首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Bridge pile foundations in the midst of water current are often subjected to scour, which induces the loss of soil support around the piles and thus results in a significant decrease of foundation capacities or even the failure of bridges. In the current practice, when the scour-affected behavior of the pile foundations is analyzed, either the whole scour-hole geometry or the possible changes in the stress history of the remaining soils is often ignored. In reality, however, scouring creates scour holes with certain dimensions around the pile foundations and the remaining soils that are not scoured away undergo an unloading process at the same time, which will increase the over-consolidation ratios of the remaining soils and accordingly changes of their mechanical properties. This paper examines the behavior of laterally loaded piles in soft clay under scour conditions by using the p-y method. The conventional p-y curves have been modified appropriately to reasonably reflect the effects of three-dimensional scour-hole geometry as well as the stress history of the soils, with the aid of integration of Mindlin’s fundamental solutions. A field test is used to serve as a reference case and to investigate the effects of stress history, scour depth, scour width, and scour-hole slope angle on the responses of laterally loaded piles in soft clay. The results indicate that neglecting the stress history effect can be unconservative for scour-affected pile foundations in soft clay, whereas neglect of the scour-hole dimensions and geometry would lead to over-conservative predictions/design of the laterally loaded piles under scour condition.  相似文献   

2.
The response of laterally loaded piles placed near the crest of clay slopes is analysed. Three-dimensional finite element analyses are presented for piles of different geometries, installed at several distances from slopes of various inclinations. The results of these analyses are used to establish the pattern of lateral load distribution along the pile length in relation to slope inclination and pile to slope distance. Subsequently, py curves are developed for the case of undrained lateral loading of piles near the crest of clay slopes, a case for which no such curves exist so far. The proposed py curves are implemented into a commercial subgrade reaction computer code and used to perform a series of parametric numerical analyses. The results of these analyses show that the predicted response of piles near slopes with the proposed py curves is in good agreement with the response observed in some pile tests reported in the literature.  相似文献   

3.
The load distribution and deflection of large diameter piles are investigated by lateral load transfer method (py curve). Special attention is given to the soil continuity and soil resistance using three-dimensional finite element analysis. A framework for determining a py curve is calculated based on the surrounding soil stress. The appropriate parametric studies needed for verifying the py characteristic are presented in this paper. Through comparisons with results of field load tests, the three-dimensional numerical methodology in the present study is in good agreement with the general trend observed by in situ measurements and thus, represents a realistic soil–pile interaction for laterally loaded piles in clay than that of existing py method. It can be said that a rigorous numerical analysis can overcome the limitations of existing py methods to some extent by considering the effect of realistic three-dimensional combination of pile–soil forces.  相似文献   

4.
Although simplified numerical methods are reliable for evaluating the response of a single pile under horizontal load, their application is questionable for assessing the response of pile groups. The notion of “py” curves has been considered with the aim of establishing a transformation relationship able to provide the “pGyG” curves of soil resistance around a pile in a group from the well-known curves of soil resistance around the single pile.This transformation extends the applicability of the “py” method to pile groups, without the need for time consuming numerical computations, rendering the proposed method efficient and attractive. Comparative examples demonstrated the applicability and the effectiveness of the proposed method. In addition, the method can be straightforwardly extended to account for varying soil resistance, according to the particular location of a pile in a group. It can therefore be used to estimate accurately force and bending moment distributions along the characteristic piles of a group, which are required for the efficient design of foundations.  相似文献   

5.
Pile group interaction effects on the lateral pile resistance are investigated for the case of a laterally loaded row of piles in clay. Both uniform undrained shear strength and linearly increasing with depth shear strength profiles are considered. Three-dimensional finite element analyses are presented, which are used to identify the predominant failure modes and to calculate the reduction in lateral resistance due to group effects. A limited number of two-dimensional analyses are also presented in order to examine the behaviour of very closely spaced piles. It is shown that, contrary to current practice, group effects vary with depth; they are insignificant close to the ground surface, increase to a maximum value at intermediate depths and finally reduce to a constant value at great depth. The effect of pile spacing and pile–soil adhesion are investigated and equations are developed for the calculation of a depth dependent reduction factor, which when multiplied by the limiting lateral pressure along a single pile, provides the corresponding variation of soil pressure along a pile in a pile row. This reduction factor is used to perform py analyses, which show that, due to this variation of group effects on the lateral soil pressures with depth, the overall group interaction effects depend on the pile length. Comparisons are also made with approaches used in practice that assume constant with depth reduction factors.  相似文献   

6.
Pile foundations are often subject to lateral loading due to various forces on a variety of structures like high rise buildings, transmission towers, power stations, offshore structures and highway and railway structures. The present investigation is to study the effect of slopes on p-y curves (where p is the static soil reaction and y is the pile deflection) due to static lateral loading in soft clay (Consistency index Ic = 0.42). A series of laboratory model tests were carried out on the instrumented model pile on sloping ground (slopes of 1V:1H, 1V:1.5H, 1V:2H, 1V:3H and 1V:5H) and with varying embedment length to diameter ratio (L/D) of 20, 25 and 30. From the experimental results, the bending moment curves along the pile shaft are double differentiated to obtain the soil resistance (p) and double integrated to obtain the deflection (y) using curve fitting method. New p-y curves for piles located on crest of soft clay with different sloping ground surface under static lateral loading are developed. Moreover, the effect of sloping angles on proposed p-y curves was studied.  相似文献   

7.
The py method is one of the most popular methods for the analysis and design of laterally loaded piles. The mathematical relationship it provides between the bending moment, which can be easily measured at strain gauges along the pile, and the soil resistance and lateral pile displacement, facilitates the construction of py curves. Numerical techniques are required to fit smooth continuous curves to the discrete bending moment data in order to improve the accuracy of subsequent differentiation and integration operations. Due to the lack of guidance on the optimum positioning of strain gauges and the reliability and accuracy of curve fitting methods, a unifying study, inclusive of small (0.61 m) and large (3.8 and 7.5 m) diameter piles in clay, was carried out using 18 strain gauge layouts and cubic spline, cubic to quintic B-spline and 3rd to 10th degree global polynomial techniques. Bending moment data was obtained using 3D finite element analysis. Through a comprehensive evaluation, the cubic and cubic B-spline methods were found to be consistently accurate in deriving py curves for both the small and large diameter piles.  相似文献   

8.
Two-dimensional finite element analysis has been used to find load–transfer relationships for translation of an infinitely long pile through undrained soil for a variety of soil-constitutive models. It has been shown that these load–transfer curves can be used as py curves in the analysis of single piles undergoing lateral pile head loading in undrained soils with non-linear stress–strain laws. Lateral pile response deduced from 2-D analysis input to the subgrade reaction method has been compared to the behaviour of a single pile analysed using three-dimensional finite element analysis. Good agreement between the two methods for non-linear soils suggests that the 2-D analysis may form a useful design method for calculation of py curves. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
杨晓峰  张陈蓉  袁聚云 《岩土力学》2015,36(10):2946-2950
冲刷引起桩周土体的损失,研究冲刷效应对桩基水平承载特性的影响非常必要。基于桩前土体楔形受力的应变楔方法可以推导桩侧p-y曲线,进而分析水平受荷桩的受力变形特性,但只适于地表水平的情况。基于冲刷坑坑底以上土体的自重荷载对楔形体的开展范围进行深度等效,建立了冲刷条件下砂土中水平受荷桩的等效应变楔方法。通过与文献对比,验证了该方法的可行性。研究结果表明:冲刷深度增加,冲刷坑底宽度增大及冲刷坡角减小均会降低桩基水平承载性能。与仅考虑冲刷引起的桩侧极限抗力削弱的简化方法相比,本研究得到的桩基最大弯矩偏小。将冲刷坑底以上土层全部剥蚀的做法,忽略了冲刷深度内的土层作用,计算结果会偏于保守。  相似文献   

10.
A modulus‐multiplier approach, which applies a reduction factor to the modulus of single pile py curves to account for the group effect, is presented for analysing the response of each individual pile in a laterally loaded pile group with any geometric arrangement based on non‐linear pile–soil–pile interaction. The pile–soil–pile interaction is conducted using a 3D non‐linear finite element approach. The interaction effect between piles under various loading directions is investigated in this paper. Group effects can be neglected at a pile spacing of 9 times the pile diameter for piles along the direction of the lateral load and at a pile spacing of 6 times the pile diameter for piles normal to the direction of loading. The modulus multipliers for a pair of piles are developed as a function of pile spacing for departure angle of 0, 90, and 180sup>/sup> with respect to the loading direction. The procedure proposed for computing the response of any individual pile within a pile group is verified using two well‐documented full‐scale pile load tests. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The method of “p–y” curves has been extensively used, in conjunction with simplified numerical methods, for the design and response evaluation of single piles. However, a straightforward application of the method to assess the response of pile groups is questionable when the group effect is disregarded. For this reason, the notion of p-multipliers has been therefore introduced to modify the “py” curves and account for pile group effect. The values proposed for p-multipliers result from pile group tests and are limited to the commonly applied spacing of 3.0 D and layout less than 3 × 3, restricting the applicability of the method to specific cases. With the aim of extending the applicability of the “py” method to pile groups, the authors have already proposed a methodology for estimating the “p Gy G” curves of soil resistance around a pile in a group for clayey soils. A complementary research allowing for the estimation of the “p Gy G” curves for sandy soils is presented in this paper. The well-known curves of soil resistance around the single pile in sandy soils are appropriately transformed to allow for the interaction effect between the piles in a group. Comparative examples validate the applicability and the effectiveness of the proposed method. In addition, the method can be straightforwardly extended to account for varying soil resistance, according to the particular location of a pile in a group. It can therefore be used in a most accurate manner in estimating the distribution of forces and bending moments along the characteristic piles of a group and therefore to design a pile foundation more accurately.  相似文献   

12.
The pre-bored grouted planted pile is a new type of composite pile foundation that consists of a precast concrete pile and the surrounding cemented soil. A series of shear tests were conducted in a specific shear test apparatus to investigate the shaft capacity of the different pile–soil interfaces. The test results show that the frictional capacity of the cemented soil–sand interface is controlled mainly by the sand properties, while the strength of the cemented soil slightly influences the interface properties by affecting the normalized roughness coefficient Rn. The frictional capacity of the concrete–sand interface is similar to the frictional capacity of the cemented soil–sand interface, and the existence of mud cake layer virtually hampers the frictional properties of the interface. The maximum skin friction of the concrete–cemented soil interface increases approximately linearly with the increasing cemented soil strength, and the value of the maximum skin friction is much larger than that of the cemented soil–sand interface of identical cemented soil strength, which demonstrates the integrity of the pre-bored grouted planted pile in the load transfer process.  相似文献   

13.
The development of a two-surface elastic–plastic bounding surface PY model for cyclic lateral pile motions is described. The kinematic-hardening model is applicable to the analysis of pile foundations subjected to loading with arbitrary azimuths relative to the pile axis. The model realistically captures the hysteretic energy damping associated with dynamic loading of subsea foundations through physically correct plastic mechanisms and provides results consistent with those observed in physical tests including cyclic loading. Its performance is demonstrated in element states of stress and in pile foundation analyses. The development based on the incremental theory of plasticity results in more robust solutions than may be obtained using alternative elastic, variable moduli and deformation plasticity formulations.  相似文献   

14.
The load distribution and deformation of piled raft foundations subjected to axial and lateral loads were investigated by a numerical analysis and field case studies. Special attention is given to the improved analytical method (YSPR) proposed by considering raft flexibility and soil nonlinearity. A load transfer approach using py, tz and qz curves is used for the analysis of piles. An analytical method of the soil–structure interaction is developed by taking into account the soil spring coupling effects based on the Filonenko-Borodich model. The proposed method has been verified by comparing the results with other numerical methods and field case studies on piled raft. Through comparative studies, it is found that the proposed method in the present study is in good agreement with general trend observed by field measurements and, thus, represents a significant improvement in the prediction of piled raft load sharing and settlement behavior.  相似文献   

15.
《Computers and Geotechnics》2006,33(6-7):355-370
A numerical method that takes into account the coupling between the rigidities of the piles, the cap, and the column has been developed for analyzing the response of pile group supported columns. Special attention is given to consideration of pile cap flexibility. A load transfer approach using tz/qz and py curves is used for the analysis of single piles. The finite element technique is used to combine the pile stiffness with the stiffness of the cap and column. The numerical method developed has been verified by comparing the results with other numerical methods for pile groups. Through comparative studies, it has been found that the maximum load on the individual piles in a group is highly influenced by pile cap flexibility. The prediction of the lateral loads and bending moments in the pile cap is much more conservative in the present analysis than in FBPier 3.0 and shows a definitely larger lateral load and bending moment for various cap thicknesses.  相似文献   

16.
A simplified method of numerical analysis based on elasticity theory has been developed for the analysis of axially and laterally loaded piled raft foundations embedded in non‐homogeneous soils and incorporated into a computer program “PRAB”. In this method, a hybrid model is employed in which the flexible raft is modelled as thin plates and the piles as elastic beams and the soil is treated as springs. The interactions between structural members, pile–soil–pile, pile–soil–raft and raft–soil–raft interactions, are approximated based on Mindlin's solutions for both vertical and lateral forces with consideration of non‐homogeneous soils. The validity of the proposed method is verified through comparisons with some published solutions for single piles, pile groups and capped pile groups in non‐homogeneous soils. Thereafter, the solutions from this approach for the analysis of axially and laterally loaded 4‐pile pile groups and 4‐pile piled rafts embedded in finite homogeneous and non‐homogeneous soil layers are compared with those from three‐dimensional finite element analysis. Good agreement between the present approach and the more rigorous finite element approach is demonstrated. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
杨晓峰  张陈蓉  黄茂松  袁聚云 《岩土力学》2016,37(10):2877-2885
提出了砂土中水平受荷单桩的修正应变楔方法。从3个方面对应变楔模型进行了修正,首先假设三维被动土楔后桩身的水平位移呈非线性变化,从而使得楔形体内的水平应变不再是一常量,而是沿深度变化。其次引入了两个双曲线型的模型分别用以模拟楔形体中土体的水平应力增量-应变关系和桩-土界面处桩侧剪应力-位移关系。然后通过算例验证了修正方法的有效性,模拟结果与实测结果吻合较好。最后分析了各个修正因素对计算结果影响,结果显示,非线性位移假设的引入对原应变楔模型计算的水平承载力偏高有明显地改善,新的水平应力增量-应变关系和桩侧剪应力-位移关系的引入使得应变楔方法更加简便有效。  相似文献   

18.
In order to investigate the effect of stress history on in-situ test results in granular sediments, a series of CPTs and DMTs are performed on Busan sand prepared in the calibration chamber. KD is found to be the most sensitive to the stress history among CPT and DMT measurements. ED and qc are observed to be similarly affected by the stress history and, therefore, the ED–qc relation appears to be almost independent of the stress history. The KD–DR relation established without considering the stress history is likely to overestimate the relative density of OC sand. It is shown that the existence of the pre-stress of the granular sediment can be indirectly recognized by an estimation of the relative density larger than 100% when using the KD–σv′–DR relation suggested for NC sand. Although qcv′–KD/K0 and EDv′–KD/K0 relations are heavily influenced by the stress history, qcm′–KD/K0 and EDm′–KD/K0 relations are observed to be independent of the stress history. Based on these relations, charts to evaluate the K0 value from qc and/or DMT indices are developed for both NC and OC sands. The design chart based on EDm′–KD/K0 and EDv′–KD/K0 relations is expected to be practically useful as the usage of this chart requires only DMT indices. The developed design charts are applicable to Busan sand but different sets of equations and charts may be developed for other sands.  相似文献   

19.
In this paper, a numerical procedure based on the finite element method is outlined to investigate pile behaviour in sloping ground, which involves two main steps. First a free-field ground response analysis is carried out using an effective stress based stress path model to obtain the ground displacements, and the degraded soil stiffness and strength over the depth of the soil deposit. Next a dynamic analysis is carried out for the pile. The interaction coefficients and ultimate lateral pressure of soil at the pile–soil interface are calculated using degraded soil stiffness and strength due to build-up of pore pressures, and the soil in the far field is represented by the displacements calculated from the free-field ground response analysis. Pore pressure generation and liquefaction strength of the soil predicted by the stress path model used in the free-field ground response analysis are compared with a series of simple shear tests performed on loose sand with and without an initial static shear stress simulating sloping and level ground conditions, respectively. Also the numerical procedure utilised for the analysis of pile behaviour has been verified using centrifuge data, where soil liquefaction has been observed in laterally spreading sloping ground. It is demonstrated that the new method gives good estimate of pile behaviour, despite its relative simplicity.  相似文献   

20.
A modified strain wedge (SW) method for analyzing the behavior of laterally loaded single piles in sand is proposed. The modified model assumes that the lateral displacements of a pile behind the three-dimensional passive soil wedge are nonlinear, which makes the horizontal soil strain variable with depths instead of a constant value in the original strain wedge model, and also employs two different hyperbolic models, one for describing horizontal stress increment-strain behavior of soil in the wedge, and the other for describing the shear stress-displacement property at the interface between soil and pile shafts. An example is analyzed to demonstrate the effectiveness of the modified method, and a good agreement is obtained. Finally, the effects of modifications on the lateral bearing capacity of pile shafts are discussed. The results show that the problem of overestimating the lateral bearing capacity of piles with strain wedge method can be ameliorated by introducing the assumption of nonlinear lateral displacements of piles. It makes the SW method more convenient and effective in analyzing the behavior of laterally loaded piles by introducing the new relationships of horizontal stress increment-strain and shear stress-displacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号