首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dissociation and ionization of hydrogen molecules and ionization of hydrogen atoms due to extreme UV radiation from the parent star are accompanied by the formation of a concurrent photoelectron flux with excess kinetic energy. These dissociation and ionization processes are the main source of atomic and molecular ions in the thermospheres of extrasolar planets, such as the “hot Jupiter” HD 209458b. The ionization processes are the most important part of contemporary aeronomic models of planetary atmospheres in the Solar System and extrasolar systems (Johnson et al., 2008; Yelle et al., 2008). We estimate the contribution of the dissociation and ionization processes due to the stellar UV radiation and the concurrent photoelectron flux to the formation of extended ionospheres around extrasolar giant planets. As opposed to models of other researchers, we calculated the ionization rates due to the concurrent photo-electron flux for the first time. It is established that, in contrast to a widely used parametrization of the photoelectron contribution (Cecchi-Pestellini et al., 2006; 2009), the rate of secondary ionization due to the photoelectrons depends appreciably on the altitude, approaching the photoionization rate in the lower layers of the thermosphere. The calculated ionization rate in the thermosphere of the extrasolar giant planet (EGP) orbiting close to its parent star is a necessary link when modeling an aeronomic model and estimating the rate of the EGP atmospheric loss.  相似文献   

3.
The interaction between the solar wind and cometary ionospheres downstream from the subsolar region is modeled in terms of viscous MHD flow theory. Calculations of the flow stremalines within the mixing region indicate that, as a result of viscous action, both the solar wind particles and the cometary material should be gradually directed towards the interior of the plasma wake to reinforce the formation of a type 1 tail. This behavior supports the notion that a transverse force acting on cometary plasma particles is actually responsible for the collapse of tail ray structures as suggested by Öpik (1964), Wurm (1968, 1975) and Wurm and Mammano (1972).  相似文献   

4.
Abstract— Understanding the nature of the cometary nucleus remains one of the major problems in solar system science. Whipple's (1950) icy conglomerate model has been very successful at explaining a range of cometary phenomena, including the source of cometary activity and the nongravitational orbital motion of the nuclei. However, the internal structure of the nuclei is still largely unknown. We review herein the evidence for cometary nuclei as fluffy aggregates or primordial rubble piles, as first proposed by Donn et al. (1985) and Weissman (1986). These models assume that cometary nuclei are weakly bonded aggregations of smaller, icy‐conglomerate planetesimals, possibly held together only by self‐gravity. Evidence for this model comes from studies of the accretion and subsequent evolution of material in the solar nebula, from observations of disrupted comets, and in particular comet Shoemaker‐Levy 9, from measurements of the ensemble rotational properties of observed cometary nuclei, and from recent spacecraft missions to comets. Although the evidence for rubble pile nuclei is growing, the eventual answer to this question will likely not come until we can place a spacecraft in orbit around a cometary nucleus and study it in detail over many months to years. ESA's Rosetta mission, now en route to comet 67P/Churyumov‐Gerasimenko, will provide that opportunity.  相似文献   

5.
The varying overall nature of the solar wind interaction with the ionospheres of CO and CO2-dominated comets is investigated and compared with previous results for H2O-dominated comets. It is shown that as a comet approaches the sun, it may exhibit one of two types of ionospheric transitions. (In rare circumstances, the cometary ionosphere may display a third type of transition in addition to one of the first two). For both transitions, the ionosphere turns from being hard (in other words, the ionosphere is not susceptible to compression under sudden solar wind pressure increases) to soft. However, for one type of transition, the bow shock changes from being weak (M2) to being strong (M10), whereas for the other type of transition, the bow shock remains weak. The heliocentric distance at which these transitions may occur is found to be a function of the cometary nuclear radius, the latent heat of sublimation of the surface volatiles, the surface bolometric albedo and the following ionospheric properties: the optical depth, the average ionization time scale and the amount of heat addition. Two important consequences of the strong shocks are the large solar wind velocity modulation of the energization of electrons at the bow-shock and the relatively quick formation of cometary plasma tails.These results are applied to the case of comet Humason (1962 VIII). It is shown that either a CO or CO2 dominated surface can explain not only the strong coma and tail activity of this comet at large heliocentric distances, but it can also explain the irregular activity of this comet at such distances.  相似文献   

6.
The “mass loading” of the solar wind by cometary ions produced by the photoionization of neutral molecules outflowing from the cometary nucleus plays a major role in the interaction of the solar wind with cometary atmospheres. In particular, this process leads to a decrease in the solar wind velocity with a transition from supersonic velocities to subsonic ones through the bow shock. The so-called single-fluid approximation, in which the interacting plasma flows are considered as a single fluid, is commonly used in modeling such an interaction. However, it is occasionally necessary to know the distribution of parameters for the components of the interacting plasma flows. For example, when the flow of the cometary dust component in the interplanetary magnetic field is considered, the dust particle charge, which depends significantly on the composition of the surrounding plasma, needs to be known. In this paper, within the framework of a three-dimensional magnetohydrodynamic model of the solar wind flow around cometary ionospheres, we have managed to separately obtain the density distributions of solar wind protons and cometary ions between the bow shock and the cometary ionopause (in the shock layer). The influence of the interplanetary magnetic field on the position of the point of intersection between the densities with the formation of a region near the ionopause where the proton density is essentially negligible compared to the density of cometary ions is investigated. Such a region was experimentally detected by the Vega-2 spacecraft when investigating Comet Halley in March 1986. The results of the model considered below are compared with some experimental data obtained by the Giotto spacecraft under the conditions of flow around Comets Halley and Grigg–Skjellerup in 1986 and 1992, respectively. Unfortunately, our results of calculations on Comet Churyumov–Gerasimenko are only predictive in character, because the trajectory of the Rosetta spacecraft, which manoeuvred near its surface for several months, is complex.  相似文献   

7.
If the structure of the magnetic field and electric current in the cometary type I tail can be represented by an electric current circuit, disruption of the cross-tail current system may lead to a current discharging through the cometary ionosphere, and the dissipation of the magnetic energy stored in the tail. From the point of view of energy budget, a tail-aligned magnetic field on the order of 10γ will be sufficient to produce a strong ionization effect of the cometary atmosphere.  相似文献   

8.
The comet 29P/Schwassmann-Wachmann 1 is an exceptional comet as far as cometary outbursts are concerned. Despite its large distance from the Sun (about 6 au), it shows quasi-regular outburst activity, usually once or twice a year. Up to now there has not been a generally accepted model that explains this phenomenon. In the first part of this paper, the most well-known hypotheses that attempt to explain the outburst activity of this comet are presented and critically analysed. The main aim of this paper is to present a model for the outburst activity of this comet. The model is based on the global analysis of the internal structure and physical and chemical processes that take place in the cometary nucleus. Numerical calculations were carried out for reasonable assumed values of a large range of cometary characteristics. The obtained results are consistent with observational data.  相似文献   

9.
It is shown that when the solar wind interacts with comets, its magnetic field may penetrate through the discontinuity surface into the cometary ionosphere. In case of Venus-like planets the effect of regular motion of magnetic field lines through, that surface is not present, and the presence of magnetic fields in the ionospheres of non-magnetic planets may be due to ionopause boundary instabilities.  相似文献   

10.
This paper presents a current experimental program concerning the study of the photochemical evolution of the organic matter ejected from the cometary nucleus. The aim of the work is to better understand, using laboratory simulations, the mechanisms which are involved in the degradation of the high molecular weight organics in cometary ices and dust when they are submitted to the warming up and to the bombardment of photons in the surrounding area of the Sun. This experimental study will establish correlations between the nucleus and the molecular composition of the coma. Furthermore, experimental data will provide useful information to bring to a close the question of the origin of the extended sources of H2CO and CO. Polyoxymethylene, suspected to be present in the cometary nucleus, is often mentioned as a possible parent molecule for the extended source of H2CO. In order to test this hypothesis, irradiation of POM has been performed at 147 nm. The preliminary results show effectively H2CO as one photodegradation product as well as CO. C02 and HCOOH. Tentative detections of CH30CH3, CH3OCH2OCH3, CH3OCHO and C3H6O3 are also presented.  相似文献   

11.
A critical analysis of the 583 available references in literature has been made to select 153 diatomic molecules, molecular ions, and radicals of astrophysical significance. The results have been arranged in a text-cum-tabular form. The compilation contains various information for each molecule, such as the dissociation energy, spectral region, transition levels, astrophysical objects where the respective molecules have been detected (say, comet, meteorite, Sun, planet, star, interstellar matter, Galaxy, etc.); computed theoretical parameters (i.e., FCFs, transition probabilities, r-centroids, PE curves), and available laboratory data with respective references.In many problems involving the estimation of the physical condition (viz., temperature, pressure, density, and abundance) of the emitter, in various cosmic sources, it is desirous to have a knowledge of the theoretical parameters as well as the experimental details for the molecular spectra of interest.A few important areas of active research in laboratory astrophysics have also been identified in this article: laboratory astrophysics, molecular cloud chemistry, isotopic abundance, planetary and cometary atmospheres through satellites.Besides, some interesting plots of the dissociation energy vs molecular weight, dissociation energy vs total atomic number, dissociation energy vs atomic number differences, ionization potential vs total atomic number, ionization potential vs atomic number differences, and ionization potential vs molecular weight for respective molecules have also been enumerated. Thirty-one new diatomic molecules/molecular ions/radicals of astrophysical significance have also been listed.Astrophysics and Space Science Review Paper.  相似文献   

12.
Density distribution in cometary comae resulting from photodissociation, ionization and ion-molecule reaction of H2O is investigated in an analytic manner. It is assumed that particles expand isotropically around the nucleus, and that each species has its own constant radial velocity. Formulae for the density distribution of photochemical products are presented throught the coma, and approximate formulae are given for the distribution of ion-molecule reaction products in the inner coma. Characterictics of the density profile are discussed on the basis of these analytic formulae.  相似文献   

13.
In this paper we have developed several consequences of Alfvén's (1957) hydromagnetic model of comets. It is shown that such a model not only accounts for the observed morphology and time variations of the fine structure in the plasma tail, but also leads, in a natural way, towards explanations of two of the central problems in cometary physics; namely, the short ionization time-scales of the cometary molecules, and the large velocities and accelerations observed far down the tail.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978.  相似文献   

14.
A new approach is considered to the problem of ionization of the inner comas of comets connected with two phenomena: meteor-like process due to cometary molecules — interplanetary meteoroids impacts and explosion-type process due to high-velocity collisions between cometary dust grains and interplanetary meteoroids. It is found that the efficiency of explosive ionization exceeds the efficiency of meteor ionization approximately 100 times. The explosive ionization may be possible mechanism for anomaly ionization of the inner comae of dusty comets like Halley 1986 III with the dust to gas production rate ratio more than 0.1.  相似文献   

15.
The cooling of electrons by vibrational and rotational excitation of water molecules plays an important role in the thermal balance of electrons in cometary ionospheres. The energy loss function for rotational excitation and de-excitation of H2O by electron impact is calculated theoretically. The rotational cooling rate is calculated using this loss function for a wide range of electron and neutral temperatures. The vibrational cooling rate is calculated using measured values of electron impact vibrational excitation cross sections. Analytical formulae are provided for some of the cooling rates. The interaction of ions with H2O molecules is also discussed and a formula is suggested for the momentum transfer collision frequency.  相似文献   

16.
The point source of neutral gas undergoing ionization and expanding into an uniform magnetic field is considered. Friction between the neutral and ionized particles results in the formation of the magnetic field barrier and diamagnetic cavity surrounding the source. At least one neutral point inevitably arises at the boundary of the cavity. When the neutral gas production rate grows, two neutral points may arise at this boundary. In the vicinity of these points magnetic field lines converge, along with the plasma flow which is magnetic field aligned in the steady state. As a result, two plasma jets originate from the neutral points. Possible relation of these jets to cometary rays is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
S.H. Gross  G.V. Ramanathan 《Icarus》1976,29(4):493-507
Observations of Io suggest that it may have an atmosphere in which sodium vapor, ammonia, and nitrogen are important constituents. Several atmospheric models consisting of these gases are treated here. These are tested as a function of total content against the Pioneer 10 observations and for stability against escape. The results suggest that the atmosphere is very tenuous and that the interpretation of the ionosphere detected by Pioneer 10 by a static model may be inconsistent with the sodium cloud observations. It is postulated that ionization may also be escaping and that sodium may be comparable in content in the atmosphere with some molecular constituent such as NH3 or N2. Sodium and this molecular component then dominate the atmosphere. It is also suggested that particle precipitation contributes to heating of the atmosphere and to the production of ionization; furthermore, the difference between day- and nighttime ionospheres and possible trailing and leading side effects may relate to the nature of the particle energy distributions. These distributions may be the result of the peculiar interaction of Io with the Jovian magnetosphere.  相似文献   

18.
The observation of ions created by ionization of cometary gas, either by ground-based observations or byin situmeasurements can give us useful information about the gas production and composition of comets. However, due to the interaction of ions with the magnetized solar wind and their high chemical reactivity, it is not possible to relate measured ion densities (or column densities) directly to the parent gas densities. In order to quantitatively analyze measured ion abundances in cometary comae it is necessary to understand their dynamics and chemistry. We have developed a detailed ion–chemical network of cometary atmospheres. We include production of ions by photo- and electron impact-ionization of a background neutral atmosphere, charge exchange of solar wind ions with cometary atoms/molecules, reactions between ions and molecules, and dissociative recombination of molecular ions with thermal electrons. By combining the ion–chemical network with the three-dimensional plasma flow as computed by a new fully three-dimensional MHD model of cometary plasma environments (Gombosiet al.1996) we are able to compute the density of the major cometary ions everywhere in the coma. The input parameters for our model are the solar wind conditions (density, speed, temperature, magnetic field) and the composition and production rate of the gas. We applied our model to Comet P/Halley in early March 1986, for which the input parameters are reasonably well known. We compare the resulting column density of H2O+with ground-based observations of H2O+from DiSantiet al.(1990). The results of our model are in good agreement with both the spatial distribution and the absolute abundance of H2O+and with their variations with the changing overall water production rate between two days. The results are encouraging that it will be possible to obtain production rates of neutral cometary constituents from observations of their ion products.  相似文献   

19.
Cometary material inevitably undergoes chemical changes before and on leaving the nucleus. In seeking to explain comets as the origin of many IDPs (interplanetary dust particles), an understanding of potential surface chemistry is vital. Grains are formed and transformed at the nucleus surface; much of the cometary volatiles may arise from the organic material. In cometary near-surface permafrost, one expects cryogenic chemistry with crystal growth and isotope. This could be the hydrous environment where IDPs form. Seasonal and geographic variations imply a range of environmental conditions and surface evolution. Interplanetary dust impacts and electrostatic forces also have roles in generating cometary dust. The absence of predicted cometary dust ‘envelopes’ is compatible with the wide range of particle structures and compositions. Study of IDPs would distinguish between this model and alternatives that see comets as aggregates of core-mantle grains built in interstellar clouds.  相似文献   

20.
The energization of positive ions in front of a cometary bow shock is investigated. Ions produced by ionization of the cometary neutrals interact with the solar wind protons to produce, among other waves, large amplitude oscillations of the ambient magnetic field. Such oscillations are convected towards the comet at the unperturbed solar wind speed far from the shock and at a lower speed closer to the shock (due to the solar wind mass loading) ; hence, they can energize the suprathermal ions by Fermi acceleration. The spatial extension of the acceleration region is of the order of 106 km and the resulting ion energy spectrum is harder than in the Earth's bow shock case. The energization of cometary ions produces an additional deceleration of the solar wind, such that the cometary bow shock of Halley-type comet may be regarded as a “cosmic ray shock”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号