首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on a large amount of observed data of element abundances in metal-poor stars, taking the abundance distribution of heavy elements in the solar system as a standard, and selecting Sr, Ba and Eu as the typical elements of the three nucleosynthetic processes in metal-poor stars, namely the weak sprocess, main s-process and r-process, we have studied the contributions of the three kinds of neutron-capture processes to the abundance distribution of heavy elements in metal-poor stars, with the parameterization method. It is found that the higher the metal abundance, the greater the contributions of the weak s-process and the chief s-process to the abundances of lighter neutron-capture elements. The heavier neutron-capture elements are mainly produced by the r-process and the chief s-process; and that at low metallicity, the abundances of heavy neutron-capture elements are mainly produced by the r-process. In the early Galaxy, the weak s-process has almost no contribution to the element abundance.  相似文献   

2.
HE1005-1439是一颗金属丰度极低([Fe/H] ~ - 3.0)的碳增丰贫金属星(Carbon Enhanced Metal-Poor,CEMP), 该星的s-过程元素显著超丰([Ba/Fe] = 1.16±0.31, [Pb/Fe] = 1.98±0.19), 而r-过程元素温和超丰([Eu/Fe] = 0.46±0.22), 使用单一的s-过程模型和i-过程模型均不能拟合该星中子俘获丰度分布. 采用丰度分解的方法探究该星化学元素的天体物理来源可有助于理解CEMP星的形成和化学演化. 利用s-过程和r-过程的混合模型对其中子俘获元素的丰度分布进行拟合, 发现该星的中子俘获元素主要来源于低质量低金属丰度AGB伴星的s-过程核合成, 而r-过程核合成也有贡献.  相似文献   

3.
We have collected nearly all the available observed data of the elements from Ba to Dy in halo and disk stars in the metallicity range -4.0 <[Fe/H]< 0.5. Based on the observed data of Ba and Eu, we evaluated the least-squares regressions of [Ba/Fe] on [Fe/H], and [Eu/H] on [Ba/H]. Assuming that the heavy elements (heavier than Ba) are produced by a combination of the main components of s- and r-processes in metal-poor stars, and choosing Ba and Eu as respective representative elements of the main s- and the main r-processes, a statistical model for predicting the Galactic chemical evolution of the heavy elements is presented. With this model, we calculate the mean abundance trends of the heavy elements La, Ce, Pr, Nd, Sm, and Dy with the metallicity. We compare our results with the observed data at various metallicities, showing that the predicted trends are in good agreement with the observed trends, at least for the metallicity range [Fe/H]> -2.5. Finally, we discuss our results and deduce some importa  相似文献   

4.
贫金属星中子俘获元素丰度   总被引:4,自引:0,他引:4  
贫金属星的中子俘获元素丰度与恒星的形成和演化密切相关,它为研究星系形成早期的历史背景和化学演化提供了重要信息。贫金属星中子俘获元素丰度的研究已成为近年来核天体物理研究的前沿和热点。介绍了恒星内部重元素的核合图像,s过程和r过程核合成的概念及其核合成场所。着重介绍了近年来有关贫金属星中子俘获元素丰度的观测结果,综述了近年来贫金属星子俘获元素分布的理论研究进展情况和中子俘获元素的星系化学演化的研究进展  相似文献   

5.
The analysis of the kinematics of solar neighbourhood stars shows that the low- and high-metallicity tails of the thin disc are populated by objects which orbital properties suggest an origin in the outer and inner Galactic disc, respectively. Signatures of radial migration are identified in various recent samples, and are shown to be responsible for the high-metallicity dispersion in the age–metallicity distribution. Most importantly, it is shown that the population of low-metallicity wanderers of the thin disc (−0.7 < [Fe/H] < −0.3 dex) is also responsible for the apparent hiatus in metallicity with the thick disc (which terminal metallicity is about −0.2 dex). It implies that the thin disc at the solar circle has started to form stars at about this same metallicity. This is also consistent with the fact that 'transition' objects, which have α-element abundance intermediate between that of the thick and thin discs, are found in the range [−0.4, −0.2] dex. Once the metal-poor thin disc stars are recognized for what they are – wanderers from the outer thin disc – the parenthood between the two discs can be identified on stars genuinely formed at the solar circle through an evolutionary sequence in [α/Fe] and [Fe/H]. Another consequence is that stars that can be considered as truly resulting of the chemical evolution at the solar circle have a metallicity restricted to about [−0.2, +0.2] dex, confirming an old idea that most chemical evolution in the Milky Way have preceded the thin disc formation.  相似文献   

6.
By means of a detailed chemical evolution model, we follow the evolution of barium (Ba) and europium (Eu) in four Local Group Dwarf Spheroidal (dSph) galaxies, in order to set constraints on the nucleosynthesis of these elements and on the evolution of this type of galaxies compared with the Milky Way. The model, which is able to reproduce several observed abundance ratios and the present-day total mass and gas mass content of these galaxies, adopts up-to-date nucleosynthesis and takes into account the role played by supernovae (SNe) of different types (II, Ia) allowing us to follow in detail the evolution of several chemical elements (H, D, He, C, N, O, Mg, Si, S, Ca, Fe, Ba and Eu). By assuming that Ba is a neutron-capture element produced in low-mass asymptotic giant branch stars by s-process but also in massive stars (in the mass range 10–30 M) by r-process, during the explosive event of SNe of Type II, and that Eu is a pure r-process element synthesized in massive stars also in the range of masses 10–30 M, we are able to reproduce the observed [Ba/Fe] and [Eu/Fe] as functions of [Fe/H] in all four galaxies studied. We confirm also the important role played by the very low star formation (SF) efficiencies (ν= 0.005–0.5 Gyr−1) and by the intense galactic winds (6–13 times the star formation rate) in the evolution of these galaxies. These low SF efficiencies (compared to the one for the Milky Way disc) adopted for the dSph galaxies are the main reason for the differences between the trends of [Ba/Fe] and [Eu/Fe] predicted and observed in these galaxies and in the metal-poor stars of our Galaxy. Finally, we provide predictions for Sagittarius galaxy for which data of only two stars are available.  相似文献   

7.
快中子俘获过程(r过程)可以解释大约一半比铁重的稳定(和一些长寿命放射性的)富中子核素的产生,这已经被太阳系及各种金属丰度下恒星的观测结果所证实.为建立r过程模型,需要大量的核物理信息:涉及到β稳定谷与中子滴线之间的各种核素的稳定特性及β衰变分支等物理参数,实验和理论都面临巨大的挑战.综述了近年来贫金属星r过程核合成理...  相似文献   

8.
Based on high quality spectral data (spectral resolution R≈60000) within the wavelength range of 3550–5000 Å we determined main parameters (effective temperature, surface gravity, microturbulent velocity, and content of chemical elements including heavy metals from Sr to Dy) for 14 metal-deficient G–K stars with large proper motions. The stars studied have a high range of metallicity: [Fe/H]=?0.3÷?2.9. Abundances of Mg, Al, Sr and Ba were calculated with non-LTE line-formation effects accounted for. The abundance both of radioactive element Th and the r-process element Eu were determined through synthetic spectrum calculations. We selected stars that belong to different galactic populations according to the kinematical criterion and parameters determined by us. We found that the studied stars with large proper motions refer to different components of the Galaxy: thin, thick disks and halo. The chemical composition of the star BD+80°?245 far from the galactic plane agrees with its belonging to the accreted halo. For the giant HD?115444 we obtained [Fe/H]=?2.91, an underabundance of Mn, an overabundance of heavy metals from Ba to Dy, and especially a high excess of the r-process element europium: [Eu/Fe]=+1.26. Contrary to its chemical composition typical for halo stars, HD?115444 belongs to the disc population according to its kinematic parameters.  相似文献   

9.
High-resolution spectra of five candidate metal-weak thick-disc stars suggested by Beers & Sommer-Larsen are analysed to determine their chemical abundances. The low abundance of all the objects has been confirmed, with metallicity reaching [Fe/H]=−2.9. However, for three objects the astrometric data from the Hipparcos catalogue suggest they are true halo members. The remaining two, for which proper-motion data are not available, may have disc-like kinematics. It is therefore clear that it is useful to address properties of putative metal-weak thick-disc stars only if they possess full kinematic data. For CS 22894−19 an abundance pattern similar to those of typical halo stars is found, suggesting that chemical composition is not a useful discriminant between thick-disc and halo stars. CS 29529−12 is found to be C-enhanced with [C/Fe]=+1.0; other chemical peculiarities involve the s-process elements: [Sr/Fe]=−0.65 and [Ba/Fe]=+0.62, leading to a high [Ba/Sr], considerably larger than that found in more metal-rich carbon-rich stars, but similar to those in LP 706-7 and LP 625-44, discussed by Norris et al. Hipparcos data have been used to calculate the space velocities of 25 candidate metal-weak thick-disc stars, thus allowing us to identify three bona fide members, which support the existence of a metal-poor tail of the thick disc, at variance with a claim to the contrary by Ryan & Lambert.  相似文献   

10.
The fast neutron capture process (the r-process) occurs in the neutron-rich circumstance. However its concrete physical environment is not very clear. With recent progress in observations, many extremely metal-poor halo stars have been discovered. They have two characteristics: one is the overabundance of fast neutron elements with the relative abundance consistent with that of the sun; the other is that fast neutron element contents in stars at the same metal abundance have a very large dispersion. This provides a particular way to study the origin of the r-process. Simulation was used to study the galaxy's evolution process and the resulting dispersion of fast neutron nuclide contents in stars. The model of galaxy evolution obtained in this way not only contains spontaneous star formation in the gas region, but also includes the star formation excited by the supernova explosion. It is shown from our results that the supernovae at the low mass end should be the place producing the fast neutron nuclides. In addition, it is also shown that the non-uniformity of the galaxy evolution caused by the supernova explosion is not enough to explain the observed dispersion of fast neutron element contents in halo stars. This problem should be further studied.  相似文献   

11.
We present a revised metallicity distribution of dwarfs in the solar neighbourhood. This distribution is centred on solar metallicity. We show that previous metallicity distributions, selected on the basis of spectral type, are biased against stars with solar metallicity or higher. A selection of G-dwarf stars is inherently biased against metal-rich stars and is not representative of the solar neighbourhood metallicity distribution. Using a sample selected on colour, we obtain a distribution where approximately half the stars in the solar neighbourhood have metallicities higher than [Fe/H]=0 . The percentage of mid-metal-poor stars ([Fe/H]<−0.5) is approximately 4 per cent, in agreement with present estimates of the thick disc.
In order to have a metallicity distribution comparable to chemical evolution model predictions, we convert the star fraction to mass fraction, and show that another bias against metal-rich stars affects dwarf metallicity distributions, due to the colour (or spectral type) limits of the samples. Reconsidering the corrections resulting from the increasing thickness of the stellar disc with age, we show that the simple closed-box model with no instantaneous recycling approximation gives a reasonable fit to the observed distribution. Comparisons with the age–metallicity relation and abundance ratios suggest that the simple closed-box model may be a viable model of the chemical evolution of the Galaxy at solar radius.  相似文献   

12.
We discuss results on the oxygen abundance in a sample of 23 metal-poor (?3.0≤ [Fe/H] ≤ ?0.3) unevolved stars and one giant. High resolutionspectroscopy of OH lines in the near UV allowed us to trace the early evolution of oxygenversus metallicity. Contrary to previous expectations, we find that oxygen abundances derived from these low excitation lines agree well withthose derived from the high excitation lines of the OI IR triplet and from the [OI] λ 6300 Å line. Our new oxygen abundances show a smooth extension of previouslyknown trends of [O/Fe] versus [Fe/H] in disk stars to much lower metallicities, with a slope of ?0.31± 0.11. The [O/Fe] ratio increasesfrom 0.6 to 1 between [Fe/H] =?1.5 and ?3.0. Comparison with oxygen abundances in giant stars of the same metallicity imply that the lattermay have suffered a process of oxygen depletion. We briefly discussthe impact of these results on the yields of Type II SNe in the early Galaxy and on the age of globular clusters.  相似文献   

13.
邱红梅  赵刚  仲佳勇 《天文学报》2002,43(3):257-263
在第1篇论文的基础上,确定了样本星的恒星大气参数,得到这些星中9种元素的丰度。讨论了各种元素丰度随[Fe/H]的变化。平均的[Na/Fe]~-0.01dex,接近于太阳丰度。α元素Si和Ca具有几乎相同的丰度模式,而[Ti/Fe]弥散较大,但三者均有随[Fe/H]的减小而增加的趋势。铁峰元素V、Cr、Ni在不同丰度处有较大的弥散,[Cr/Fe]在所有样本星中均表现超丰;而[Mn/Fe]却明显过贫,且随金属丰度的增加而增加。  相似文献   

14.
We discuss new results based on the many thousands of extremely metal-poor stars discovered in the ongoing HK survey of Beers and collaborators. The present status of the photometric and spectroscopy follow-up efforts are summarized, and the nature of the halo metallicity distribution function is considered. We point out the existence of apparent complexities in the kinematics of the lowest abundance stars in the Galaxy, and discuss the presence of a large fraction of carbon-enhanced stars among the HK survey stars with [Fe/H] ≤ −2.0. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The results of spectroscopic observations made with the NES echelle spectrograph of the 6-m BTA telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences in the wavelength interval of 3550–5100 Å with a spectral resolution of R≥50000 are used to determine the fundamental parameters and atmospheric abundances of more than 20 chemical elements including heavy s- and r-process elements from Sr to Dy for a total of 14 metal-poor G-K-type stars. The abundances of Mg, Al, Sr, and Ba were calculated with non-LTE line-formation effects accounted for. The inferred overabundance of europium with respect to iron agrees with the results obtained for the stars of similar metallicity. The chemical composition of the star BD+80°245 located far from the Galactic plane is typical of stars of the accreted halo: this star exhibits, in addition to the over-deficiency of α-process elements, also the over-deficiency of the γ-process element Ba: [Ba/Fe]= ?1.46. The kinematical parameters and chemical composition imply that the stars studied belong to different Galactic populations. The abundance of the long-living element Th relative to that of the r-process element Eu is determined for six stars using the synthetic-spectrum method.  相似文献   

16.
We have identified 317 stars included in the Hipparcos astrometric catalogue that have parallaxes measured to a precision of better than 15 per cent, and the location of which in the ( M V ,( B − V ) T ) diagram implies a metallicity comparable to or less than that of the intermediate-abundance globular cluster M5. We have undertaken an extensive literature search to locate Strömgren, Johnson/Cousins and Walraven photometry for over 120 stars. In addition, we present new UBV ( RI )C photometry of 201 of these candidate halo stars, together with similar data for a further 14 known metal-poor subdwarfs. These observations provide the first extensive data set of R C I C photometry of metal-poor, main-sequence stars with well-determined trigonometric parallaxes. Finally, we have obtained intermediate-resolution optical spectroscopy of 175 stars.
47 stars still lack sufficient supplementary observations for population classification; however, we are able to estimate abundances for 270 stars, or over 80 per cent of the sample. The overwhelming majority have near-solar abundance, with their inclusion in the present sample stemming from errors in the colours listed in the Hipparcos catalogue. Only 44 stars show consistent evidence of abundances below [Fe/H]=−1.0 . Nine are additions to the small sample of metal-poor subdwarfs with accurate photometry. We consider briefly the implication of these results for cluster main-sequence fitting.  相似文献   

17.
For a sample of dwarf stars close to the Sun with well-known atmospheric parameters and an iron abundance in the range ?2.6 < [Fe/H] < 0.2, we have determined the titanium and oxygen abundances by taking into account the departures from LTE. The dependence of the [O/Fe] and [Ti/Fe] abundance ratios on [Fe/H] has been refined in comparison with the published data. We have established that [O/Fe] increases from ?0.2 to 0.6 as the metallicity [Fe/H] decreases from 0.2 to ?0.8 and remains constant at a lower metallicity. A similar behavior has been found for [Ti/Fe], but the plateau is formed by stars with [Fe/H] > ?0.7, and the titanium overabundance relative to iron is 0.3. The results confirm that not only oxygen but also titanium are synthesized in the α-process. Our data can be used to test the Galactic chemical evolution models.  相似文献   

18.
Data from our compiled catalog of spectroscopically determined magnesium abundances in stars with accurate parallaxes are used to select thin-disk dwarfs and subgiants according to kinematic criteria. We analyze the relations between the relative magnesium abundances in stars, [Mg/Fe], and their metallicities, Galactic orbital elements, and ages. The [Mg/Fe] ratios in the thin disk at any metallicity in the range ?1.0 dex <[Fe/H] < ?0.4 dex are shown to be smaller than those in the thick disk, implying that the thin-disk stars are, on average, younger than the thick-disk stars. The relative magnesium abundances in such metal-poor thin-disk stars have been found to systematically decrease with increasing stellar orbital radii in such a way that magnesium overabundances ([Mg/Fe] > 0.2 dex) are essentially observed only in the stars whose orbits lie almost entirely within the solar circle. At the same time, the range of metallicities in magnesium-poor stars is displaced from ?0.5 dex < [Fe/H] < +0.3 dex to ?0.7 dex < [Fe/H] < +0.2 dex as their orbital radii increase. This behavior suggests that, first, the star formation rate decreases with increasing Galactocentric distance and, second, there was no star formation for some time outside the solar circle, while this process was continuous within the solar circle. The decrease in the star formation rate with increasing Galactocentric distance is responsible for the existence of a negative radial metallicity gradient (grad R[Fe/H] = ?0.05 ± 0.01 kpc?1) in the disk, which shows a tendency to increase with decreasing age. At the same time, the relative magnesium abundance exhibits no radial gradient. We have confirmed the existence of a steep negative vertical metallicity gradient (grad Z[Fe/H] = ?0.29 ± 0.06 kpc?1) and detected a significant positive vertical gradient in relative magnesium abundance (grad Z[Mg/Fe] = 0.13 ± 0.02 kpc?1); both gradients increase appreciably in absolute value with decreasing age. We have found that there is not only an age-metallicity relation, but also an age-magnesium abundance relation, in the thin disk. We surmise that the thin disk has a multicomponent structure, but the existence of a negative trend in the star formation rate along the Galactocentric radius does not allow the stars of its various components to be identified in the immediate solar neighborhood.  相似文献   

19.
We report the detection of the Pb i lambda4057.8 line in the very metal-poor (&sqbl0;Fe&solm0;H&sqbr0;=-2.7), carbon-rich star, LP 625-44. We determine the abundance of Pb (&sqbl0;Pb&solm0;Fe&sqbr0;=2.65) and 15 other neutron-capture elements. The abundance pattern between Ba and Pb agrees well with a scaled solar system s-process component, while the lighter elements (Sr-Zr) are less abundant than Ba. The enhancement of s-process elements is interpreted as a result of mass transfer in a binary system from a previous asymptotic giant branch (AGB) companion, an interpretation strongly supported by radial velocity variations of this system. The detection of Pb makes it possible, for the first time, to compare model predictions of s-process nucleosynthesis in AGB stars with observations of elements between Sr and Pb. The Pb abundance is significantly lower than the prediction of recent models (e.g., Gallino et al.), which succeeded in explaining the metallicity dependence of the abundance ratios of light s-elements (Sr-Zr) to heavy ones (Ba-Dy) found in previously observed s-process-enhanced stars. This suggests that one should either (1) reconsider the underlying assumptions concerning the (13)C-rich s-processing site ((13)C pocket) in the present models or (2) investigate alternative sites of s-process nucleosynthesis in very metal-poor AGB stars.  相似文献   

20.
The abundances of long-lived radioactive elements Th and U observed in metal-poor halo stars can be used as chronometers to determine the age of individual stars, and hence set a lower limit on the age of the Galaxy and hence of the universe. This radioactive dating requires the zero-decay productions of Th and U, which involves complicated r-process nucleosynthesis calculations. Several parametric r-process models have been used to calculate the initial abundance ratios of Th/Eu and U/Th, but, due to the sharp sensitivity of these models to nuclear physics inputs, the calculations have relatively large uncertainties which lead to large uncertainties in the age determinations. In order to reduce these uncertainties, we present a simple method to estimate the initial productions of Th and U, which only depends on the solar system abundances and the stellar abundances of stable r-process elements. From our calculations of the initial abundance ratios of Th/Eu and U/Th, we re-estimate the ages of those ver  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号