首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R/S analysis is used in this work to investigate the fractal correlations in terms of the Hurst exponent for the 1998–2011 seismicity data in Southern Mexico. This region is the most seismically active area in Mexico, where epicenters for severe earthquakes (e.g., September 19, 1985, Mw = 8.1) causing extensive damage in highly populated areas have been located. By only considering the seismic events that meet the Gutenberg–Ritcher law completeness requirement (b = 0.97, MGR = 3.6), we found time clustering for scales of about 100 and 135 events. In both cases, a cyclic behavior with dominant spectral components at about one cycle per year is revealed. It is argued that such a one-year cycle could be related to tidal effects in the Pacific coast. Interestingly, it is also found that high-magnitude events (Mw  6.0) are more likely to occur under increased interevent correlations with Hurst exponent values H > 0.65. This suggests that major earthquakes can occur when the tectonic stress accumulates in preferential directions. In contrast, the high-magnitude seismic risk is reduced when stresses are uniformly distributed in the tectonic shell. Such cointegration between correlations (i.e., Hurst exponent) and macroseismicity is confirmed for spatial variations of the Hurst exponent. In this way, we found that, using the Hurst exponent standpoint, the former presumed Michoacan and the Guerrero seismic gaps are the riskiest seismic zones. To test this empirical finding, two Southern Mexico local regions with large earthquakes were considered. These are the Atoyac de Alvarez, Guerrero (Mw = 6.3), and Union Hidalgo, Oaxaca (Mw = 6.6), events. In addition, we used the Loma Prieta, California, earthquake (October 17, 1989, Mw = 6.9) to show that the high-magnitude earthquakes in the San Andreas Fault region can also be linked to the increments of determinism (quantified in terms of the Hurst exponent) displayed by the stochastic dynamics of the interevent period time series. The results revealed that the analysis of seismic activity by means of R/S analysis could provide further insights in the advent of major earthquakes.  相似文献   

2.
Ground motion intensity measures such as the peak ground acceleration (PGA) and the pseudo-spectral acceleration (PSA) at two sites due to the same seismic event are correlated. The spatial correlation needs to be considered when modeling ground-motion fields for seismic loss assessments, since it can have a significant influence on the statistical moments and probability distribution of aggregated seismic loss of a building portfolio.Empirical models of spatial correlation of ground motion intensity measures exist only for a few seismic regions in the world such as Japan, Taiwan and California, since for this purpose a dense observation network of earthquake ground motion is required. The Istanbul Earthquake Rapid Response and Early Warning System (IERREWS) provides one such dense array with station spacing of typically 2 km in the urban area of Istanbul. Based on the records of eight small to moderate (Mw3.5–Mw5.1) events, which occurred since 2003 in the Marmara region, we establish a model of intra-event spatial correlation for PGA and PSA up to the natural period of 1.0 s.The results indicate that the correlation coefficients of PGA and short-period PSA decay rapidly with increasing interstation distance, resulting in correlation lengths of approximately 3–4 km, while correlation lengths at longer natural periods (above 0.5 s) exceed 6 km. Finally, we implement the correlation model in a Monte Carlo simulation to evaluate economic loss in Istanbul's district Zeytinburnu due to a Mw7.2 scenario earthquake.  相似文献   

3.
The strong earthquake (M = 7) that occurred in the Fucino basin (central Italy) on January 13, 1915 was followed by six earthquakes of M > 5.5 and several other shocks of M > 5 in the major seismic zones of the northern Apennines from 1916 to 1920. This seismicity pattern is consistent with the implications of the present tectonic setting in the study area, which suggests that strong decoupling earthquakes in the central Apennines cause a significant increase of tectonic load, and possibly of seismicity, in the northern Apennines. A numerical simulation, carried out by an elastic-viscous model, of the stress diffusion induced by the Fucino and successive largest earthquakes, shows that each of the above shocks occurred when the respective zone was reached by the highest values of the strain and strain rate perturbation triggered by the previous events. Furthermore, the computed strain regime at each earthquake site is consistent with the known faulting pattern. The results provide important insights into the physical mechanism that controls the interaction of seismic sources in the central and northern Apennines.  相似文献   

4.
Many authors have proposed that the study of seismicity rates is an appropriate technique for evaluating how close a seismic gap may be to rupture. We designed an algorithm for identification of patterns of significant seismic quiescence by using the definition of seismic quiescence proposed by Schreider (1990). This algorithm shows the area of quiescence where an earthquake of great magnitude may probably occur. We have applied our algorithm to the earthquake catalog on the Mexican Pacific coast located between 14 and 21 degrees of North latitude and 94 and 106 degrees West longitude; with depths less than or equal to 60 km and magnitude greater than or equal to 4.3, which occurred from January, 1965 until December, 2014. We have found significant patterns of seismic quietude before the earthquakes of Oaxaca (November 1978, Mw = 7.8), Petatlán (March 1979, Mw = 7.6), Michoacán (September 1985, Mw = 8.0, and Mw = 7.6) and Colima (October 1995, Mw = 8.0). Fortunately, in this century earthquakes of great magnitude have not occurred in Mexico. However, we have identified well-defined seismic quiescences in the Guerrero seismic-gap, which are apparently correlated with the occurrence of silent earthquakes in 2002, 2006 and 2010 recently discovered by GPS technology.  相似文献   

5.
The source parameters of the major events of a swarm and of two seismic sequences, occurred in the Friuli area (Northeastern Italy) and in Western Slovenia, were estimated. The Claut swarm (C96) occurred since the end of January to June 1996, with a MD 4.3 major shock and it appears composed of three sub-sequences. The two sequences are the Kobarid sequence (K98) started on April 12, 1998 with a MD 5.6 mainshock and the M.te Sernio (S02) sequence caused by the February 14, 2002 earthquake (MD = 4.9). Acceleration and velocity data recorded by the local seismic network of the Istituto Nazionale di Oceanografia e di Geofisica Sperimenale (OGS) and corrected for attenuation, were employed to estimate seismic moments and radiated energies. Source dimensions were inferred from the computed corner frequencies and the stress release was estimated from the Brune stress drop, the apparent stress and the RMS stress drop. On the whole, seismic moments range from 1.7 × 1012 to 1.1 × 1017 N m, and radiated energies are in the range 106–1013 J. Brune stress drops are scattered and do not show any evidence of a self-similarity breakdown for sources down to 130 m radius. The radiated seismic energy scales as a function of seismic moment, with a slope of the scaling relation that decreases for increasing seismic moments.The mechanism of stress release was analyzed by computing the ɛ parameter of Zuniga [Zuniga, R., 1993. Frictional overshoot and partial stress drop. Which one? Bull. Seismol. Soc. Am. 83, 939–944]. The K98 and S02 sequences are characterized by a wide range of the ɛ parameter with stress drop mechanism varying from partial locking to overshoot cases. The ɛ values of the C96 swarm are more homogeneous and close to the Orowan's condition. The radiated seismic energy and the ratio of stress drop between mainshock and aftershocks appear different among the analyzed cases. We therefore investigated the relationship between the stress parameters of the main shock and the energy radiated by the aftershock sequences. For this purpose, we also estimated the source parameters of two other sequences occurred in the area, with mainshocks of MD 4.1 and 5.1, respectively. We found a positive correlation between the Brune stress drop of the mainshock and the ratio between the radiated energy of the mainshock and the summation of the energies radiated by the aftershocks.  相似文献   

6.
We used data of local earthquakes collected during two recent passive seismic experiments carried out in southern Italy in order to study the seismotectonic setting of the Lucanian Apennine and the surrounding areas. Based on continuous recordings of the temporary stations we extracted over 15,600 waveforms, which were hand-picked along with those recorded by the permanent stations of the Italian national seismic network obtaining a dense, high-quality dataset of P- and S-arrival times. We examined the seismicity occurring in the period 2001–2008 by relocating 566 out of 1047 recorded events with magnitudes ML  1.5 and computing 162 fault-plane solutions. Earthquakes were relocated using a minimum one-dimensional velocity model previously obtained for the region and a Vp/Vs ratio of 1.83. Background seismicity is concentrated within the upper crust (between 5 and 20 km of depth) and it is mostly clustered along the Lucanian Apennine chain axis. A significant feature extracted from this study relates to the two E–W trending clusters located in the Potentino and in the Abriola–Pietrapertosa sector (central Lucania region). Hypocentral depths in both clusters are slightly deeper than those observed beneath the Lucanian Apennine. We suggest that these two seismic features are representative of the transition from the inner portion of the chain to the external margin characterized by dextral strike-slip kinematics. In the easternmost part of the study area, below the Bradano foredeep and the Apulia foreland, seismicity is generally deeper and more scattered. The sparse seismicity localized in the Sibari Plain, in the offshore area along the northeastern Calabrian coast and in the Taranto Gulf is also investigated thanks to the new recordings. This seismicity shows hypocenters between 12 and 20 km of depth below the Sibari Plain and is deeper (foci between 10 and 35 km of depth) in the offshore area of the Taranto Gulf. 102 well-constrained fault-plane solutions, showing predominantly normal and strike-slip character with tensional axes (T-axes) generally NE oriented, were selected for the stress tensor analysis. We investigated stress field orientation inverting focal mechanism belonging to the Lucanian Apennine and the Pollino Range, both areas characterized by a more concentrated background seismicity.  相似文献   

7.
Historical and active seismicity in the south-western Alps (France and Italy) shows the recurrence of relatively high-magnitude earthquakes (M  5.8), like the one that recently affected the Italian Apennine range (M = 6.3 on the 30th March 2009). However, up-to-date detailed mapping of the active fault network has been poorly established. The evaluation of seismological hazard in particular in the highly populated French and Italian coastal region cannot be done without this. Here, we present a detailed study of the main active fault system, based on geological observations along the south-western flank of the Alpine arc. This N140° right-lateral strike-slip active fault system runs along the edge of the Argentera-Mercantour range and can be followed down to the Mediterranean Sea. It is evidenced by (1) Holocene offsets of glacial geomorphology witnessing ongoing fault activity since 10 ka, (2) widespread recent (10–20 Ma) pseudotachylytes featuring long term activity of the faults, (3) active landslides along the main fault zone, (4) geothermal anomalies (hot springs) emerging in the active faults, (5) ongoing low-magnitude seismic activity and (6) localization of the main historical events. In the light of our investigations, we propose a new tectonic pattern for the active fault system in the south-western Alps.  相似文献   

8.
Electrical conductivity and seismic velocity are studied for plausible pore geometries in the Earth's interior for reliable quantitative analysis of experimental data such as seismic tomography and magnetotelluric explorations. Electrical conductivity of a two-phase system with equilibrium, interfacial energy-controlled phase geometry is calculated for the dihedral angles θ = 40°–100° that are typical for rock–aqueous fluid and θ = 20°–60° for rock–melt systems of lower crust and upper mantle for the case of tetrakaidecahedral grains. Electrical conductivity vs. seismic velocity correlations are acquired by combining of the simulated electrical conductivities with the seismic velocity calculated with the help of equilibrium geometry model Takei [Takei, Y., Effect of pore geometry on VP/VS: From equilibrium geometry to crack. J. Geophys. Res. 107 (2002): 10.1029/2001JB000522.] for the same pore geometries. The results show that electrical conductivity gradually decreases reaching zero when seismic velocities reach seismic velocities of intact rock for rock–melt systems, while for rock–aqueous fluid systems with θ  60° conductivity drops to zero at velocities up to 10% smaller. This can explain the seeming discrepancy of the low seismic velocity region, attributed to the high fluid fraction, and the low electrical conductivity of the same region, which is sometimes faced at collocated electromagnetic and seismic experiments.  相似文献   

9.
The seismic history of the city of Ragusa (Italy), the geotechnical characterisation of the subsoil and the site response analysis should be correctly evaluated for the definition of the Seismic Geotechnical Hazard of the city of Ragusa, through geo-settled seismic microzoning maps. Basing on the seismic history of the city of Ragusa, the following earthquake scenarios have been considered: the “Val di Noto” earthquake of January 11, 1693 (with intensity X–XI on MCS scale, magnitude MW=7.41 and epicentral distance of about 53 km); the “Etna” earthquake of February 20, 1818 (with intensity IX on MCS scale, magnitude MW=6.23 and epicentral distance of about 64 km); the Vizzini earthquake of April 13, 1895 (with intensity I=VII–VIII on MCS scale, magnitude MW=5.86 and epicentral distance of about 26 km); the “Modica” earthquake of January 23, 1980 (with intensity I=V–VI on MCS scale, magnitude MW=4.58 and epicentral distance of about 10 km); the “Sicilian” earthquake of December 13, 1990 (with intensity I=VII on MCS scale, magnitude MW=5.64 and epicentral distance of about 50 km). Geotechnical characterisation has been performed by in situ and laboratory tests, with the definition of shear wave velocity profiles in the upper 30 m of soil. Soil response analyses have been evaluated for about 120 borings location by some non-linear 1-D models. Finally the seismic microzonation of the city of Ragusa has been obtained in terms of maps with different peak ground acceleration at the surface; shaking maps for the central area of the city of Ragusa were generated via GIS for the earthquake scenarios.  相似文献   

10.
This study provides evidence for post-5 Ma shortening in the transition area between the Dinarides fold-and-thrust belt and the Pannonian Basin and reviews possible earthquake sources for the Banja Luka epicentral area (northern Bosnia and Herzegovina) where the strongest instrumentally recorded earthquake (ML 6.4) occurred on 27 October 1969. Geological, geomorphological and reflection seismic data provide evidence for a contractional reactivation of Late Palaeogene to Middle Miocene normal faults at slip rates below 0.1 mm/a. This reactivation postdates deposition of the youngest sediments in the Pannonian Basin of Pontian age (c. 5 Ma). Fault plane solutions for the main 1969 Banja Luka earthquake (ML 6.4) and its largest foreshock (ML 6.0) indicate reverse faulting along ESE–WNW-striking nodal planes and generally N–S trending pressure axes. The spatial distribution of epicentres and focal depths, analyses of the macroseismic field and fault-plane solutions for several smaller events suggest on-going shortening in the internal Dinarides. Seismic deformation of the upper crust is also associated with strike-slip faults, likely related to the NE–SW trending, sinistral Banja Luka fault. Possibly, this fault transfers contraction between adjacent segments of the Dinarides thrust system. The study area represents the seismically most active region of the Dinarides apart from the Adriatic Sea coast and the bend zone around Zagreb. We propose that on-going thrusting in the internal Dinarides thrust system takes up a portion of the current Adria–Europe convergence.  相似文献   

11.
We present a catalog of moment tensor (MT) solutions and moment magnitudes, Mw, for 119 shallow (h  40 km) earthquakes in Greece and its surrounding lands (34°N–42°N, 19°E–30°E) for the years 2006 and 2007, computed with the 1D Time-Domain Moment Tensor inversion method (TDMT_INV code of Dreger, 2003). Magnitudes range from 3.2  Mw  5.7. Green's functions (GF) have been pre-computed to build a library, for a number of velocity profiles applicable to the broader Aegean Sea region, to be used in the inversion of observed broad band waveforms (10–50 s). All MT solutions are the outcome of a long series of tests of different reported source locations and hypocenter depths. Quality factors have been assigned to each MT solution based on the number of stations used in the inversion and the goodness of fit between observed and synthetic waveforms. In general, the focal mechanisms are compatible with previous knowledge on the seismotectonics of the Aegean area. The new data provide evidence for strike-slip faulting along NW–SE trending structures at the lower part of Axios basin, close to the heavily industrialized, and presently subsiding, region of the city of Thessaloniki. Normal faulting along E–W trending planes is observed at the Strimon basin, and in Orfanou Gulf in northern Greece. A sequence of events in the east Aegean Sea close to the coastline with western Anatolia sheds light on an active structure bounding the north coastline of Psara–Chios Islands about 20–25 km in length exhibiting right lateral strike-slip faulting.  相似文献   

12.
GPS data from Crustal Movement Observation Network of China (CMONOC) are used to derive far-field co-seismic displacements induced by the Mw 9.0 Tohoku Earthquake. Significant horizontal displacements about 30 mm, 10 mm, and 20 mm were caused by this large event in northeast China, north China, and on the Korean peninsula respectively. Vectors of relatively large horizontal displacements with dominant east components pointed to the epicenter of this earthquake. The east components show an exponential decay with the longitude, which is characteristic of the decay of the co-seismic horizontal displacements associated with earthquakes of thrust rupture. The exponential fit of the east components shows that the influence of the co-seismic displacements can be detected by GPS at a distance of about 3200 km from the epicenter of the earthquake. By considering the capability of the far field displacements for constraining the inversion of the fault slip model of the earthquake, we use spherically stratified Earth models to simulate the co-seismic displacements induced by this event. Using computations and comparisons, we discuss the effects of parameters of layered Earth models on the results of dislocation modeling. Comparisons of the modeled and observed displacements show that far field GPS observations are effective for constraining the fault slip model. The far field horizontal displacements observed by GPS are used to modify the slips and seismic moments of fault slip models. The result of this work is applicable as a reference for other researchers to study seismic source rupture and crustal deformation.  相似文献   

13.
14.
The late Triassic to early Tertiary Coast Mountains Batholith (CMB) of British Columbia provides an ideal locale to study the processes whereby accreted terranes and subduction-related melts interact to form stable continental crust of intermediate to felsic composition and complementary ultramafic residuals. Seismic measurements, combined with calculated elastic properties of various CMB rock compositions, provide a window into the deep-crustal lithologies that are key to understanding the processes of continental growth and evolution. We use a combination of seismic observations and petrologic modeling to construct hypothetical crustal sections at representative locations across the CMB, then test the viability of these sections via forward modeling with synthetic seismic data. The compositions that make up our petrologic forward models are based on calculations using the free energy minimization program Perple_X to predict mineral assemblages at depth for the bulk compositions of exposed plutonic rocks collected in the study area. Seismic data were collected along two transects in west-central British Columbia: a southern line that crossed the CMB near the town of Bella Coola (near 52° N), and a northern line centered on the towns of Terrace and Kitimat (near 54° N). Along both transects, seismic receiver functions reveal high Vp/Vs ratios near the Insular/Intermontane terrane boundary and crustal thickness increasing from 26 ± 3 km to 34 ± 3 km (at the 1 sigma certainty level) from west to east across the Coast Shear Zone (CSZ). On the southern line, we observe an anomalous region of complex receiver functions and diminished Moho signals beneath the central portion of the CMB. Our petrologic and seismic profiles show that observed seismic data from much of the CMB can be well-matched in terms of crustal thickness and structure, average Vp/Vs, and amplitude of the Moho converted phase, without including ultramafic residual material in the lower crust.  相似文献   

15.
On 10 April 2007, three moderate earthquakes with Mw = 4.9–5.1 occurred in the vicinity of Trichonis Lake (W. Greece). A local network composed of 12 three-component digital seismographs was installed in the epicentral area and recorded more than 1600 events. The double-difference algorithm HYPODD, incorporating both catalog and waveform cross-correlation differential travel-time data, was applied for the successful relocation of 1490 earthquakes. The latter led to the distinction of a main NW-SE trending and NE-dipping zone, as well as of three neighboring faults; a conjugate NW-SE striking and SW-dipping marginal fault mapped along the northeastern flanks of the lake; a E-W trending and south-dipping low-angle normal fault, possibly related to the major Agrinio Fault Zone (AFZ), parallel to the northern bank of the lake; a NE-SW striking and NW-dipping normal fault, likely related to a segment of the active Evinos fault, located south of the lake. Calculation of the Coulomb stress induced by the combination of the 1975 Mw = 6.0 event and the three largest events of 10 April 2007 on the inferred structures, reveals that most of the seismicity lies within the “stress-loaded” region, except for the westernmost activity, which probably belongs to the deep part of the AFZ. A total of 178 reliable focal mechanisms were determined by regional and local body-wave modeling (5 largest events) and P-wave first motion polarity data. The types of the obtained focal mechanisms are predominantly normal and strike-slip, however, numerous earthquakes were found to exhibit reverse faulting. Inversion of focal mechanism data showed that the prevailing principal horizontal component σ3 is quite homogeneous throughout the activated area with a roughly NW-SE trend, parallel to the strike of the Hellenides. On the contrary, the compressional field σ1 appears in two patterns: NE-SW trending onshore and NW-SE trending beneath the lake. This apparent rotation of σ1 by 90° reveals a complex system enclosed by the suggested NW-SE trending antithetic faults in depths between 7 and 9 km. The calculated stress ratios beneath the lake imply that vertical forces are close to the overburden pressure. The overall inferred stress pattern is rather linked to topographic variations, locally imposing increase or decrease of the vertical forces. The presence of the water in the lake possibly plays an additional important role, penetrating through the bedrock, reducing the friction coefficient, while the pore pressure and, consequently, the effective stress increase. Thus, shearing along mature fractures is enhanced, likely yielding the observed diversity.  相似文献   

16.
Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt–Reuss–Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s? 1 and 5.6 km s? 1 (46% anisotropy), and 8.3 km s? 1 and 5.8 km s? 1 (37%), and VS between 5.1 km s? 1 and 2.5 km s? 1 (66%), and 4.7 km s? 1 and 2.9 km s? 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s?1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1–1.5 s can be explained with moderately thick (10–20 km) serpentinite bodies.  相似文献   

17.
18.
The present work deals with 1D and 2D ground response analysis and liquefaction analysis of alluvial soil deposits from Kanpur region along Indo-Gangetic plains. Standard penetration tests and seismic down hole tests have been conducted at four locations namely IITK, Nankari village, Mandhana and Bithoor at 1.5 m interval up to a depth of 30 m below the ground surface to find the variation of penetration blows and the shear wave velocity along the depth. From the selected sites undisturbed as well as representative soil samples have been collected for detailed soil classification. The soil profiles from four sites have been considered for 1D and 2D ground response analysis by applying the free field motions of three Himalayan earthquakes namely Chamba earthquake (Mw—5.1), Chamoli earthquake (Mw—6.4) and Uttarkashi earthquake (Mw—6.5). An average value of Peak Ground Acceleration (PGA) obtained from 1D and 2D analysis is considered for liquefaction analysis and post-liquefaction settlement. The excess pore water pressure ratio is greater than 0.8 at a depth of 24 m from ground surface for IITK, Nankari village, Bithoor sites. More than 50% of post liquefaction settlement is contributed by layers from 21–30 m for all sites. In general, the soil deposits in Kanpur region have silty sand and sand deposits and are prone to liquefaction hazards due to drastic decrease of cyclic resistance ratio (CRR) at four chosen sites in Kanpur.  相似文献   

19.
On 6 April 2009 a Mw=6.1 earthquake produced severe destruction and damage over the historic center of L’Aquila City (central Italy), in which the accelerometer stations AQK and AQU recorded a large amount of near-fault ground motion data. This paper analyzes the recorded ground motions and compares the observed peak accelerations and the horizontal to vertical response spectral ratios with those revealed from numerical simulations. The finite element method is considered herein to perform dynamic modeling on the soil profile underlying the seismic station AQU. The subsurface model, which is based on the reviewed surveys that were carried out in previous studies, consists of 200–400 m of Quaternary sediments overlying a Meso-Cenozoic carbonate bedrock. The Martin-Finn-Seed's pore-water pressure model is used in the simulations. The horizontal to vertical response spectral ratio that is observed during the weak seismic events shows three predominant frequencies at about 14 Hz, 3 Hz and 0.6 Hz, which may be related to the computed seismic motion amplification occurring at the shallow colluvium, at the top and base of the fluvial-lacustrine sequence, respectively. During the 2009 L’Aquila main shock the predominant frequency of 14 Hz shifts to lower values probably due to a peculiar wave-field incidence angle. The predominant frequency of 3 Hz shifts to lower values when the earthquake magnitude increases, which may be associated to the progressive softening of soil due to the excess pore-water pressure generation that reaches a maximum value of about 350 kPa in the top of fluvial-lacustrine sequence. The computed vertical peak acceleration underestimates the experimental value and the horizontal to vertical peak acceleration ratio that is observed at station AQU decreases when the earthquake magnitude increases, which reveals amplification of the vertical component of ground motion probably due to near-source effects.  相似文献   

20.
The recent earthquake sequences of 2012 (northern Italy) and 2013 (Marche offshore) provided new, fundamental constraints to the active tectonic setting of the outer northern Apennines. In contrast to the Po Plain area, where the 2012 northern Italy earthquakes confirmed active frontal thrusting, the new focal mechanisms obtained in this study for the 2013 Marche offshore earthquakes indicate that only minor thrust fault reactivation occurs in the Adriatic domain, even for a theoretically favourably oriented maximum horizontal compression. Recent seismicity in this domain appears to be mainly controlled by transcurrent crustal faults dissecting the Apennine thrust belt. The along-strike stress field variation from the Po Plain to the Adriatic area has been quantitatively investigated by applying the multiple inverse method (MIM) to the analysis of the entire seismicity recorded from January 1976 to August 2014, from the top 12 km of the crust (fault plane solutions from 127 earthquakes with MW  4), allowing us to obtain a comprehensive picture of the state of stress over the outer zone of the fold and thrust belt. The present-day stress field has been defined for 39 cells of 1.5° × 1.5° surface area and 12 km depth. The obtained stress field maps point out that, although the entire outer northern Apennines belt is characterized by a sub-horizontal maximum compressive axis (σ1), the minimum compression (σ3) is sub-vertical only in the Po Plain area, becoming sub-horizontal in the Adriatic sector, thus confirming that the latter region is dominated by an active tectonic regime of strike-slip type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号