首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对高光谱影像分类问题,提出了基于深度卷积循环神经网络的高光谱影像空谱特征分类方法.首先将高光谱数据立方体看作一组特征序列;然后利用深度卷积循环神经网络构建特征序列的依赖关系,并采用"预训练+微调"的训练策略对深层网络模型进行训练,从而使得所设计的深层网络在训练样本较少的情况下也能得到更加充分的优化.在Pavia大学和Indian Pines数据集上的试验结果表明,构建的深度卷积循环神经网络的分类精度比RNN方法分别提升了9.49%和5.8%.  相似文献   

2.
刘冰  左溪冰  谭熊  余岸竹  郭文月 《测绘学报》2020,(10):1331-1342
针对高光谱影像分类面临的小样本问题,提出了一种深度少样例学习算法,该算法在训练过程中通过模拟小样本分类的情况来训练深度三维卷积神经网络提取特征,其提取得到的特征具有较小类内间距和较大的类间间距,更适合小样本分类问题,且能用于不同的高光谱数据,具有更好的泛化能力。利用训练好的模型提取目标数据集的特征,然后结合最近邻分类器和支持向量机分类器进行监督分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验,试验结果表明,该算法能够在训练样本较少的情况下(每类地物仅选取5个标记样本作为训练样本)取得优于传统半监督分类方法的分类精度。  相似文献   

3.
刘冰  左溪冰  谭熊  余岸竹  郭文月 《测绘学报》1957,49(10):1331-1342
针对高光谱影像分类面临的小样本问题,提出了一种深度少样例学习算法,该算法在训练过程中通过模拟小样本分类的情况来训练深度三维卷积神经网络提取特征,其提取得到的特征具有较小类内间距和较大的类间间距,更适合小样本分类问题,且能用于不同的高光谱数据,具有更好的泛化能力。利用训练好的模型提取目标数据集的特征,然后结合最近邻分类器和支持向量机分类器进行监督分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验,试验结果表明,该算法能够在训练样本较少的情况下(每类地物仅选取5个标记样本作为训练样本)取得优于传统半监督分类方法的分类精度。  相似文献   

4.
为了提高高光谱影像分类精度,提出了一种基于生成式对抗网络的高光谱影像分类方法。生成式对抗网络由生成器、判别器和分类器3部分组成,其中生成器用于模拟高光谱样本的数据分布,生成特定类别的样本;判别器是一个二值分类器,用于判断输入的样本是否为真实数据;分类器用于对输入的样本进行分类。利用反向传播算法依次更新生成器、判别器和分类器的网络参数使损失函数最小,从而达到训练网络的目的。生成器和判别器能够模拟高光谱影像的样本分布来辅助训练分类器,因此能够提高高光谱影像的分类精度。分别采用Pavia大学和Salinas高光谱数据集进行分类试验,试验结果表明提出的分类方法能够在小样本条件下提高高光谱影像的分类精度。  相似文献   

5.
联合空-谱信息的高光谱影像深度三维卷积网络分类   总被引:2,自引:2,他引:2  
针对高光谱影像分类高维和小样本的特点,提出一种基于深度三维卷积神经网络的高光谱影像分类方法。首先,该方法直接以高光谱数据立方体为输入,利用三维卷积操作提取高光谱数据立方体的三维空-谱特征。然后,利用残差学习构建深层网络,提取更高层次的特征表达,以提高分类精度。最后,采用Dropout正则化方法防止过拟合。利用Pavia大学、Indian Pines和Salinas 3组高光谱数据进行试验验证,结果表明,与支持向量机和现有的基于深度学习的高光谱影像分类方法相比,该方法能有效提高高光谱影像的地物分类精度。  相似文献   

6.
谭熊  余旭初  秦志远  张鹏强  魏祥坡 《测绘学报》2015,44(11):1227-1234
信息向量机是一种基于贝叶斯理论的稀疏高斯过程方法,其模型训练速度快、内存耗费小、稀疏性强,具有良好的预测性能。本文从高斯过程回归模型出发,提出了一种基于信息向量机的高光谱影像分类方法,针对高斯过程分类中的非高斯噪声模型,采用假定概率滤波算法将分类问题转化为回归问题,通过最大化边缘似然函数进行模型训练,选择活动子集中的信息向量数量达到了稀疏的目的。通过ROSIS影像试验,表明了基于信息向量机的高光谱影像分类方法的优势。  相似文献   

7.
卷积神经网络等深度学习模型已经在高光谱影像分类任务中取得了理想的结果.然而,由于传统神经元只能进行标量计算,现有的深度学习模型无法对高光谱影像特征的实例化参数进行建模,因此无法在邻域范围受限的条件下获得令人满意的分类效果.通过引入胶囊网络结构设计了一种新型网络模型,该模型利用胶囊神经元进行向量计算,并利用权重矩阵编码特...  相似文献   

8.
高光谱影像特征的利用率对提高其分类精度具有重要意义。为充分利用影像的特征,提出了一种特征重标定网络的高光谱影像分类方法。该方法通过全局平均池化将特征图转换为具有全局信息的实数,利用全连接层与非线性层生成能够代表各通道相对重要性的权值,进而采取加权法完成初始特征的重标定。为验证该方法的有效性,选取PaviaU和KSC两组高光谱影像数据进行实验。结果表明,提出方法总体分类精度分别达到98.38%和95.61%,可为高光谱影像提供有效的类别判定特征,有助于提高影像分类精度并获取平滑的分类结果图。  相似文献   

9.
向量化的胶囊神经元和动态路由式的信息传递机制赋予了胶囊网络更强的特征表示能力.在遥感领域,基于胶囊网络的高光谱影像分类方法已经获得了较传统深度学习模型更为优异的分类结果.针对现有胶囊分类模型中存在的网络浅层、空谱联合信息利用不足等问题,本文利用卷积胶囊层、残差连接、三维卷积胶囊层构建了一种用于高光谱影像分类的新型深度胶...  相似文献   

10.
薛朝辉  李博 《遥感学报》2022,26(10):2014-2028
基于卷积神经网络的高光谱图像分类是当前的研究热点,先后发展了空洞卷积、可形变卷积等先进模型。然而,现有可形变卷积只在空间维偏移,忽略了高光谱图像光谱之间的差异信息。为此,本文将可形变卷积从空间维扩展到光谱维,设计了光谱可形变卷积,提出了光谱可形变卷积网络SDCNN (Spectral Deformable Convolutional Neural Network)。首先,利用全连接层学习光谱可形变卷积的偏移量,采用线性差值对图像光谱维进行特征校准;其次,采用多层1×1卷积进行光谱维特征聚合;最后,使用三维卷积层提取光谱—空间联合特征。不同于空间可形变卷积,光谱可形变卷积只在光谱维上进行偏移,可以为不同类别选择更合适的特征波段,提升模型的判别性。在国际通用测试数据Indian Pines、University of Pavia以及University of Houston上进行了实验,结果表明:本文提出的SDCNN方法优于其他深度学习方法,在相同样本条件下取得了更高的分类精度,总体精度达到了98.86%(Indian Pines,10%/类)、99.81%(University of P...  相似文献   

11.
论述了面向对象分类方法处理高光谱高空间分辨率影像的优势与流程;分析了快速漂移(Quick Shift)算法的原理,该算法在进行模式搜索时具有可控制模态选择和平衡过分割与欠分割的特点。将该算法应用于高光谱影像分割,可得到面向对象分类所需的较理想的同质影像对象。为提高影像分割的效率,提出了一种基于灰度共生矩阵的自适应核带宽确定方法,能够兼顾影像空间特征和光谱特征。最后采用最小距离分类法、支持向量机分类法与提出的分类方法进行了对比试验,实验结果表明了该方法的有效性。  相似文献   

12.
从分析基于支持向量机和相关向量机的高光谱影像分类方法的优势和不足出发,将基于概率分类向量机的方法用于高光谱影像分类试验。在贝叶斯理论框架下,概率分类向量机为基函数权值引入截断Gauss先验概率分布,使得不同类别的基函数权值具有不同符号的先验分布,并利用EM算法进行参数推断,得到足够稀疏的概率模型,弥补了相关向量机选取错误类别的样本作为相关向量的不足,从而有效地提高了模型的分类精度和稳定性。OMIS和PHI影像分类试验表明,概率分类向量机能够很好地应用在高光谱影像分类。  相似文献   

13.
基于BP神经网络高光谱图像分类研究   总被引:1,自引:0,他引:1  
遥感影像常常存在"异物同谱"现象,影响了遥感影像的分类精度。为了提高分类精度,本文提出了基于BP神经网络的分类算法。采用环境一号卫星HJ-1A星上搭载的超光谱成像仪(HSI)获取的高光谱数据,利用BP神经网络对黄岛区进行遥感图像分类,根据得到的分类结果对原图像进行"异物同谱"现象纠正后重新选取训练样本,然后利用BP神经网络再分类,从而有效解决了"异物同谱"现象。实验结果表明,经处理后的高光谱影像的分类精度得到显著提高,分类总体精度为92.386 5%,比异物同谱纠正前提高了7.83%,Kappa系数也从0.768 2提升到了0.885 8。  相似文献   

14.
This study presents a deep extraction of localized spectral features and multi-scale spatial features convolution (LSMSC) framework for spectral-spatial fusion based classification of hyperspectral images (HSIs). First, adjacent spectral bands are grouped based on their similarity measurements, where the whole hypercube is partitioned into several sub-cubes, each corresponding to one band group. Then, the proposed localized spectral features extraction (LSF) strategy is used to extract localized spectral features, which are extracted from each band group using the 1D convolutional neural network (CNN). Meanwhile, the proposed HiASPP strategy is employed to extract the multi-scale features from the first several principal components of each sub-cube. Finally, the extracted spectral and spatial features are concatenated for spectral-spatial fusion based classification of HSI. Experiments conducted on three publicly available datasets have demonstrated that the proposed architecture outperforms several state-of-the-art approaches.  相似文献   

15.
针对高光谱影像中空间特征信息利用不足的问题,提出了一种基于纹理和光谱特征的高光谱影像信息向量机分类方法。该方法首先采用三维Gabor滤波器对高光谱影像数据立方体进行纹理特征提取,提取后的影像数据同时具有光谱和纹理特征,避免了传统纹理特征提取带来的高维特征和光谱不连续的问题;然后采用分类精度和效率都较高的信息向量机进行分类处理。通过AVIRIS高光谱影像实验,结果表明该方法不仅提高了影像的分类精度,而且还消除了分类结果图中的类别噪声现象。  相似文献   

16.
利用超平面最小方案,针对高光谱数据在空间维和光谱维建立能量函数,通过两个权重系数调节空间维数据曲面光滑程度和光谱曲线光滑程度,达到联合抑制噪声的目的。实验中,对Hamamatsu相机和AVIRIS采集的高光谱影像数据中比较严重的噪声污染,该方法有效地降低了噪声的影响,在AVIRIS水吸收带处的去噪效果尤为明显。  相似文献   

17.
面对高光谱影像分类的半监督阶梯网络   总被引:1,自引:0,他引:1  
提出一种半监督阶梯网络用于对高光谱影像进行分类,以解决小样本条件下基于堆栈式自编码器的高光谱影像分类方法分类精度不高的问题。首先,该网络以堆栈式自编码器为基础,在编码器和解码器之间增加横向连接参数构建阶梯网络,以使网络适合半监督分类;然后将无监督损失函数与有监督损失函数之和作为最终优化的目标函数,采用半监督的方式对整个网络进行训练。为进一步提高分类精度,提取局部二值模式纹理特征进行分类实验。实验结果表明:提出的半监督阶梯网络能够较好地解决高光谱影像分类小样本问题;且LBP纹理特征能够有效提高分类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号