首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
After reviewing the scalar-tensor lambda-accelerating power-law solutions by Berman (Astrophys. Space Sci. 323:103, 2009a), we obtain solutions for the amplification of gravitational waves in the models. The solutions consider a perfect gas equation of state, with cosmic pressure proportional to the energy density, the proportionality constant being smaller than −2/3.  相似文献   

2.
An axially symmetric non-static space-time is considered in the presence of thick domain walls in the scalar–tensor theories formulated by Brans and Dicke (Phys. Rev. 124:925, 1961) and Saez and Ballester (Phys. Lett. A 113:467, 1985). Exact cosmological models, in both the theories, are presented with the help of special law of variation proposed by Berman (Nuovo Cim. B 74:182, 1983), for Hubble’s parameter. Some physical and kinematical properties of the models are discussed.   相似文献   

3.
In a previous paper (Berman, in Astrophys. Space Sci., 2011), we showed how to prove the two Pioneers Anomalies, and now we add the fly-bys, by means of a rotating Universe. We discuss Einstein’s Machian program, which we find as being fullfilled. Godlowski et al. (Los Alamos Archives, 2003) idea for a rotating General Relativistic Universe, led us to the adopted model. Updated evidence on rotation is cited (Godlowski, in Los Alamos Archives, 2011; Ni in Phys. Rev. Lett. 107(5):051103, 2011). We conclude that a rotating and expanding Universe may be the unique solution to the apparent divergences between Einstein and Mach. This is cosmologically important.  相似文献   

4.
A new class of dark energy models in a Locally Rotationally Symmetric Bianchi type-II (LRS B-II) space-time with variable equation of state (EoS) parameter and constant deceleration parameter have been investigated in the present paper. The Einstein’s field equations have been solved by applying a variation law for generalized Hubble’s parameter given by Berman: Nuovo Cimento 74:182 (1983) which generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The dark energy EoS parameter ω is found to be time dependent and its existing range for both models is in good agreement with the three recent observations of (i) SNe Ia data (Knop et al.: Astrophys. J. 598:102 (2003)), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al.: Astrophys. J. 606:702 (2004)) and latest (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al.: Astrophys. J. Suppl. 180:225 (2009); Komatsu et al. Astrophys. J. Suppl. 180:330 (2009)). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric behaviour of the universe have also been discussed in detail.  相似文献   

5.
The Theory of Alfven drag (Drell et al. in J Geophys Res 70: 3131–3145 1965; Anselmo and Farinella in Icarus, 58, 182–185 1983) is applied here to show that the existence of a possible solar ring structure at a radial distance of 0.02 AU (~4R , R  = radius of the sun) predicted by earlier authors (Brecher et al. in Nature 282, 50–52 1979; Rawal in Bull. Astr. Soc. India 6, 92–95 1978, Moon Planets 24, 407–414 1981, Moon Planets 31, 175–182 1984, J Astrophys Astr 10, 257–259 1989) may not survive Alfven drag produced during even moderate solar magnetic storms which take place from time to time through the age of the sun, but a possible solar ring structure at a radial distance of 0.13 AU (~27R ) (Brecher et al. in Nature 282, 50–52 1979; Rawal in Bull. Astr. Soc. India 6, 92–95 1978, Moon Planets 24, 407–414 1981, Moon Planets 31, 175–182 1984, J Astrophys Astr 10, 257–259 1989) may survive intense Alfven drag produced during even strong magnetic storms of magnetic field value up to 1,000 G.  相似文献   

6.
In the framework of ‘microscopic’ theory of black holes (J. Phys. Soc. Jpn. Suppl. B 70, 84, 2001; Astrophys. USSR 4, 659, 1996; 35, 335, 1991, 33, 143, 1990, 31, 345, 1989a; Astrophys. Space Sci. 1, 1992; Dokl. Akad. Nauk USSR 309, 97, 1989b), and references therein, we address the ‘pre-radiation time’ (PRT) of neutrinos from black holes, which implies the lapse of time from black hole’s birth till radiation of an extremely high energy neutrinos. For post-PRT lifetime, the black hole no longer holds as a region of spacetime that cannot communicate with the external universe. We study main features of spherical accretion onto central BH and infer a mass accretion rate onto it, and, further, calculate the resulting PRT versus bolometric luminosity due to accretion onto black hole. We estimate the PRTs of AGN black holes, with the well-determined masses and bolometric luminosities, collected from the literature by Woo Jong-Hak and Urry (Astrophys. J. 579, 530, 2002) on which this paper is partially based. The simulations for the black holes of masses M BH ≃(1.1⋅106 ÷4.2⋅109) M give the values of PRTs varying in the range of about T BH ≃(4.3⋅105 ÷5.6⋅1011) yr. The derived PRTs for the 60 AGN black holes are longer than the age of the universe (∼13.7 Gyr) favored today. At present, some of remaining 174 BHs may radiate neutrinos. However, these results would be underestimated if the reservoir of gas for accretion in the galaxy center is quite modest, and no obvious way to feed the BHs with substantial accretion.  相似文献   

7.
The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) has been utilized to solve the field equations. The Berman’s law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe has been discussed in detail.  相似文献   

8.
The contributions of quasi-periodic variations of cosmic rays for T>27 days at the primary energies to which neutron monitors are sensitive have a rather complicated character. They were reported in several papers (e.g. Valdés-Galicia, Perez-Enriquez, and Otaola, 1996; Mavromichalaki et al., 2003; Kudela et al., 2002; Caballero and Valdés-Galicia, 2001) from individual stations and for various time intervals covered. The data archive of several neutron monitor stations developed within the NMDB project () now involves long time series of measurements at neutron monitors situated at different geomagnetic cut-off rigidity positions and at different altitudes. It is updated continuously. Using the daily averages of cosmic-ray intensity at three selected stations within NMDB: i) the temporal evolution of the selected quasi-periodicities, especially those of approximately 1.7 yr, 150 days and 26 – 32 days respectively, until 2008 are reviewed, ii) the similarities of the spectra are checked and iii) the occurrence of quasi-periodicities with those observed in solar, interplanetary and geomagnetic activities (Moussas et al., 2005; Richardson and Cane, 2005) as well as in energetic particles below the atmospheric threshold are discussed (Laurenza et al., 2009).  相似文献   

9.
Magnetic field extrapolation is an alternative method to study chromospheric and coronal magnetic fields. In this paper, two semi-analytical solutions of force-free fields (Low and Lou in Astrophys. J. 352:343, 1990) have been used to study the errors of nonlinear force-free (NLFF) fields based on force-free factor α. Three NLFF fields are extrapolated by approximate vertical integration (AVI) Song et al. (Astrophys. J. 649:1084, 2006), boundary integral equation (BIE) Yan and Sakurai (Sol. Phys. 195:89, 2000) and optimization (Opt.) Wiegelmann (Sol. Phys. 219:87, 2004) methods. Compared with the first semi-analytical field, it is found that the mean values of absolute relative standard deviations (RSD) of α along field lines are about 0.96–1.19, 0.63–1.07 and 0.43–0.72 for AVI, BIE and Opt. fields, respectively. While for the second semi-analytical field, they are about 0.80–1.02, 0.67–1.34 and 0.33–0.55 for AVI, BIE and Opt. fields, respectively. As for the analytical field, the calculation error of 〈|RSD|〉 is about 0.1∼0.2. It is also found that RSD does not apparently depend on the length of field line. These provide the basic estimation on the deviation of extrapolated field obtained by proposed methods from the real force-free field.  相似文献   

10.
Maxwell’s ring-type configuration (i.e. an N-body model where the ν = Ν − 1 bodies have equal masses and are located at the vertices of a regular ν-gon while the N-th body with a different mass is located at the center of mass of the system) has attracted special attention during the last 15 years and many aspects of it have been studied by considering Newtonian and post-Newtonian potentials (Mioc and Stavinschi 1998, 1999), homographic solutions (Arribas et al. 2007) and relative equilibrium solutions (Elmabsout 1996), etc. An equally interesting problem, known as the ring problem of (N + 1) bodies, deals with the dynamics of a small body in the combined force field produced by such a configuration. This is the problem we are dealing with in the present paper and our aim is to investigate the variations in the dynamics of the small body in the case that the central primary is also a radiating source and therefore acts on the particle with both gravitation and radiation. Based on the general outlines of Radzievskii’s model, we study the permitted and the existing trapping regions of the particle, its equilibrium locations and their parametric variations as well as the existence of focal points in the zero-velocity diagrams. The distribution of the characteristic curves of families of planar symmetric periodic orbits and their stability for various values of the radiation coefficient of the central body is additionally investigated.  相似文献   

11.
This letter points out that the values of ‘critical-acceleration’ of MOND, and the ‘accelerated-expansion’ of the universe are just two of the fourteen strikingly equal values of accelerations recurring in different physical situations. Some of them could be explained by a new law of equality of potential-energy and energy-of-mass of reasonably-independent systems (Tank in Astrophys. Space Sci. 330:203–205, 2010; Tank in Adv. Stud. Theor. Phys. 5:45–55, 2011). This new conservation-law, of equality of potential-energy, energy-of-mass and ‘kinetic-energy’ may be a clue to understand MOND, and the ‘accelerated-expansion’ of the universe. Alternative expressions for the cosmological red-shift, the ‘critical-acceleration’ of MOND and Newton’s law of universal gravitation are also presented for comparison of three different accelerations.  相似文献   

12.
Here the effect of rotation up to third order in the angular velocity of a star on the p, f and g modes is investigated. To do this, the third-order perturbation formalism presented by Soufi et al. (Astron. Astrophys. 334:911, 1998) and revised by Karami (Chin. J. Astron. Astrophys. 8:285, 2008), was used. I quantify by numerical calculations the effect of rotation on the oscillation frequencies of a uniformly rotating β-Cephei star with 12 M . For an equatorial velocity of 90 km s−1, it is found that the second- and third-order corrections for (l,m)=(5,−4), for instance, are of order of 0.07% of the frequency for radial order n=−3 and reaches up to 0.6% for n=−20.  相似文献   

13.
Using nine years of solar wind plasma and magnetic field data from the Wind mission, we investigated the characteristics of both magnetic clouds (MCs) and magnetic cloud-like structures (MCLs) during 1995 – 2003. A MCL structure is an event that is identified by an automatic scheme (Lepping, Wu, and Berdichevsky, Ann. Geophys. 23, 2687, 2005) with the same criteria as for a MC, but it is not usually identifiable as a flux rope by using the MC (Burlaga et al., J. Geophys. Res. 86, 6673, 1981) fitting model developed by Lepping, Jones, and Burlaga (Geophys. Res. Lett. 95(11), 957, 1990). The average occurrence rate is 9.5 for MCs and 13.6 for MCLs per year for the overall period of interest, and there were 82 MCs and 122 MCLs identified during this period. The characteristics of MCs and MCL structures are as follows: (1) The average duration, Δt, of MCs is 21.1 h, which is 40% longer than that for MCLs (Δt=15 h); (2) the average (minimum B z found in MC/MCL measured in geocentric solar ecliptic coordinates) is −10.2 nT for MCs and −6 nT for MCLs; (3) the average Dstmin  (minimum Dst caused by MCs/MCLs) is −82 nT for MCs and −37 nT for MCLs; (4) the average solar wind velocity is 453 km s−1 for MCs and 413 km s−1 for MCLs; (5) the average thermal speed is 24.6 km s−1 for MCs and 27.7 km s−1 for MCLs; (6) the average magnetic field intensity is 12.7 nT for MCs and 9.8 nT for MCLs; (7) the average solar wind density is 9.4 cm−3 for MCs and 6.3 cm−3 for MCLs; and (8) a MC is one of the most important interplanetary structures capable of causing severe geomagnetic storms. The longer duration, more intense magnetic field and higher solar wind speed of MCs, compared to those properties of the MCLs, are very likely the major reasons for MCs generally causing more severe geomagnetic storms than MCLs. But the fact that a MC is an important interplanetary structure with respect to geomagnetic storms is not new (e.g., Zhang and Burlaga, J. Geophys. Res. 93, 2511, 1988; Bothmer, ESA SP-535, 419, 2003).  相似文献   

14.
Recent numerical investigations of wave propagation near coronal magnetic null points (McLaughlin and Hood: Astron. Astrophys. 459, 641, 2006) have indicated how a fast MHD wave partially converts into a slow MHD wave as the disturbance passes from a low-β plasma to a high-β plasma. This is a complex process and a clear understanding of the conversion mechanism requires the detailed investigation of a simpler model. An investigation of mode conversion in a stratified, isothermal atmosphere with a uniform, vertical magnetic field is carried out, both numerically and analytically. In contrast to previous investigations of upward-propagating waves (Zhugzhda and Dzhalilov: Astron. Astrophys. 112, 16, 1982a; Cally: Astrophys. J. 548, 473, 2001), this paper studies the downward propagation of waves from a low-β to high-β environment. A simple expression for the amplitude of the transmitted wave is compared with the numerical solution.  相似文献   

15.
A time-dependent model for the energy of a flaring solar active region is presented based on an existing stochastic jump-transition model (Wheatland and Glukhov in Astrophys. J. 494, 858, 1998; Wheatland in Astrophys. J. 679, 1621, 2008 and Solar Phys. 255, 211, 2009). The magnetic free energy of an active region is assumed to vary in time due to a prescribed (deterministic) rate of energy input and prescribed (random) jumps downwards in energy due to flares. The existing model reproduces observed flare statistics, in particular flare frequency – size and waiting-time distributions, but modeling presented to date has considered only the time-independent choices of constant energy input and constant flare-transition rates with a power-law distribution in energy. These choices may be appropriate for a solar active region producing a constant mean rate of flares. However, many solar active regions exhibit time variation in their flare productivity, as exemplified by NOAA active region (AR) 11029, observed during October – November 2009 (Wheatland in Astrophys. J. 710, 1324, 2010). Time variation is incorporated into the jump-transition model for two cases: (1) a step change in the rates of flare transitions, and (2) a step change in the rate of energy supply to the system. Analytic arguments are presented describing the qualitative behavior of the system in the two cases. In each case the system adjusts by shifting to a new stationary state over a relaxation time which is estimated analytically. The model exhibits flare-like event statistics. In each case the frequency – energy distribution is a power law for flare energies less than a time-dependent rollover set by the largest energy the system is likely to attain at a given time. The rollover is not observed if the mean free energy of the system is sufficiently large. For Case 1, the model exhibits a double exponential waiting-time distribution, corresponding to flaring at a constant mean rate during two intervals (before and after the step change), if the average energy of the system is large. For Case 2 the waiting-time distribution is a simple exponential, again provided the average energy of the system is large. Monte Carlo simulations of Case 1 are presented which confirm the estimate for the relaxation time and the expected forms of the frequency – energy and waiting-time distributions. The simulation results provide a qualitative model for observed flare statistics in AR 11029.  相似文献   

16.
Rahaman et al. (Astrophys. Space. Sci. 331:191–197, 2010) discussed some classical electron models (CEM) in general relativity. Bijalwan (Astrophys. Space. Sci. 334:139–143, 2011) present a general exact solution of the Einstein-Maxwell equations in terms of pressure. We showed that charged fluid solutions in terms of pressure are not reducible to a well behaved neutral counter part for a spatial component of metrice λ . Hence, these solutions represent an electron model in general relativity. We illustrated solutions in terms of pressure briefly with de-Sitter equation of state and charged analogues of Kohler Chao interior solution as a special cases.  相似文献   

17.
A self-consistent method has been evolved to infer physical parameters like density, radiation field and abundances using line and continuum radiations as diagnostics. For that purpose, we first calculate the temperatures of graphite and silicate grains using the model of Li and Draine (Astrophys. J. 554:778, 2001) by solving self-consistently the energy balance for G 0 (1–104) times the radiation field following Weingartner and Draine (Astrophys. J. Suppl. Ser. 134:263, 2001). Consequently, infrared emission fluxes are also obtained. To keep it simple, this is presented in the empirical form of parameters T D and wavelength. The same model of the grain is adopted for photoelectric heating of gas using the formalism of Weingartner and Draine (Astrophys. J. Suppl. Ser. 134:263, 2001) (hereafter referred to as WD) and Bakes and Tielens (Astrophys. J. 427:822, 1994) (hereafter referred to as BT) for radiation field cited above in the range (6<hν≤13.6 eV). Temperature and abundances are determined using our own code for PDR very similar to cloudy code. All the possible sources of heating and cooling are considered for setting up the thermal balance. For the gas phase abundances that vary with depth in the cloud due to dust, self- and mutual shielding, chemical balance is solved. Most of the photoionization, photodissociation or chemical reaction rates are taken from UMIST database. We present an analysis of the cooling lines of singly ionized carbon [CII] at 158 μm and neutral oxygen [OI], at 63 μm and far infrared (FIR) continuum for a variety of star forming galaxies. Method of analysis of observational data is different from that of Malhotra et al. (Astrophys. J. 561:766, 2001). The radiation field G 0, density N h and abundance of carbon are obtained through best fit of observed and calculated intensities for lines and continuum radiations.  相似文献   

18.
An exact Bianchi type-V perfect fluid cosmological model is obtained in a scalar tensor theory proposed by Sen (Z. Phys. 149:311, 1957) based on Lyra Manifold in case of β is a constant and it is shown that this cosmological model exists only in the case of Radiation Universe (ρ=3p) if β is a function of ‘t’ using negative constant deceleration parameter. Some physical and geometrical properties of these models are discussed.  相似文献   

19.
Individual tidal torque λ 2,E 2 and apsidal-motion k 2 constants were calculated for 112 close eclipsing binaries (CEBs) with Detached components belonging to the Main Sequence (DMS-type) from the catalogue by Svechnikov and Perevozkina (Catalogue of orbital elements, masses and luminosities of variable stars of DMS-type and some results of its statistical treatment, Ural State University Press, Yekaterinburg, pp. 1–5, 1999) and for 95 detached binaries taken from the catalogue by Torres et al. (Astron. Astrophys. Rev. 18:67, 2010) on the base of theoretical evolutionary stellar models including tidal torque constants by Claret (Astron. Astrophys. 424:919, 2004). A method of the inversion of model track grid into isochrones was formulated as a complex interpolation procedure for DMS-binaries data. Sets of isochrones were computed in k 2M, k 2R, λ 2M, λ 2R, E 2M, and E 2R planes. Calculated tidal torque constants allow to test stellar structure theory by comparing observed and estimated values of apsidal motion period and analyzing the correlation between timescales of synchronization, circularization, magnetic braking, as well as nuclear burning of DMS-components.  相似文献   

20.
H. Kiliç 《Solar physics》2009,255(1):155-162
The short-term periodicities in sunspot numbers, sunspot areas, and flare index data are investigated in detail using the Date Compensated Discrete Fourier Transform (DCDFT) for the full disk of the Sun separately over the rising, the maximum, and the declining portions of solar cycle 23 (1996 – 2006). While sunspot numbers and areas show several significant periodicities in a wide range between 23.1 and 36.4 days, the flare index data do not exhibit any significant periodicity. The earlier conclusion of Pap, Tobiska, and Bouwer (1990, Solar Phys. 129, 165) and Kane (2003, J. Atmos. Solar-Terr. Phys. 65, 1169), that the 27-day periodicity is more pronounced in the declining portion of a solar cycle than in the rising and maximum ones, seems to be true for sunspot numbers and sunspot area data analyzed here during solar cycle 23.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号