首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatal landslides in Europe   总被引:4,自引:3,他引:1  
Landslides are a major hazard causing human and large economic losses worldwide. However, the quantification of fatalities and casualties is highly underestimated and incomplete, thus, the estimation of landslide risk is rather ambitious. Hence, a spatio-temporal distribution of deadly landslides is presented for 27 European countries over the last 20  years (1995–2014). Catastrophic landslides are widely distributed throughout Europe, however, with a great concentration in mountainous areas. In the studied period, a total of 1370 deaths and 784 injuries were reported resulting from 476 landslides. Turkey showed the highest fatalities with 335. An increasing trend of fatal landslides is observed, with a pronounced number of fatalities in the latest period from 2008 to 2014. The latter are mostly triggered by natural extreme events such as storms (i.e., heavy rainfall), earthquakes, and floods and only minor by human activities, such as mining and excavation works. Average economic loss per year in Europe is approximately 4.7 billion Euros. This study serves as baseline information for further risk mapping by integrating deadly landslide locations, local land use data, and will therefore help countries to protect human lives and property.  相似文献   

2.
Landslides commonly occurs in hilly areas and causes an enormous loss iof life and property every year. National highway-1D (NH-1D) is the only road link between the two districts (Kargil and Leh) of Ladakh region that connects these districts with Kashmir valley. The landslide failure record of the recent past along this sector of the highway is not available. The present study documents landslide susceptible zones and records occurrence of 60 landslides during the last 4 years showing an increasing trend in the occurrence of landslides over these years in this sector. The landslide susceptibility zonation map has been prepared based on the numerical rating of ten major factors viz. slope morphometry, lithology, structure, relative relief, land cover, landuse, rainfall, hydrological conditions, landslide incidences and Slope Erosion, categorised the area in different zones of instability based on the intensity of susceptibility. The landslide susceptibility map of the area encompassing 73.03 km2 is divided into 150 facets. Out of the total of 150 facets, 85 facets fall in low susceptibility zone covering 43.56 km2 which constitute about 59.65% of the total area under investigation with a record of 5 landslides; 40 facets fall in the moderate susceptibility zone covering 16.94km2 which constitutes about 23.19% of the study area with a record of 20 landslides; and 25 facets fall in the high susceptibility zone covering 12.53 km2 which constitute about 17.15% of the study area with a record of 35 landslides. Most of the facets which fall in HSZ are attributed to slope modification for road widening.  相似文献   

3.
Quality assessment of the Italian Landslide Inventory using GIS processing   总被引:4,自引:1,他引:3  
Landslides constitute one of the most important natural hazards in Italy as they are widespread and result in considerable damage and fatalities every year. The Italian Landslide Inventory (IFFI) Project was launched in 1999 with the aim of identifying and mapping landslides over the entire Italian territory. The inventory currently holds over 480,000 landslides and has been available by means of Web services since 2005. The aim of this study is to define quality indices for evaluation of the homogeneity and completeness of the IFFI database. In order to estimate the completeness of the landslide attribute information, a heuristic approach has been used to assign weighting values to significant parameters selected from the landslide data sheet. The completeness and homogeneity of the landslide mapping has been evaluated by means of three different methods: an area-frequency distribution analysis; the proximity of the landslides surveyed to urban areas; variation of the landslide index within the same lithology. The quality indices have allowed identification of areas with a high level of completeness and critical areas in which the data collected have been underestimated or are not very accurate. The quality assessment of collected and stored data is essential in order to use the IFFI database for definition and implementation of landslide susceptibility models and for land use planning and management.  相似文献   

4.
5.
The 2015 Mw7.8 Gorkha earthquake triggered thousands of landslides of various types scattered over a large area. In the current study, we utilized pre- and post-earthquake high-resolution satellite imagery to compile two landslide inventories before and after earthquake and prepared three landslide susceptibility maps within 404 km2 area using frequency ratio (FR) model. From the study, we could map about 519 landslides including 178 pre-earthquake slides and 341 coseismic slides were identified. This study investigated the relationship between landslide occurrence and landslide causative factors, i.e., slope, aspect, altitude, plan curvature, lithology, land use, distance from streams, distance from road, distance from faults, and peak ground acceleration. The analysis showed that the majority of landslides both pre-earthquake and coseismic occurred at slope >30°, preferably in S, SE, and SW directions and within altitude ranging from 1000 to 1500 m and 1500 to 3500 m. Scatter plots between number of landslides per km?2 (LN) and percentage of landslide area (LA) and causative factors indicate that slope is the most influencing factor followed by lithology and PGA for the landslide formation. Higher landslide susceptibility before earthquake is observed along the road and rivers, whereas landslides after earthquake are triggered at steeper slopes and at higher altitudes. Combined susceptibility map indicates the effect of topography, geology, and land cover in the triggering of landslides in the entire basin. The resultant landslide susceptibility maps are verified through AUC showing success rates of 78, 81, and 77%, respectively. These susceptibility maps are helpful for engineers and planners for future development work in the landslide prone area.  相似文献   

6.
Landslides are a major category of natural disasters, causing loss of lives, livelihoods and property. The critical roles played by triggering (such as extreme rainfall and earthquakes), and intrinsic factors (such as slope steepness, soil properties and lithology) have previously successfully been recognized and quantified using a variety of qualitative, quantitative and hybrid methods in a wide range of study sites. However, available data typically do not allow to investigate the effect that earlier landslides have on intrinsic factors and hence on follow-up landslides. Therefore, existing methods cannot account for the potentially complex susceptibility changes caused by landslide events. In this study, we used a substantially different alternative approach to shed light on the potential effect of earlier landslides using a multi-temporal dataset of landslide occurrence containing 17 time slices. Spatial overlap and the time interval between landslides play key roles in our work. We quantified the degree to which landslides preferentially occur in locations where landslides occurred previously, how long such an effect is noticeable, and how landslides are spatially associated over time. We also investigated whether overlap with previous landslides causes differences in landslide geometric properties. We found that overlap among landslides demonstrates a clear legacy effect (path dependency) that has influence on the landslide affected area. Landslides appear to cause greater susceptibility for follow-up landslides over a period of about 10  years. Follow-up landslides are on average larger and rounder than landslides that do not follow earlier slides. The effect of earlier landslides on follow-up landslides has implications for understanding of the landslides evolution and the assessment of landslide susceptibility.  相似文献   

7.
Limbe town and surrounding areas, on the SE foot slopes of the active Mt Cameroon Volcano, have experienced numerous small-scale shallow landslides within the last 20 years. These resulted in the loss of ~30 lives and significant damage to farmland and properties. Landslides and their scars are identified in the field, and their geometry systematically measured to construct a landslide inventory map for the study area. Specific landslides are investigated in detail to identify site-specific controlling and triggering factors. This is to constrain key input parameters and their variability for subsequent susceptibility and risk modeling, for immediate local and regional applications in land-use planning. It will also enable a rapid exploration of remediation strategies that are currently lacking in the SW and NW regions of Cameroon. Typical slides within the study area are small-scale, shallow, translational earth, and debris slides though some rotational earth slides were also documented. The depletion zones have mean widths of 22 m ± 16.7 m and lengths of 25 ± 23 standard deviation. Estimated aerial extents of landslide scars and volume of generated debris range from 101 to 104 m2 and 2 to 5 × 104 m3, respectively. A key finding is that most slope instabilities within the study area are associated with and appear to be exacerbated by man-made factors such as excavation, anarchical construction, and deforestation of steep slopes. High intensity rainfall notably during localized storms is the principal triggering factor identified so far. The findings from this case study have relevance to understanding some key aspects of locally devastating slope instabilities that commonly occur on intensely weathered steep terrains across subtropical Africa and in the subtropics worldwide and affecting an ever denser and most vulnerable population.  相似文献   

8.
Regional landslide-hazard assessment for Seattle, Washington, USA   总被引:13,自引:6,他引:13  
Landslides are a widespread, frequent, and costly hazard in Seattle and the Puget Sound area of Washington State, USA. Shallow earth slides triggered by heavy rainfall are the most common type of landslide in the area; many transform into debris flows and cause significant property damage or disrupt transportation. Large rotational and translational slides, though less common, also cause serious property damage. The hundreds of landslides that occurred during the winters of 1995–96 and 1996–97 stimulated renewed interest by Puget Sound communities in identifying landslide-prone areas and taking actions to reduce future landslide losses. Informal partnerships between the U.S. Geological Survey (USGS), the City of Seattle, and private consultants are focusing on the problem of identifying and mapping areas of landslide hazard as well as characterizing temporal aspects of the hazard. We have developed GIS-based methods to map the probability of landslide occurrence as well as empirical rainfall thresholds and physically based methods to forecast times of landslide occurrence. Our methods for mapping landslide hazard zones began with field studies and physically based models to assess relative slope stability, including the effects of material properties, seasonal groundwater levels, and rainfall infiltration. We have analyzed the correlation between historic landslide occurrence and relative slope stability to map the degree of landslide hazard. The City of Seattle is using results of the USGS studies in storm preparedness planning for emergency access and response, planning for development or redevelopment of hillsides, and municipal facility planning and prioritization. Methods we have developed could be applied elsewhere to suit local needs and available data.  相似文献   

9.
Landslides cause heavy damage to property and infrastructure, in addition to being responsible for the loss of human lives in many parts of the Turkey. The paper presents GIS-based spatial data analysis for landslide susceptibility mapping in the regions of the Sultan Mountains, West of Akşehir, and central part of Turkey. Landslides occur frequently in the area and seriously affect local living conditions. Therefore, spatial analysis of landslide susceptibility in the Sultan Mountains is important. The relationships between landslide distributions with the 19 landslide affecting parameters were analysed using a Bayesian model. In the study area, 90 landslides were observed. The landslides were randomly subdivided into 80 training landslides and 10 test landslides. A landslide susceptibility map was produced by using the training landslides. The test landslides were used in the accuracy control of the produced landslide susceptibility map. Approximately 9% of the study area was classified as high susceptibility zone. Medium, low and very low susceptibility zones covered 8, 23 and 60% of the study area, respectively. Most of the locations of the observed landslides actually fall into moderate (17.78%) and high (77.78. %) susceptibility zones of the produced landslide susceptibility map. This validates the applicability of proposed methods, approaches and the classification scheme. The high susceptibility zone is along both sides of the Akşehir Fault and at the north-eastern slope of the Sultan Mountains. It was determined that the surface area of the Harlak and Deresenek formations, which have attained lithological characteristics of clayey limestone with a broken and separated base, and where area landslides occur, possesses an elevation of 1,100–1,600 m, a slope gradient of 25°–35° and a slope aspect of 22.5°–157.5° facing slopes.  相似文献   

10.
Do Minh Duc 《Landslides》2013,10(2):219-230
Landslides are one of the most dangerous hazards in Vietnam. Most landslides occur at excavated slopes, and natural slope failures are rare in the country. However, the volume of natural slope failures can be very significant and can badly affect large areas. After a long period of heavy rainfall in the fourth quarter of 2005 in Van Canh district, a series of landslides with volumes of 20,000–195,000 m3 occurred on 15 December 2005. The travel distances for the landslides reached over 300–400 m, and the landslides caused some remarkable loud booming noises. The failures took place on natural slopes with unfavorable geological settings and slope angles of 28–31°. The rainfall in the fourth quarter of 2005 is estimated to have a return period of 100 years and was the main triggering factor. Because of the large affected area and low population density, resettling people from the dangerous landslide-prone residential areas to safer sites was the most appropriate solution. In order to do so, a map of landslide susceptibility was produced that took into account slope angle, distance to faults, and slope aspect. The map includes four levels from low to very high susceptibility to landslides.  相似文献   

11.
《《幕》》2004,27(1):39-41
The Geological Survey of Norway, in cooperation with the Geological Surveys of 22 other countries and under the aegis of the Commission for the Geological Map of the World (CGMW), has compiled a geological map of northern Europe at the 1:4 million scale.For the first time the geology of both land and sea areas of this large region is displayed in a single document. The area covered extends  相似文献   

12.
The Forum of European Geological Surveys (FOREGS) includes representatives from 33 European countries and is responsible for co-ordinating Geological Survey activities in Europe. The FOREGS Geochemistry Task Group was established in 1994 to develop a strategy for the preparation of European geochemical maps following the recommendations of the International Geological Correlation Programme (IGCP) Project 259 ‘International Geochemical Mapping’ (now the International Union of Geological Sciences (IUGS) /International Association of Geochemistry and Cosmochemistry (IAGC) Working Group on Global Geochemical Baselines).The FOREGS geochemistry programme is aimed at preparing a standardised European geochemical baseline to IGCP-259 standards. The principal aims of this dataset will be for environmental purposes, as a baseline for the assessment of the extent and distribution of contaminated land in the context of variations in the natural geochemical background, but it will also have applications in resource assessment and for the development of policy for the sustainable management of metalliferous mineral and other resources.The first phase of the programme was the compilation of an inventory of geochemical data based on the results of a questionnaire completed by Geological Surveys and related organisations throughout the FOREGS community. The results show that the sample types which have been used most extensively are stream sediment (26% coverage), surface water (19% coverage) and soil (11% coverage). Stream sediments have been collected using a narrow range of mesh sizes (< 150–< 200 μm), but soil samples have been collected according to two different conventions: some surveys used a similar mesh size range to that used for stream sediments while others employed the < 1000 or < 2000 μm fractions traditionally used by soil surveys. Sample densities range from 1 sample per 0.5 km2 to 1 per 3500 km2. Various analytical methods have been used, but most of the available data have been calibrated using international reference materials, and data for the most important of the potentially harmful elements (PHEs) are available for most datasets. Systematic radiometric data are available for only a small proportion of Europe, a situation which compares very unfavourably with that in Australia, North America, the former Soviet Union and many developing countries.Recommendations are made for increasing the compatibility of geochemical methods between national geochemical surveys as a basis for the preparation of a series of European geochemical maps. The next stage of the FOREGS Geochemistry Task Group will be the collection of the Global Reference Network of samples against which to standardise national datasets according to the methods recommended in the final report of the IGCP 259 programme.  相似文献   

13.
Garhwal Himalayas are seismically very active and simultaneously suffering from landslide hazards. Landslides are one of the most frequent natural hazards in Himalayas causing damages worth more than one billion US$ and around 200 deaths every year. Thus, it is of paramount importance to identify the landslide causative factors to study them carefully and rank them as per their influence on the occurrence of landslides. The difference image of GIS-derived landslide susceptibility zonation maps prepared for pre- and post-Chamoli earthquake shows the effect of seismic shaking on the occurrence of landslides in the Garhwal Himalaya. An attempt has been made to incorporate seismic shaking parameters in terms of peak ground acceleration with other static landslide causative factors to produce landslide susceptibility zonation map in geographic information system environment. In this paper, probabilistic seismic hazard analysis has been carried out to calculate peak ground acceleration values at different time periods for estimating seismic shaking conditions in the study area. Further, these values are used as one of the causative factors of landslides in the study area and it is observed that it refines the preparation of landslide susceptibility zonation map in seismically active areas like Garhwal Himalayas.  相似文献   

14.
江西省滑坡与降雨的关系研究   总被引:5,自引:0,他引:5  
对江西全省1973 年~2002 年间1 158个降雨型滑坡,从考虑滑坡所处地层岩性条件和坡向因素的角度,分析了江西省降雨型滑坡发生的概率与降雨的关系。从坡向因素角度分析,江西省有64 %的滑坡发生于阳坡,但降雨对于不同坡向的滑坡影响近乎相同,只是阴坡所需激发雨量和有效临界雨量较阳坡稍大3 %。6 d累计降雨量、14 d有效降雨量(有效降雨系数为0.82)、3 d累计降雨量和9 d累计降雨量分别是变质岩、岩浆岩、碳酸岩和碎屑岩类地层中发育的滑坡所对应的最相关的降雨因子。各岩类地层中发育的滑坡有80 %发生于降雨当日;岩浆岩、变质岩和碎屑岩类滑坡约12 %~14 %滞后于降雨发生,碳酸岩类滑坡有22 %滞后于降雨发生。滞后时间多为1~3 d,其中碳酸岩类滑坡滞后时间相对较短。这与降雨对不同滑体物质成分的渗透性能、岩土体强度弱化程度和速度等有关。  相似文献   

15.
Landslides are mainly triggered by earthquakes and rainfall and have poor temporal predictability. Landslides pose significant threats to settlements and infrastructure in mountainous regions around the world. To mitigate this natural hazard, a new paradigm of landslide mitigation and management is required. Increasing smartphone ownership around the world, especially in developing countries, offers scientists an opportunity to embrace crowdsourcing so as to improve landslide research. This paper presents a new landslide information system (LIS) comprising a smartphone app and an administrative interface and database. The mobile app has been published for both iPhone and Android platforms. The interface of the smartphone app is powered by the highly-customizable Google Maps platform, which is overlaid with real-time landslide data. Users can choose between visualizing “known sites” and “contribution” of landslide data. The visualization option shows published landslides and areas that are susceptible. Users can contribute their GPS coordinates and multimedia to enhance landslide reports. A comparison with similar systems, potential applications, and challenges of using smartphone technology for mitigating landslides are also discussed.  相似文献   

16.
Landslides are one of the most widespread natural hazards in high mountain terrains such as the Himalayas, which are one of the youngest tectonically and seismically active mountain ranges in the world. The crustal movements along the longitudinal thrusts and transverse faults give rise to earthquakes and in turn initiate landslides in the region. In fact, in addition to various static factors causing landslides, earthquakes are one of the major causes of landslides. It is thus imperative to incorporate seismic factor also while carrying out landslide susceptibility zonation map preparation in a seismically active areas like Garhwal Himalayas. In this paper, a study on the effect of earthquakes on landslide susceptibility zonation has been demonstrated by taking Chamoli earthquake as an example.  相似文献   

17.
Tier-based approaches for landslide susceptibility assessment in Europe   总被引:3,自引:2,他引:1  
In the framework of the European Soil Thematic Strategy and the associated proposal of a Framework Directive on the protection and sustainable use of soil, landslides were recognised as a soil threat requiring specific strategies for priority area identification, spatial hazard assessment and management. This contribution outlines the general specifications for nested, Tier-based geographical landslide zonings at small spatial scales to identify priority areas susceptible to landslides (Tier 1) and to perform quantitative susceptibility evaluations within these (Tier 2). A heuristic, synoptic-scale Tier 1 assessment exploiting a reduced set of geoenvironmental factors derived from common pan-European data sources is proposed for the European Union and adjacent countries. Evaluation of the susceptibility estimate with national-level landslide inventory data suggests that a zonation of Europe according to, e.g. morphology and climate, and performing separate susceptibility assessments per zone could give more reliable results. To improve the Tier 1 assessment, a geomorphological terrain zoning and landslide typology differentiation are then applied for France. A multivariate landslide susceptibility assessment using additional information on landslide conditioning and triggering factors, together with a historical catalogue of landslides, is proposed for Tier 2 analysis. An approach is tested for priority areas in Italy using small administrative mapping units, allowing for relating socioeconomic census data with landslide susceptibility, which is mandatory for decision making regarding the adoption of landslide prevention and mitigation measures. The paper concludes with recommendations on further work to harmonise European landslide susceptibility assessments in the context of the European Soil Thematic Strategy.  相似文献   

18.
Landslides have had a huge effect on human life, the environment and local economic development, and therefore they need to be well understood. In this study, we presented an approach for the analysis and modeling of landslide data using rare events logistic regression and applied the approach to an area in Lianyungang, China. Digital orthophotomaps, digital elevation models of the region, geological maps and different GIS layers including settlement, road net and rivers were collected and applied in the analysis. Landslides were identified by monoscopic manual interpretation and validated during the field investigation. To validate the quality of mapping, the data from the study area were divided into a training set and validation set. The result map showed that 4.26% of the study area was identified as having very high susceptibility to landslides, whereas the others were classified as having very low susceptibility (47.2%), low susceptibility (22.21%), medium susceptibility (14.39%) and high susceptibility (11.93%). The quality of the landslide-susceptibility map produced in this paper was validated, and it can be used for planning protective and mitigation measures. The landslide-susceptibility map is a fundamental part of the Lianyungang city landslide risk assessment.  相似文献   

19.
One of the most significant effects of the 17 January, 1994 Northridge, California earthquake (M=6.7) was the triggering of thousands of landslides over a broad area. Some of these landslides damaged and destroyed homes and other structures, blocked roads, disrupted pipelines, and caused other serious damage. Analysis of the distribution and characteristics of these landslides is important in understanding what areas may be susceptible to landsliding in future earthquakes. We analyzed the frequency, distribution, and geometries of triggered landslides in the Santa Susana 7.5′ quadrangle, an area of intense seismic landslide activity near the earthquake epicenter. Landslides occurred primarily in young (Late Miocene through Pleistocene) uncemented or very weakly cemented sediment that has been repeatedly folded, faulted, and uplifted in the past 1.5 million years. The most common types of landslide triggered by the earthquake were highly disrupted, shallow falls and slides of rock and debris. Far less numerous were deeper, more coherent slumps and block slides, primarily occurring in more cohesive or competent materials. The landslides in the Santa Susana quadrangle were divided into two samples: single landslides (1502) and landslide complexes (60), which involved multiple coalescing failures of surficial material. We described landslide morphologies by computing simple morphometric parameters (area, length, width, aspect ratio, slope angle). To quantify and rank the relative susceptibility of each geologic unit to seismic landsliding, we calculated two indices: (1) the susceptibility index, which is the ratio (given as a percentage) of the area covered by landslide sources within a geologic unit to the total outcrop area of that unit; and (2) the frequency index [given in landslides per square kilometer (ls/km2)], which is the total number of landslides within each geologic unit divided by the outcrop area of that unit. Susceptibility categories include very high (>2.5% landslide area or >30 ls/km2), high (1.0–2.5% landslide area or 10–30 ls/km2), moderate (0.5–1.0% landslide area or 3–10 ls/km2), and low (<0.5% landslide area and <3 ls/km2).  相似文献   

20.
The 2005 northern Pakistan earthquake (magnitude 7.6) of 8 October 2005 occurred in the northwestern part of the Himalayas. We interpreted landslides triggered by the earthquake using black-and-white 2.5-m-resolution System Pour l’Observation de la Terre 5 (SPOT 5) stereo images. As a result, the counts of 2,424 landslides were identified in the study area of 55 by 51 km. About 79% or 1,925 of the landslides were small (less than 0.5 ha in area), whereas 207 of the landslides (about 9%) were large (1 ha and more in area). Judging from our field survey, most of the small landslides are shallow rock falls and slides. However, the resolution and whitish image in the photos prevented interpreting the movement type and geomorphologic features of the landslide sites in detail. It is known that this earthquake took place along preexisting active reverse faults. The landslide distribution was mapped and superimposed on the crustal deformation detected by the environmental satellite/synthetic aperture radar (SAR) data, active faults map, geological map, and shuttle radar topography mission data. The landslide distribution showed the following characteristics: (1) Most of the landslides occurred on the hanging-wall side of the Balakot–Garhi fault; (2) greater than one third of the landslides occurred within 1 km from the active fault; (3) the greatest number of landslides (1,147 counts), landslide density (3.2 counts/km2), and landslide area ratio (2.3 ha/km2) was found within Miocene sandstone and siltstone, Precambrian schist and quartzite, and Eocene and Paleocene limestone and shale, respectively; (4) there was a slight trend that large landslides occurred on vertically convex slopes rather than on concave slopes; furthermore, large landslides occurred on steeper (30° and more) slopes than on gentler slopes; (5) many large landslides occurred on slopes facing S and SW directions, which is consistent with SAR-detected horizontal dominant direction of crustal deformation on the hanging wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号