首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
利用中尺度模式WRF对2009年7月2—3日柳州大暴雨过程进行数值模拟,得到与实况相吻合结果。通过地形敏感性试验,研究了中尺度地形对这次暴雨过程的影响。结果表明:地形对这次大暴雨过程的雨带分布未起到决定性的作用,但对强降水的落区和强度有着重要影响。地形作用使西南暖湿气流所带来的水汽和热量在迎风坡堆积,融安融水一带中低层位温增加,导致其上空对流不稳定性增强,当与低层冷空气绕过山脉从西北路侵入时产生的垂直扰动叠加后,激发垂直上升运动强烈发展,从而触发了对流不稳定发展。而地形降低为"平台"后,山脉附近降水中心减弱,物理量场分析表明,由于缺乏地形的抬升作用,山脉附近垂直上升运动及正涡度强度均较有地形时减弱。  相似文献   

2.
2009年5月24日夜间~26日夜间,新疆地区自西向东出现了明显的降水、大风、降温天气过程。为研究此次天气过程中天山地形的作用,本文用WRFV3.1模式对其进行了数值模拟,并通过改变天山山脉的地形高度设计了一组敏感性试验没,分析了天山地形对此次强天气过程中大风和降温的影响作用。结果表明,(1)天山山脉的地形作用是此次强降水天气过程在天山山区形成暴雨的主要原因之一;随着地形的升高,雨带在天山迎风坡一侧的带状分布特征越明显,迎风坡一侧的降水量极值越大;地形的抬升作用对暴雨在山脉迎风坡一侧的降雨量有明显的增幅作用,对其雨带分布也有显著影响;(2)天山山脉对5﹒25强降水天气过程中的西南暖湿气流有明显的分流与阻挡作用。天山山脉将西南暖湿气流分为南北两支,使北支的水汽混合比极大值减小,湿区范围增大;使南支的水汽混合比极大值增大,湿区范围增大。(3)天山山脉的地形抬升作用为5﹒25强降水过程在天山山区发生暴雨天气创造了水汽的垂直上升运动条件,对昆仑山北坡暖湿气流的垂直上升运动的也有一定的贡献作用。  相似文献   

3.
北京地形对强对流降水天气影响的数值模拟   总被引:2,自引:0,他引:2  
  相似文献   

4.
一次强降水天气过程的中尺度分析   总被引:4,自引:0,他引:4  
薛秋芳  王建中 《气象》1994,20(10):21-25
利用每小时增强显示红外云图,云顶黑体温度(TBB)和常规气象资料,分析了1993年8月3-6日华北原及西北地区东部一次暴雨-大暴雨过程,揭示了产生大暴雨的中α尺度过流系统的发生发展,讨论了环境场条件及天气尺度系统间的相互作用对暴雨云团的重要性,并用物理量诊断探讨雨团形的物理机制。  相似文献   

5.
中尺度地形对大气铅直运动和强降水的影响   总被引:9,自引:0,他引:9  
本文概略地综述了关于地形(特别是中尺度地形)强迫在大气扰动的一些经典工作,它们都是由简化的理想情况引出的一些基本物理概念和原理,但这些知识有助于我们科学地去思考和解释那些更具体复杂的现象,文中还着重对地形扰动中的铅直运动作一些定性推论和讨论,因不它对强降水的触发,加强和持续有地接影响,此外还联系到长江流域的一些有关的观测现象和问题.  相似文献   

6.
基于多种站点观测资料和ERA5再分析资料,对2020年8月15~19日云南一次影响全省的强降水过程的持续性和预报偏差原因进行探究。结果表明:青藏高压的持续东移,是此次降水过程得以维持的关键因素。500hPa影响降水的关键天气系统是由滇缅高压和西太平洋副热带高压形成的两高辐合系统,其演变为北槽南涡,最终发展为青藏高压和西太平洋副热带高压形成的两高辐合系统。此过程中,中高纬度中高层冷平流促使短波槽发展,中层入侵云南的冷空气加强了其上空的层结不稳定性,低层冷空气则增强了对暖湿空气的抬升。在有利天气形势下,云南西南部哀牢山对该地区降水有明显的增幅作用,尤其是迎风坡,海拔高度和降水的正相关性较好,但地形对降水的增幅作用并不一直随海拔高度的增加而增大。ECMWF数值模式没有预报出影响云南降水的两高辐合系统的西移,导致云南中部至西南部降水量预报明显偏小。  相似文献   

7.
利用常规气象观测资料、区域自动站观测资料和FY-2D卫星逐时TBB资料,采用WRF中尺度数值模式,对2011年夏季发生在东天山中段一次强对流天气过程进行数值模拟和诊断分析,研究了天山特殊地形对降水过程的动力结构、水汽输送和云降水微物理机制的影响。结果表明,西风气流东移时受东天山的阻挡,气流从东天山南北两侧绕流,北侧急流经博尔塔拉谷地越过北天山西段后,急流右侧气流反气旋转向形成北支气流;南侧急流遇吐鲁番地区反气旋系统阻挡而转向北进形成南支气流。两支气流受地形动力抬升在东天山中段北坡汇合,为此区域局地强对流降水的形成和发展提供动力条件,北支气流为主要的水汽供应源。高空西南气流引导的冰相云系与低层局地对流云在东天山中段北坡结合,分别持续提供冰晶和云水,促使云微物理过程发展旺盛,致使局地暴雨过程产生。  相似文献   

8.
9.
伍红雨 《广西气象》2007,28(A02):130-131,164
采用我国新一代数值预报模式GARPES,利用T 213资料和探空资料,对2004年我国夏季的一次强降水过程进行24、48h预报试验,结果表明:GRAPES模式对降水预报有指导作用,特别是对大范围、强降水的预报效果较好。GRAPES模式24h的预报比48h的预报更加准确。  相似文献   

10.
利用常规观测、加密自动站资料和NCEP再分析资料,分析2005年5月江西萍乡地区春季一次暴雨过程发现,该过程仅萍乡南部地区出现暴雨,而中北部地区为小到中雨。考虑到萍乡中南部特殊地形,通过WRF中尺度模式模拟再现这次暴雨过程,并设计降低、增高和移除地形三组敏感性试验探究地形对降水的影响。结果表明:(1)萍乡地形的屏障作用在南部地区造成的风场辐合是南部产生暴雨的重要原因;(2)地形通过影响切变线附近风场辐合以及水汽汇集的位置和强度来改变暴雨的落区与强度;(3)较高的地形造成气流在山前堆积,造成明显的水平气压梯度,使局地气流与背景气流在山前辐合,有利于山前降水增强。  相似文献   

11.
基于云分析方法,利用WRF-ARW模式设计一套快速更新循环同化方案,对2019年3月21至22日发生在浙江省的一次强对流天气过程进行模拟研究。通过设计两组对比试验,对云分析同化雷达反射率效果进行诊断分析。在控制试验中,模拟降水落区和降水量与实况差别较大,而采用云分析方法同化雷达反射率(CA-DA)的模拟试验中,降水模拟效果相对较好,雨带明显东移,强度与实况接近。初步结果表明,利用云分析同化雷达反射率因子可以改进模式初始场的风、温度、水汽场以及水凝物等信息,进而缩短模式spin-up时间,提高降水落区及强度的预报。  相似文献   

12.
李明  高维英  李萍云 《气象科学》2016,36(5):689-696
利用常规气象观测资料、陕西区域自动站观测资料、NCEP 1°×1°再分析资料和卫星雷达探测资料,对2012年8月13日关中西北部一次短时强降水过程的成因进行动力学诊断分析,结果表明:在有利于触发中小尺度系统发生及其发展的条件下造成了本次短时局地强降水,雨区环境大气为低层对流不稳定、中层条件对称不稳定、高层对流不稳定的混合型不稳定层结。从卫星和雷达资料分析显示强降水过程是两个不同的中小尺度系统造成,前期是中β尺度干线、辐合线触发带状对流性降水,后期是中β尺度Ω系统触发圆形状对流性强降水。短时强降水雷达反射率因子呈低质心结构,具有热带降雨型特征。  相似文献   

13.
利用加密地面观测资料、 自动站资料、 常规观测资料和NCEP再分析资料, 分析了2012年4月10—12日福建省持续性强对流天气过程的形成机制。结果表明, 此强对流天气过程是在稳定的大尺度环流背景条件下产生的, 低层辐合和高层辐散相叠置、 良好的水汽输送、 大气层结不稳定和高CAPE值为强对流发展提供了必要的热动力条件; 地面中尺度辐合线触发对流发展, 而中层冷空气的侵入加剧了大气层结的不稳定, 使对流发展加强; 最大上升运动中心高于0 ℃层高度以及强的风垂直切变, 有利于冰雹形成。强对流天气潜势预报分析和卫星、 雷达及自动站资料的跟踪分析是做好强对流天气预报预警的有效方法。  相似文献   

14.
吴琼  钱鹏  郭煜  朱海涛  孙翠梅 《气象科学》2014,34(5):549-555
利用NCEP再分析资料,FY2E卫星的TBB资料,常规和加密气象站资料,对2012年7月2—4日,江苏省一次持续性梅雨锋暴雨过程进行了诊断和中尺度特征分析。结果表明:此次过程是东北冷涡槽东移与副热带高压西北侧暖湿气流交汇形成的。暴雨落区在低空西南急流的左侧和中高空急流的一、三象限,低层干线触发了不稳定能量的释放。经分析有7个中尺度云团造成了本次持续性暴雨,-64℃的冷云盖是较强降水的指标性温度,不断东移的中尺度云团类似于"列车效应",带来持续降水,降水开始时间落后于中尺度云团生成时间约2~4 h。地面中尺度辐合线是触发此次强降水的重要中尺度系统,辐合线附近易触发对流,且对流降水沿着辐合线方向移动。低层正、高层负的垂直螺旋度,高温高湿的大气以及较高的位势不稳定为暴雨和强对流天气提供有利条件。在垂直上升运动区北侧有明显下沉运动补偿气流,使上升气流得以长时间维持。暴雨区位于925 hPa超低空急流核移动方向的左侧。  相似文献   

15.
张旭斌  张熠 《气象科学》2011,31(2):145-152
2008年6月11-13日在华南地区出现了特大暴雨,这主要是由一系列中尺度对流系统(MCS)的相继生成,合并和强烈发展导致的.该研究利用新一代中尺度数值模式WRF对此次暴雨过程进行数值模拟,重点研究此次强降水过程中MCS发生、发展和演变过程及其相关物理机制.在MCS的生成过程中,由于西南涡的存在导致MCS始终处于正涡度环境中,正涡度导致的低层辐合与大气静力不稳定都是重要的MCS启动机制,这两者的共同作用有利于MCS的生成与加强.MCS形成后,在强垂直切变的环境中,倾斜抬升机制发生作用,更进一步加强了环境涡度,形成有利的正反馈过程,造成MCS迅速发展.这些加强的MCS和大尺度环境流场相互作用,造成了它们的合并.在MCS的分裂过程中,马氏力起着重要作用.  相似文献   

16.
对2005-2007年4-9月安徽省冰雹、雷雨大风等强对流天气日数进行统计,分析了基于探空资料计算的不稳定指标与强对流天气发生的关系。结果表明:K指数、A指数、沙氏指数和对流有效位能、归一化对流有效位能和对流抑制能量这几个指标对于强对流天气指示意义较好。基于此结果,挑选K指数、沙氏指数和对流有效位能针对不同季节划分闽值,建立强对流天气潜势预警指标,并利用中尺度模式MM5的数值预报产品计算该指标,对2005—2010年13个强对流天气过程预报结果进行对比检验表明。MM5模式给出的强对流天气潜势预警产品对大多数过程均能起到预警作用。对其中两次强对流天气过程分析表明,模式具备预报强对流发生潜势的能力,预报结果对强对流天气发生的时间、落区有预警意义。  相似文献   

17.
基于中尺度数值模式(WRF v3.4),对发生在湖北省红安地区的一次强对流降水天气过程进行了数值模拟。结果表明,此次强对流天气是在水汽充足,高层辐散、低层辐合以及不稳定能量较大的条件下发生发展的。模式模拟得到的地面累积降水和雷达反射率因子与实况相符,云下雨水蒸发过程显著。进行敏感性试验,将雨水蒸发率分别降至1/2、1/4以及完全关闭后,雷达回波强度减弱,对流演变特征发生变化。蒸发过程的减弱使得降水始发阶段以及后期消散阶段的降水强度增强,在对流旺盛阶段降水强度减弱。同时雨水蒸发过程减弱导致云中上升气流减弱,冰雪晶及霰粒子含水量极大值减小、极大值所在高度降低。可见,雨水蒸发对对流云团动力、热力结构及云微物理结构以及云物理过程均有一定程度的影响。  相似文献   

18.
对2005-2007年4-9月安徽省冰雹、雷雨大风等强对流天气日数进行统计,分析了基于探空资料计算的不稳定指标与强对流天气发生的关系。结果表明:K指数、A指数、沙氏指数和对流有效位能、归一化对流有效位能和对流抑制能量这几个指标对于强对流天气指示意义较好。基于此结果,挑选K指数、沙氏指数和对流有效位能针对不同季节划分阈值,建立强对流天气潜势预警指标,并利用中尺度模式MM5的数值预报产品计算该指标,对2005-2010年13个强对流天气过程预报结果进行对比检验表明,MM5模式给出的强对流天气潜势预警产品对大多数过程均能起到预警作用。对其中两次强对流天气过程的进一步分析表明,模式具备预报强对流发生潜势的能力,预报结果对强对流天气发生的时间、落区有预警意义。  相似文献   

19.
相比一般暴雨,突发性暴雨一直是天气预报与研究的难点和重点。2020年6月26日19时~27日02时四川攀西地区凉山冕宁突发暴雨,造成了严重灾害。为了深入认识此次暴雨过程成因,应用观测试验、卫星遥感和ERA5再分析资料,对这次冕宁“6.26”突发性暴雨过程的温、湿环境及动力特征进行了分析研究。结果表明:(1)此次暴雨是由迅速加强的MCS造成,且诱发MCS的温、湿环境具备“突发性”。在暴雨前6~12h,CAPE快速增大、可降水量增加、“上干下湿”垂直结构及热力不稳定条件得以建立。(2)强烈的上升运动在中高层气旋性涡度向低层发展增强的过程中形成,低层气旋性涡度发展又伴随强烈的上升运动,与区域地形相关的动力条件的建立和加强对强对流维持及突发性暴雨发生有重要作用。(3)暴雨过程发生在低层螺旋度与水汽耦合的最佳时段,垂直螺旋度与水汽耦合作用的增强,更易于引发暴雨过程,动力−水汽耦合对暴雨具有重要的激发作用,且湿螺旋度对暴雨落区更具有指示意义。  相似文献   

20.
使用NCEP GFS资料和WRF V3.4模式对2012年第11号台风"海葵"(1211)引发的安徽强降水过程进行数值模拟,通过改变模式中安徽省大别山区和皖南山区的地形高度,设计一组敏感性试验,对"海葵"降水的地形增幅效应进行研究。结果表明:(1)WRF模式对台风"海葵"降水过程有较好的模拟能力。(2)大别山区和皖南山区地形对"海葵"移动路径、强度以及降水分布、强度均有不同程度的影响;不同地形高度下模拟的台风路径及降水分布差异较大,且降水中心强度与地形高度相关性较好,地形对暴雨增幅作用明显。(3)山区地形有利于中尺度辐合线和低涡生成、发展,并有强水汽辐合中心与之相对应;有地形时对流层低层上升运动比无地形时明显加强,对安徽中南部强降水增幅作用显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号