataclastic stages of tectonic denudation the still active detachment controlled formation of an adjacent late Paleozoic (Stephano-Pcrniian) continental basin supersedding high-grade gneiss. As elsewhere in the Varisean belt, the late extensional process in the tectono-”“‘tainorphie evolution of the southern Sehwarzwald is related rapid uplift, exhumation and thinning by a gravitational collaps of a previously thickened crust.  相似文献   

20.
Ductile deformation and polyphase metamorphism in the Ossa-Morena zone of the Iberian massif are related to two major tectonothermal episodes of Cadomian (late Neoproterozoic to early Cambrian) and Variscan age (middle to late Paleozoic). The available petrological, structural and geochronological data suggest that a number of tectono-metamorphic and magmatic episodes occurred during the 620–480 Ma interval that would comprise a complete Cadomian Wilson cycle. The geodynamic scenario was that of an Andean-type continental margin. An evolutionary model is presented for this orogeny comprising stages of volcanic arc generation, crustal thickening, back-arc extension, tectonic inversion and cratonization. A correlation with comparable areas from pre-Mesozoic massifs elsewhere in Europe is proposed, in particular with the Armorican massif of northern France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号