首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wettability profoundly affects not only the initial distribution of residual NAPL contaminants in natural soils, but also their subsequent dissolution in a flowing aqueous phase. Under conditions of preferential NAPL wettability, the residual NAPL phase is found within the smaller pores and in the form of continuous corner filaments and thick films on pore walls. Such films expose a much greater interfacial area for mass transfer than would be exposed by the same amount of non-wetting NAPL. Importantly, capillary and hydraulic continuity of NAPL filaments and thick films is essential for sustaining NAPL–water counterflow during the course of NAPL dissolution in flowing groundwater—a mechanism which maintains and even increases the interfacial area for mass transfer. Continued dissolution results in gradual thinning of the NAPL films, which may become unstable and rupture causing disconnection of the residual NAPL in the form of clusters. Using a pore network simulator, we demonstrate that NAPL film instability drastically modifies the microscopic configuration of residual NAPL, and hence the local hydrodynamic conditions and interfacial area for mass transfer, with concomitant effects on macroscopically observable quantities, such as the aqueous effluent concentration and the fractional NAPL recovery with time. These results strongly suggest that the disjoining pressure of NAPL films may exert an important, and hitherto unaccounted, control on the dissolution behaviour of a residual NAPL phase in oil wet systems.  相似文献   

2.
Simulations using a one-dimensional, analytical, vadose zone, solute-transport screening code (VFLUX) were conducted to assess the effect of water saturation, NAPL saturation, degradation half-life, and boundary conditions at the vadose zone/ground water interface on model output. At high initial soil concentrations, model output was significantly affected by input parameters and lower boundary conditions yet still resulted in consistent decision-making to initiate or continue venting application. At lower soil concentrations, however, typical of what is observed after prolonged venting application, differences in model input and selection of lower boundary conditions resulted in inconsistent decision-making. Specifically, under conditions of low water saturation, use of a first-type, time-dependent lower boundary condition indicated that the primary direction of mass flux was from ground water to the vadose zone, suggesting little benefit from continued venting application. Use of a finite, zero-gradient lower boundary condition, though, indicated continued mass flux from the vadose zone to ground water, suggesting a continued need for venting application. In this situation, sensitivity analysis of input parameters, selection of boundary conditions, and consideration of overall objectives in vadose zone modeling become critical in regulatory decision-making.  相似文献   

3.
4.
Numerical modelling of steam injection methods for cleanup of non-aqueous phase liquid (NAPL) contamination of groundwater requires consideration of multiphase, multicomponent convective and dispersive transport. Standard techniques do not ensure that the solution of the discrete equations has positive mole fractions, for finite mesh sizes. Negative mole fractions may cause the simulation to abort due to failure of the Newton iteration. A method for alleviating this problem is described. This method ensures that the mole fractions are positive, and results in an error that is the same size as the usual finite element discretization error. Example computations are presented for cartesian and axisymmetric two-dimensional geometries.  相似文献   

5.
Groundwater dependency is increasing globally, while millions of potentially contaminated sites are yet to be characterized for contamination levels. In particular, groundwater contamination due to light nonaqueous phase liquids (LNAPLs) continues to be a global challenge. Mathematical approaches (i.e., analytical, semi-analytical, empirical, numerical) are preferred for an initial site assessment to circumvent the high characterization costs and limited site data availability. However, the site-specific nature of contamination restricts the generalization of any single approach. Hence, the requirement is for an easy-to-use computing interface that provides site-specific data management, the selection and use of multiple-model interfaces for computing, and site characterization, with extension for the latest models as they become available. This work provides one such interface called CAST or Contamination Assessment and Site-management Tool. CAST is an open-source browser-based (online/offline) tool that provides an interface for six different analytical models (e.g., BIOSCREEN-AT), a MODFLOW based numerical model, and two empirical models (including a hybrid numerical-analytical model). Additionally, CAST includes interfaces for site data management, their evaluation, and scenario-based modeling. CAST's development is in a modular format, which simplifies the addition of new computing or data interfaces. Furthermore, the entire code-base of CAST is based on open-source (dominantly Python programming) libraries and standards. This further simplifies the modification or extension of this tool. This paper introduces CAST, its different computing, and data management interfaces and provides examples of the tool's functionality primarily for the initial evaluation of contaminated sites.  相似文献   

6.
7.
Interphase mass transfer in porous media is commonly modeled using Sherwood number expressions that are developed in terms of fluid and porous medium properties averaged over some representative elementary volume (REV). In this work the influence of sub-grid scale properties on interphase mass transfer was investigated using a two-dimensional pore network model. The focus was on assessing the impact of (i) NAPL saturation, (ii) interfacial area (iii) NAPL spatial distribution at the pore scale, (iv) grain size heterogeneity, (v) REV or domain size and (vi) pore scale heterogeneity of the porous media on interphase mass transfer. Variability of both the mass transfer coefficient that explicitly accounts for the interfacial area and the mass transfer coefficient that lumps the interfacial area was examined. It was shown that pore scale NAPL distribution and its orientation relative to the flow direction have significant impact on flow bypassing and the interphase mass transfer coefficient. This results in a complex non-linear relationship between interfacial area and the REV-based interphase mass transfer rate. Hence, explicitly accounting for the interfacial area does not eliminate the uncertainty of the mass transfer coefficient. It was also shown that, even for explicitly defined flow patterns, changing the domain size over which the mass transfer process is defined influences the extent of NAPL bypassing and dilution and, consequently, the interphase mass transfer. It was also demonstrated that the spatial variability of pore scale parameters such as pore throat diameters may result in different rates of interphase mass transfer even for the same pore size distribution index.  相似文献   

8.
Flow of nonvolatile nonaqueous phase liquid (NAPL) and aqueous phases that account for mobile, entrapped, and residual NAPL in variably saturated water-wet porous media is modeled and compared against results from detailed laboratory experiments. Residual saturation formation in the vadose zone is a process that is often ignored in multifluid flow simulators, which might cause an overestimation of the volume of NAPL that reaches the ground water. Mobile NAPL is defined as being continuous in the pore space and flows under a pressure gradient or gravitational body force. Entrapped NAPL is defined as being occluded by the aqueous phase, occurring as immobile ganglia surrounded by aqueous phase in the pore space and formed when NAPL is replaced by the aqueous phase. Residual NAPL is defined as immobile, nonwater entrapped NAPL that does not drain from the pore spaces and is conceptualized as being either continuous or discontinuous. Free NAPL comprises mobile and residual NAPL. The numerical model is formulated on mass conservation equations for oil and water, transported via NAPL and aqueous phases through variably saturated porous media. To account for phase transitions, a primary variable switching scheme is implemented for the oil-mass conservation equation over three phase conditions: (1) aqueous or aqueous-gas with dissolved oil, (2) aqueous or aqueous-gas with entrapped NAPL, and (3) aqueous or aqueous gas with free NAPL. Two laboratory-scale column experiments are modeled to verify the numerical model. Comparisons between the numerical simulations and experiments demonstrate the necessity to include the residual NAPL formation process in multifluid flow simulators.  相似文献   

9.
A control volume, finite element method is used to discretize the three phase, three component equations for simulation of gas venting. The discrete equations are solved using full Newton iteration. Any combinations of phases can exist, and variable substitution is used to take into account phase appearance and disappearance. Some example computations are presented for two dimensional axisymmetric geometry. Several different scenarios for gas venting are examined. High rate air injection can be effective at removing NAPL both in the unsaturated and saturated zones. The numerical techniques can handle problems having node pore volume gas throughputs (in a timestep) of the order of 106, which greatly exceeds the maximum stable explicit timestep size.  相似文献   

10.
11.
12.
Capture-Zone Type Curves: A Tool for Aquifer Cleanup   总被引:9,自引:0,他引:9  
  相似文献   

13.
14.
15.
16.
An examination of the lithology, paleomagnetic and Mossbauer Effect Spectroscopy (MES) log data and 14C determinations of cores taken from three small basins located in western Lake Erie, in conjunction with data obtained from earlier studies, has been used to re-evaluate the postglacial history of the area. After the re-advance of the Laurentide Ice Sheet into the Huron basin and the eastern part of the Erie basin during the Port Huron stadial about 13,000 yrs B.P., lacustrine clay was deposited across much of the western Erie basin in a lake ponded against the glacial ice front to the east. However, by 12,000 yrs B.P. as the ice front retreated, the waters from the Huron basin bypassed Lake Erie, first by the Kirkfield outlet to Lake Ontario, and later by the Fossmill and North Bay outlets to the Ottawa River. This resulted in the draining of water from most of the western Erie basin. Extensive swamps choked with plants formed in the small basin areas, and the surrounding low-lying former lake bottom was subjected to subaerial weathering. It would appear that by about 9,500 yrs B.P. there was an increase in surface run off into these basins and the swamps evolved into shallow, relatively warm-water lakes in which calcareous-rich clay was deposited. Isostatic rebound of the northeastern outlets of the Huron basin led to a gradual tilting of the basin and a progressive migration of the southern shoreline of Lake Huron (Lake Stanley phase) to the southwest. By about 5000 yrs B.P. the water level in the southern Huron basin had been raised sufficiently to re-open the Port Huron outlet into the Erie basin. This resulted in a substantial rise in the lake level in the Erie basin, terminated the deposition of calcareous-rich clay in the small basins, and led to the deposition of normal lacustrine sediments in the modern phase of Lake Erie.  相似文献   

17.
18.
The correct characterization of aquifer parameters is essential for water‐supply and water‐quality investigations. Slug tests are widely used for these purposes. While free software is available to interpret slug tests, some codes are not user‐friendly, or do not include a wide range of methods to interpret the results, or do not include automatic, inverse solutions to the test data. The private sector has also generated several good programs to interpret slug test data, but they are not free of charge. The computer program SlugIn 1.0 is available online for free download, and is demonstrated to aid in the analysis of slug tests to estimate hydraulic parameters. The program provides an easy‐to‐use Graphical User Interface. SlugIn 1.0 incorporates automated parameter estimation and facilitates the visualization of several interpretations of the same test. It incorporates solutions for confined and unconfined aquifers, partially penetrating wells, skin effects, shape factor, anisotropy, high hydraulic conductivity formations and the Mace test for large‐diameter wells. It is available in English and Spanish and can be downloaded from the web site of the Geological Survey of Spain. Two field examples are presented to illustrate how the software operates.  相似文献   

19.
20.
Soils need to be thoroughly investigated regarding their potential for the natural attenuation of non-aqueous phase liquids (NAPL). Laboratory investigations truly representative of degradation processes in field conditions are difficult to implement for porous media partially saturated with water, NAPL and air. We propose an innovative protocol to investigate degradation processes under steady-state vadose zone conditions. Experiments are carried out in glass columns filled with a sand and, as bacteria source, a soil from a diesel-fuel-polluted site. Water and NAPL (n-hexadecane diluted in heptamethylnonane (HMN)) are added to the porous medium in a two-step procedure using ceramic membranes placed at the bottom of the column. This procedure results, for appropriate experimental conditions, in a uniform distribution of the two fluids (water and NAPL) throughout the column. In a biodegradation experiment non-biodegradable HMN is used to provide NAPL mass, while keeping biodegradable n-hexadecane small enough to monitor its rapid degradation. Biodegradation is followed as a function of time by measuring oxygen consumption, using a respirometer. Degradative activity is controlled by diffusive transfers in the porous network, of oxygen from the gas phase to the water phase and of n-hexadecane from the NAPL phase to the water phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号