首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbonate environments inhabit the realm of the surface, intermediate and deep currents of the ocean circulation where they produce and continuously deliver material which is potentially deposited into contourite drifts. In the tropical realm, fine‐grained particles produced in shallow water and transported off‐bank by tidal, wind‐driven, and cascading density currents are a major source for transport and deposition by currents. Sediment production is especially high during interglacial times when sea level is high and is greatly reduced during glacial times of sea‐level lowstands. Reduced sedimentation on carbonate contourite drifts leads to early marine cementation and hardened surfaces, which are often reworked when current strength increases. As a result, reworked lithoclasts are a common component in carbonate drifts. In areas of temperate and cool water carbonates, currents are able to flow across carbonate producing areas and incorporate sediment directly to the current. The entrained skeletal carbonate particles have variable bulk density and shapes that lower the prediction of transport rates in energy‐based transport models, as well as prediction of current velocity based on grain size. All types of contourite drifts known in clastic environments are found in carbonate environments, but three additional drift types occur in carbonates because of local sources and current flow diversion in the complicated topography inherent to carbonate systems. The periplatform drift is a carbonate‐specific plastered drift that is nearly exclusively made of periplatform ooze. Its geometry is built by the interaction of along‐slope currents and downslope currents, which deliver sediment from the adjacent shallow‐water carbonate realm to the contour current via a line source. Because the periplatform drift is plastered on the slopes of the platforms it is also subject to mass gravity flow and large slope failures. At platform edges, a special type of patch drift develops. These hemiconal platform‐edge drifts also contain exclusively periplatform ooze but their geometry is controlled by the current around the corner of the platform. At the north‐western end of Little and Great Bahama Bank are platform‐edge drifts that are over 100 km long and up to 600 m thick. A special type of channel‐related drift forms when passages between carbonate buildups or channels within a platform open into deeper water. A current flowing in these channels will entrain material shed from the sediment producing areas. At the channel mouth, the sediment‐charged current deposits its sediment load into the deeper basin. With continuous flow, a submarine delta drift is built that progrades into the deep water. The strongly focused current forming the delta drift, is able to rework coarse skeletal grains and clasts, making this type of carbonate drift the coarsest drift type.  相似文献   

2.
3.
在对泾阳南塬实地调查中发现,位于泾河与塬边交切处,发育有数量较多的黄土滑坡,分析认为河流作用是该类滑坡发生的主要诱发因素。通过实地调查,对饱和Q2黄土进行减围压三轴剪切试验以及数值模拟,研究河流作用诱发黄土滑坡的形成机理。研究表明:土体抗剪强度与应力路径有关,减围压三轴剪切状态下,土体抗剪强度指标小于常规三轴剪切状态下的抗剪强度指标,土体更容易发生剪切破坏;斜坡坡脚处存在关键块体,对斜坡整体稳定性起着控制作用。河流作用诱发黄土滑坡就是因为河流的持续侧蚀,造成坡脚关键块体逐步滑塌,最终导致斜坡失稳滑动。   相似文献   

4.
New data collected along the slopes of Little and Great Bahama Bank and the abyssal plain of the Bahama Escarpment provides new insights about contour current‐related erosive structures and associated deposits. The Bahamian slope shows abundant evidence of bottom current activity such as furrows, comet‐like structures, sediment waves and drifts. At a seismic scale, large erosion surfaces and main periods of drift growth resulted from current acceleration related to plate tectonic processes and progressive opening and closure of gateways and long‐term palaeoclimate evolution. At present‐day, erosion features and contourite drifts are either related to relatively shallow currents (<1000 m water depth) or to deep currents (>2500 m water depth). It appears that the carbonate nature of the drifts does not impact the drift morphology at the resolution addressed in the present study. Classical drift morphologies defined in siliciclastic environments are found, such as mounded, plastered and separated drifts. In core, contourite sequences show a bi‐gradational trend that resembles classical contourite sequences in siliciclastic deposits showing a direct relationship with a change in current velocity at the sea floor. However, in a carbonate system the peak in grain size is associated with increased winnowing rather than increased sediment supply as in siliciclastic environments. In addition, the carbonate contourite sequence is usually thinner than in siliciclastics because of lower sediment supply rates. Little Bahama Bank and Great Bahama Bank contourites contain open‐ocean input and slope‐derived debris from glacial episodes. Inner platform, platform edge and open ocean pelagic input characterize the classical periplatform ooze during interglacials. In all studied examples, the drift composition depends on the sea floor topography surrounding the drift location and the type of sediment supply. Carbonate particles are derived from either the slope or the platform in slope and toe of slope drifts, very deep contourites have distant siliciclastic sources of sediment supply. The recent discovery of the importance of a large downslope gravitary system along Bahamian slopes suggests frequent interactions between downslope and along‐slope (contour currents) processes. The interlayering of mass flow deposits and contourites at a seismic scale or the presence of surface structures associated with both contour currents and mass flow processes shows that both processes act at the same location. Finally, contour currents have an important impact on the repartition of deep‐water coral mounds. Currents can actively interact with mounds as a nutrient and oxygen supplier or have a passive interaction, with mounds solely being obstacles orienting erosion and deposition.  相似文献   

5.
《Sedimentology》2018,65(4):1067-1096
Submarine landslides, including the basal shear surfaces along which they fail, and their subsequent infill, are commonly observed in modern seabed and seismic reflection data sets; their resultant relief impacts sediment routing and storage patterns on continental margins. Here, three stacked submarine landslides are documented from the Permian Ecca Group, Laingsburg depocentre, Karoo Basin, South Africa, including two superimposed lateral margins. The stratigraphic framework includes measured sections and correlated surfaces along a 3 km long, 150 m high outcrop. Two stacked 2·0 to 4·5 km wide and 90 m and 60 m deep erosion surfaces are recognized, with lateral gradients of 8° and 4°, respectively. The aim of this study was to understand the evolution of a submarine landslide complex, including: evolution of basal shear surfaces/zones; variation of infill confinement; and location of the submarine landslides in the context of basin‐scale sedimentation and degradation rates. Three stages of formation are identified: (i) failure of submarine landslide 1, with deposition of unconfined remobilized deposits; (ii) failure of submarine landslide 2, forming basal shear surface/zone 1, with infill of remobilized deposits and weakly confined turbidites; and (iii) failure of submarine landslide 3, forming basal shear surface/zone 2, with infill of remobilized deposits and confined turbidites, transitioning stratigraphically to unconfined deposits. The expression of basal shear varies laterally, from metres thick zones in silt‐rich strata to sharp stepped surfaces in sand‐rich strata. Faulting and rotation of overlying bedding suggest that the shear surfaces/zones were dynamic. Stacking of landslides resulted from multi‐phase slope failure, increasing down‐dip topography and confinement of infilling deposits. The failure slope was probably a low supply tilted basin margin evidenced by megaclast entrainment from underlying basin‐floor successions and the lack of channel systems. This study develops a generic model of landslide infill, as a function of sedimentation and degradation rates, which can be applied globally.  相似文献   

6.
Sedimentological and accelerator mass spectrometry (AMS) 14C data provide estimates of the structure and age of five submarine landslides (~0.4–3 km3) present on eastern Australia's continental slope between Noosa Heads and Yamba. Dating of the post-slide conformably deposited sediment indicates sediment accumulation rates between 0.017 m ka–1 and 0.2 m ka–1, which is consistent with previous estimates reported for this area. Boundary surfaces were identified in five continental slope cores at depths of 0.8 to 2.2 m below the present-day seafloor. Boundary surfaces present as a sharp colour-change across the surface, discernible but small increases in sediment stiffness, a slight increase in sediment bulk density of 0.1 g cm–3, and distinct gaps in AMS 14C ages of at least 25 ka. Boundary surfaces are interpreted to represent a slide plane detachment surface but are not necessarily the only ones or even the major ones. Sub-bottom profiler records indicate that: (1) the youngest identifiable sediment reflectors upslope from three submarine landslides terminate on and are truncated by slide rupture surfaces; (2) there is no obvious evidence for a post-slide sediment layer draped over, or burying, slide ruptures or exposed slide detachment surfaces; and (3) the boundary surfaces identified within the cores are unlikely to be near-surface slide surfaces within an overall larger en masse dislocation. These findings suggest that these submarine landslides are geologically recent (<25 ka), and that the boundary surfaces are either: (a) an erosional features that developed after the landslide, in which case the boundary surface age provides a minimum age for the landslide; or (b) detachment surfaces from which slabs of near-surface sediment were removed during landsliding, in which case the age of the sediment above the boundary surface indicates the approximate age of landsliding. While an earthquake-triggering mechanism is favoured for the initiation of submarine landslides on the eastern Australian margin, further evidence is required to confirm this interpretation.  相似文献   

7.
Gas hydrates have the potential to be a new energy source and a submarine geohazard. Though researchers generally agree about the association between gas hydrate dissociation and submarine slope failures, the processes and mechanism of submarine slope failure caused by gas hydrate dissociation are not clearly understood. In the last few years, some authors have tried to analyse submarine slope stability by considering the existence and dissociation of gas hydrate, and a few researchers have presented quantitative models. This paper presents a review of the various causes of submarine slope failures associated with gas hydrate dissociation. Also, analysis models of submarine slope stability associated with gas hydrate dissociation that are documented from the literatures including the infinite slope model, wedge model, slump and retrogressive failure model are interpreted and illustrated, respectively.  相似文献   

8.
Petrophysical properties (wet bulk density, porosity, P-wave velocity) are used to predict biogenic silica contents along a seismic reflection profile that ties two well sites, 1095 and 1096, drilled by Ocean Drilling Program (ODP) Leg 178 on sediment drifts on the Pacific continental margin of the Antarctic Peninsula. The biogenic silica contents along the seismic reflection profile were estimated on the basis of three hypotheses about petrophysical properties distributions in the two boreholes and statistical relationships between biogenic silica and other petrophysical properties, which were established on various sediment layers within the boreholes. Our study demonstrates the possibility to reliably predict the distribution of biogenic silica in the sub-seabed sediments if seismic data processed with amplitude preservation are used and statistical relations are considered. We conclude that the statistical extrapolation of biogenic silica content along seismic reflection profiles tied to borehole data is an efficient tool to quantify the amounts of silica undergoing crystalline transformation, which may have strong implications for submarine slope destabilisation.  相似文献   

9.
任金锋  孙鸣  韩冰 《地球科学》2021,46(3):1058-1071
大型海底滑坡的研究对认识海底斜坡的稳定性具有重要意义.利用最新的高精度多波束数据和重处理的二维地震资料,识别了南海南沙海槽一处大型海底滑坡,描述了其发育特征,探讨了其可能的形成原因.该滑坡体覆盖面积达6300 km2,横向最宽50 km,延伸最远140 km.上部源头区外形呈半环形,滑坡后壁的高度落差200~350 m...  相似文献   

10.
Fluid migration within the sedimentary column contributes significantly to slope failure and pockmark formation and can be an effective triggering mechanism to generate submarine landslides. Pockmarks are thus commonly listed among geohazards. Contrary to these accepted notions, we propose here an alternative view of pockmarks with an example from the Eastern Niger Submarine Delta: Pockmarks and associated chimneys may increase or modify the shear strength of sedimentary layers and locally enhance seafloor stability. The analysis of two 3D seismic volumes shows that a landslide deposit divides into two branches around a cluster of three pockmark chimneys, interpreted to impede its further development. The morphological characteristics of a slide constrained by fluid seepage features show the potential role of fluid escape in marine sediment strengthening.  相似文献   

11.
《Engineering Geology》2001,59(1-2):115-132
Large landslides are common processes during the evolution of volcanoes and individual events can exceed several cubic kilometres in volume. Volcanic slope failures are a significant risk for the neighbouring population due to their huge volumes and great runout distances. Around the Canary archipelago, a total of seventeen deposits of large landslides have been found, and on Tenerife, seven large landslides have affected the subaerial and submarine morphology during the last ∼6 Ma. However, the causes of such mass movements are still poorly understood. This work analyses the events around the Canary Islands and focuses on the ones that occurred on Tenerife in order to obtain new insights into the mechanisms of large volcanic landslides. The study is divided into a first part that includes site investigations examining the general features favouring large-scale failures at volcanoes. The second part describes the laboratory tests used to analyse a residual soil that may be the potential slip surface of the slides on Tenerife. The site investigation revealed that regional tectonics and the climate have a significant influence on the spatial distribution of the landslides. Moreover, morphological and geological features such as deep fluvial canyons, a high coastal cliff and persistent dike intrusion may favour the initiation of slope failure. A typical residual soil sample from the lateral scarp of the La Orotava amphitheatre on Tenerife was studied by carrying out standard laboratory tests. The microstructure was analysed using environmental scanning electron microscopy and a particular bonding was found. This bonding was also detected by the geotechnical tests. Consolidation tests and direct shear tests revealed that the mechanical behaviour of the residual soil changes greatly if the bonding of the soil is broken. The bonded structure generally fails when the effective normal stress surpasses the yield strength of the bonding. In the case of large volcanic landslides with thicknesses up to several hundred meters, the high overburden easily exceeds this yield strength and generates a broken bonding. Therefore, volcanic residual soils, such as the one analysed in this study, are perfect candidates for the potential failure surfaces of large volcanic landslides. Referring to the La Orotava events, we assume that residual soil layers and morphological, geological and climatic features reduced the slope stability to critical conditions, whereas a strong earthquake associated with a caldera collapse episode may have finally triggered the landslide. The results obtained indicate that the residual soils play an important role in affecting the stability of volcano slopes and their destabilising influence significantly favours large-scale sliding. We suggest that the results obtained from this study can be applied to other locations since volcanic residual soils are common in volcanic areas.  相似文献   

12.
The impact of rainfall-induced shallow landslides on hillslope sediment discharge is not well understood. This paper reports experimental measurements of sediment discharge after water-induced shallow landslides are triggered on sandy soil in a flume under simulated rainfall. The principal aim of the research was to investigate how varying soil depth affects the location and occurrence of shallow slope failures, as well as how it affects sediment yields downslope. Four experiments were conducted using the same sandy soil and a 30° and 10° compound slope configuration under average rainfall intensity of 50 mm h− 1 for up to 390 min. Soil depths were set to 200, 300, 400 and 500 mm. Engineering and geotechnical properties of the soil were examined. Sediment discharge and runoff were collected from the flume outlet at 15 minute intervals. Changes in the soil slope profiles after landslides and soil physical properties resulted from soil armouring, under continuous rainfall were also recorded. Results showed that sediment yields at the flume outlet, before landslides occurred, were very low and limited to the finer soil particles as would be expected for a sandy soil. However subsequent variations in sediment discharge were strongly related to failure events and their proximity to the outlet. Sediment yield was also affected by the original soil depth; the greater the depth, the higher the sediment yields. Post-failure reductions in sediment discharge were observed and attributed to post-failure slope stabilization under continuing rainfall and extensive soil armouring near the flume outlet. The results provide a clear linkage between landslides and sediment discharge due to hydrological processes occurring in the hillslope. This knowledge is being used to develop a model to predict sediment discharges from hillslopes following shallow landslide events.  相似文献   

13.
天然气水合物分解可以诱发海底斜坡失稳对海底工程设施产生造成破坏影响。因此,海底斜坡稳定性状态评价对海底工程设施选址、安全运行具有重要意义。文章根据南海北部神狐海域水合物富集区工程地质特征,采用有限元强度折减法分析了斜坡几何参数、土层强度变化,以及水合物储层特征等因素对水合物分解前后海底斜坡稳定性的影响规律。结果表明,未考虑水合物分解时,海底斜坡稳定性主要受控于斜坡坡度和土体强度,且主要表现为浅层滑坡。考虑水合物的分解时,水合物层强度降低会对斜坡的整体稳定性产生影响,但同等上覆层条件下最危险滑动面位置受水合物层埋深影响较大,且存在受地形几何特征与上覆土层强度控制的临界埋深。埋深大于临界埋深时,水合物分解对斜坡稳定性的影响较小,最危险滑动面位置位于上部浅层,表现为浅表层破坏。小于临界埋深时,最危险滑动面位置则经过水合物层,表现为深层滑坡。根据目前模型中的水合物层埋深条件,水合物分解后的深层滑动面安全系数仍高于浅部地层,意味该海域水合物开采仍需要关注浅层海底滑坡灾害的影响。  相似文献   

14.
The aim of the present study is to prepare a landslide susceptibility map of a region of about 120 km2, between Gökcesu and Pazarköy (around Mengen, NW Turkey) at approximately 10 km north of the North Anatolian Fault Zone, where frequent landslides occur. For this purpose, mechanisms of the landslides were studied by two-dimensional stability analyses together with field observations, and the parameters controlling the development of such slides were identified. Field observations indicated that the failures generally developed within the unconsolidated and/or semiconsolidated soil units in forms of rotational, successive shallow landslides within the weathered zone in Mengen, Cukurca and Sazlar formations. Although consisting of residual soils, Capak and Gökdag formations do not exhibit landslides as the natural slopes formed on these, do not exceed the critical slope angles. Statistical evaluations and distribution of the landslides on the topographical map showed that such parameters as cohesion, angle of internal friction, slope, relative height, orientation of slopes, proximity to drainage pattern, vegetation cover and proximity to major faults were the common features on the landslides. Digital images were obtained to represent all these parameters on gray scale on the SPOT image and on the digital elevation model (DEM) of the area using image processing techniques. Soil mechanics tests were carried out on 36 representative samples collected from different units, and parameters were determined for two-dimensional stability analyses basing on “sensitivity approach” and for the preparation of digital shear strength map. In order to determine the critical slope angle values for the residual soils, a series of sensitivity analyses were realized by using two-dimensional deterministic slope stability analyses techniques for varying values of cohesion, angle of internal friction and slope height along with varying saturation conditions. According to the results of the sensitivity analyses, the Mengen formation was found to be most susceptible unit to landslides, covering about 33.5% of the region studied in terms of surface area. The distribution of the critical slopes were determined by superimposing the critical slope values from sensitivity analyses on slope map of the study area. On the other hand, iso-cohesion and iso-friction maps were produced by locating the values of cohesion and internal friction angles in a geographic coordinate system such that they coincide with sample locations on the DEM and by further interpolation of the values concerned. The pixel values were evaluated in gray scale from 0 to 255, 0 representing the lowest pixel value and 255 representing the highest. Sensitivity analyses on cohesion and angle of internal friction to investigate the effects of these parameters only on stability, revealed that cohesion was effective at a rate of 70% by itself, while angle of internal friction alone controlled the stability by a rate of 30%. The iso-cohesion and iso-friction maps previously obtained were digitally combined in these rates and a “shear strength map” was prepared. The geographic setting of the study area is such that northern slopes usually receive dense precipitation. In relation to this fact, about 42% of the landslides are due north. Thus, a slope orientation map was prepared using the DEM, and slopes facing north were evaluated as being more susceptible to sliding. Proximity to the drainage pattern was another important factor in the evaluation, as streams could adversely affect the stability by either eroding the toe or saturating the slope, or both. When considered together, in conjunction with the field observations, faults and landslides showed a close association. In the area, about 88% of the landslides were detected within an area closer than 250 m to major faults, therefore, a main discontinuity map was produced using the SPOT image of the region, and “proximity to major faults” was evaluated as a parameter as most of the landslides developed in areas where the vegetation was rather sparse. A vegetation cover map was therefore obtained from the SPOT image, and the areas with denser vegetation were considered to be less susceptible to sliding with respect to the areas with less or no vegetation. Having prepared the maps accounting for the distribution of critical slopes, shear strength properties, relative height, slope angle, orientation of the slopes, vegetation cover, proximity to the drainage pattern, geographic corrections were carried on each of these, and a potential failure map was obtained for the residual soils by superimposing all these maps. Next, a classification was performed on the final map and five relative zones of susceptibility were defined. When compared with this map, all of the landslides identified in the field were found to be located in the most susceptible zone. The performance of the method used in processing the images appears to be quite high, the zones determined on the map being the zones of relative susceptibility.  相似文献   

15.
波浪和地震等动力荷载容易引起斜坡海床失稳,进而引发海底滑坡,危及港口码头安全和海洋工程建设。本文以曹妃甸港南部深槽处海底斜坡为研究对象,考虑真实波浪荷载和地震荷载,采用有限元法和极限平衡法相结合的研究手段对海底斜坡的动态稳定性进行了定量化计算,探讨了动力效应对特殊环境下海底斜坡稳定性的影响机制。结果表明: (1)极端波浪荷载和地震动力荷载对海底斜坡稳定性影响很大,重现期为50a的波浪荷载和峰值加速度为0.15 g的地震动力荷载将引发海底斜坡失稳,且地震荷载将诱发海底斜坡产生较大位移; (2)动力效应会引发海床侵蚀和岩土体强度弱化,进而降低斜坡安全系数,这是稳定性分析中不可忽略的重要因素。  相似文献   

16.
Bioclastic flow deposits offshore from the Soufrière Hills volcano on Montserrat in the Lesser Antilles were deposited by the largest volume sediment flows near this active volcano in the last 26 kyr. The volume of these deposits exceeds that of the largest historic volcanic dome collapse in the world, which occurred on Montserrat in 2003. These flows were most probably generated by a large submarine slope failure of the carbonate shelf comprising the south‐west flank of Antigua or the east flank of Redonda; adjacent islands that are not volcanically active. The bioclastic flow deposits are relatively coarse‐grained and either ungraded or poorly graded, and were deposited by non‐cohesive debris flow and high density turbidity currents. The bioclastic deposit often comprises multiple sub‐units that cannot be correlated between core sites; some located just 2 km apart. Multiple sub‐units in the bioclastic deposit result from either flow reflection, stacking of multiple debris flow lobes, and/or multi‐stage collapse of the initial landslide. This study provides unusually precise constraints on the age of this mass flow event that occurred at ca 14 ka. Few large submarine landslides have been well dated, but the slope failures that have been dated are commonly associated with periods of rapid sea‐level change.  相似文献   

17.
降雨诱发浅层滑坡稳定性的计算模型研究   总被引:6,自引:0,他引:6  
李宁  许建聪  钦亚洲 《岩土力学》2012,33(5):1485-1490
我国是一个滑坡灾害频发的国家,众多事实表明:降雨是影响边坡稳定性,导致边坡失稳的最主要和最普遍的环境因素,是浅层滑坡的触发因素。为了更好地对降雨诱发浅层滑坡进行研究,采用非饱和土VG模型与改进的Green-Ampt入渗模型对Mein-Larson降雨入渗模型进行改进,并结合无限边坡提出了一个降雨诱发浅层滑坡的简化计算模型。与以往提出的简化计算模型相比,该模型既考虑了坡面倾斜的影响,又考虑了非饱和土的特性,并可用于两种降雨形式下的边坡浅层稳定性估算,具有更广的应用范围。通过与有限元得到的结果进行比较可得:在不同降雨条件下,该计算模型得到的各项结果与数值解是接近的,安全系数计算结果是偏于安全的,因此,可将该计算模型用于降雨诱发浅层滑坡的近似估算;该计算模型公式简单,便于计算,计算效率较高。  相似文献   

18.
作为一种常见的海洋地质灾害,海底滑坡会对油气管道的安全造成巨大威胁。由于海洋底流的冲刷作用,海底管道往往会悬跨于海床之上,稳定性较差。当悬跨管道遭受到海底滑坡的冲击作用后,其动态响应预测及安全性评估尤为重要。本文建立了海底滑坡-管道相互作用的有限元模型,将油气管道分为悬跨段和埋地段,考虑了悬跨长度和高度变化条件下,油气管道遭受海底滑坡冲击作用时的动态响应。数值计算结果表明,管道悬跨长度和高度对其塑性变形影响显著,海底滑坡引起的管道应变会随着悬跨长度和高度的增加而增大。最后,提出了综合考虑悬跨长度和高度影响下海底管道安全性评估方法,该成果可直接用于海底滑坡作用下油气管道安全性的动态评估。  相似文献   

19.
We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources.To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths that range from 40 to 80 km, maximum thicknesses of 400–800 m, and maximum widths of 10–40 km. We also evaluate tsunami generation by volcanic debris avalanches associated with flank collapse, at four locations (Makushin, Cleveland, Seguam and Yunaska SW volcanoes), which represent large to moderate sized events in this region. We calculate tsunami sources using the numerical model TOPICS and simulate wave propagation across the Pacific using a spherical Boussinesq model, which is a modified version of the public domain code FUNWAVE. Our numerical simulations indicate that geologically plausible mass flows originating in the North Pacific near the Aleutian Islands can indeed generate large local tsunamis as well as large transoceanic tsunamis. These waves may be several meters in elevation at distal locations, such as Japan, Hawaii, and along the North and South American coastlines where they would constitute significant hazards.  相似文献   

20.
Liu  Cong  Li  Shucai  Zhou  Zongqing  Li  Liping  Shi  Shaoshuai  Wang  Meixia  Gao  Chenglu 《Natural Hazards》2020,102(3):1451-1474

Submarine landslides are a common type of disaster which threaten property and the safety of human life. To effectively prevent and control such disasters, we conduct a series of large-scale physical model tests to determine the mechanism of submarine landslides. First, a large-scale physical model test system is designed and developed, including flume test frame, wave-making system, wave-absorbing system, and data monitoring system. In the tests, we investigate the effect of different sea waves by changing the parameters of the wave-making system and the influence of the slope inclination by constructing different models. Data regarding the wave pressure acting on the slope surface, seepage pressure, and displacement are monitored during the test procedure. The test results show that the seepage pressure in the faults varies cyclically with the sea waves and is lower at internal points than at outcrops. If the wave loading time is sufficiently long, the seepage pressure and displacement deformation in the fault zone will gradually increase. In other words, failures in fault zones precede submarine landslides. The weak fault zone provides the preferred sliding surface, and the sea waves supply the external dynamic energy for submarine landslides. The conclusions provide guidelines for similar engineering and research.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号