首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 531 毫秒
1.
泥石流启动临界土体含水量及其预警应用   总被引:1,自引:0,他引:1  
传统的泥石流预警方法多基于前期和实时降雨量等间接指标,但实际上直接影响泥石流启动的关键物理参数是土体含水量,通过分析土体含水量的变化来判断泥石流启动更为直接可靠。首先定义了泥石流启动的临界土体含水量的概念,然后基于国内外泥石流启动的观测试验数据,采用逐步回归分析方法,建立了临界土体含水量与土体渗透系数、孔隙度和颗粒曲率系数的经验关系,进而提出一种基于临界土体含水量和实时降雨的泥石流预警方法。最后,以云南东川蒋家沟1999年7月16日发生的一场泥石流为实例进行演算和验证。结果表明:该方法在可靠性和准确性上优于传统利用临界线和暴发线判别泥石流的预测模型。  相似文献   

2.
冰湖溃决灾害是指冰湖坝体突然破坏引发溃决洪水或溃决泥石流的现象,对下游人类活动和自然环境造成严重影响。近年来,藏东南地区冰川快速退缩,冰湖数量和规模显著增加,冰湖溃决事件广泛发生。基于1995-2021年多时相Landsat系列遥感影像、Sentinel-2A遥感影像,结合RAMMS水文动力学模型方法,对藏东南地区多依弄巴流域内冰湖、冰川进行动态变化分析,模拟冰崩危险体触发冰湖溃决和冰湖溃决泥石流的演进过程,根据泥石流模拟中的流速和流深对冰湖溃决可能影响的区域进行危险性分区。结果表明:流域内冰川面积由1995年的14.05 km2退缩为2021年的9.43 km2,年均退缩率约为0.15 km2/a。流域内共发育3处冰崩危险体,均可能触发冰湖溃决。潜在危险冰湖在全溃情况下,溃决泥石流会冲出沟口堵塞然乌湖湖口和帕隆藏布主河道,对下游居民和道路造成影响,影响范围约4.05 km2,其中高危险性区域约2.55 km2。危险性评价结果可为多依弄巴流域未来土地利用规划和防灾减灾提供依据,也能为藏东南地区冰湖溃决型泥石流危险评估提供参考。   相似文献   

3.
基于DMSP/OLS数据的城市中心城区提取新方法   总被引:1,自引:0,他引:1  
近年来,DMSP/OLS夜间灯光数据已被广泛应用于城市空间格局和城市化过程、人类活动及效应、经济水平、生态环境影响、电力能源消耗量和灾害分析等领域。本文利用DMSP/OLS的稳定灯光数据产品,首先,以辅助资料的空间对比法确定城市中心城区范围最小阈值,然后,提取DMSP数据中的每个极大值及一定范围内的临近值,作为城市中心城区范围,并将提取的范围与作为辅助资料的MODIS土地覆盖数据中相应的城市中心城区范围作线性回归分析,进而获得估算城市中心城区范围的线性模型。经验证其结果预测吻合度达到82.06%,平均相对误差为8.47%,说明利用该方法提取城市中心城区范围具有一定的可行性,可较准确地提取发展水平不同的城市的中心城区范围。  相似文献   

4.
本文应用灰色系统理论,在对控制泥石流形成的内、外营力要素灰色关联度进行分析的基础上,分别建立了秦岭北麓现代泥石流灾害活动周期的长期、短期及近期灰色动态时间序列预测模型(GM),并进行了灰色灾变预测。结果表明,影响本区泥石流活动的主要因素是雨量强度,其次为地震活动性。并预测出本世纪后半叶泥石流灾害出现的年份为:1962,1966,1982,1988,1994~1995,前四次已与泥石流实际活动年份相符。近期泥石流活动期的预测,对泥石流灾害的预防有实用意义。  相似文献   

5.
作者将鲁南地区一水文观测孔的92次地下水水位月平均监测数据,划分了10种状态范围,运用马尔可夫链模型,对未来地下水水位进行状态范围预测。在与实际监测资料进行对比的基础上,验证了马尔可夫链理论在地下水水位预测中的可行性及可靠性,并对运用中的具体问题进行了探讨。  相似文献   

6.
以某泥石流防治工程系统的优化设计为例 ,建立了优化模型 ,分析确定了模型参数 ,并利用基于随机模拟的遗传算法对模型进行了求解。对其他泥石流防治工程系统的优化设计具有重要指导意义 ,对复杂工程系统的优化设计也具有普遍的参考价值  相似文献   

7.
针对随机森林(RF)模型进行泥石流易发性评价过程中存在连续型因子依靠主观意识分级、随机选取的非泥石流样本准确度较低等问题,以位于四川西南部的凉山彝族自治州为研究区,提出基于统计学先验模型抽样的随机森林对研究区进行泥石流易发性评价分区。利用累计灾害频率等曲线的相对变化对连续型因子进行分级处理;采用粗糙集理论(RS)和信息量法(IV)计算加权信息量值,划定极低和低易发性区并从中选择负样本数据。通过袋外误差(OOB)变化曲线确定RF模型的最佳树棵数n_estimators和分裂特征数max_features,随后构建加权信息量-随机森林(RSIV-RF)模型预测凉山州泥石流易发性。进一步地,与从全区随机选择非泥石流样本的RF模型开展对比研究。结果表明,训练集和测试集下RSIV-RF模型的准确度分别为0.89,0.83,且对应的ROC曲线的AUC值分别为0.920,0.895,均高于单独的RF模型;RSIV-RF绘制的泥石流易发性评价图与历史灾害分布较为一致,较高和高易发性等级区域占研究区面积比为18.625%,包含了78.57%的泥石流点。性能评估和易发性统计结果均表明基于RSIV-RF能够...  相似文献   

8.
以某变质岩区大型高位滑坡变形监测成果为基础,开展既有变形特征分析和变形发展分析。结果表明,CEEMDAN-PSR-KELM-ARIMA模型在滑坡变形预测中具有较强的适用性,所得预测结果的相对误差均值范围为2.00%~2.03%,其方差值也较小,具有较优的预测精度及稳定性;预报等级属于Ⅲ级-橙色预报,为较危险状态;滑坡变形速率具减小趋势,但累积变形仍会进一步增加。  相似文献   

9.
地下水动力条件变化是导致临沂市城区岩溶塌陷的诱因和动因,通过分析岩溶区地质及水文地质条件,建立了临沂市城区岩溶地下水流数值模型,预测了2007年6月至2019年6月地下水水位时空变化过程。从流场拟合情况看,所建模型拟合效果良好,客观反映了地下水系统演化规律,可以用于岩溶塌陷预警预报,为岩溶塌陷地质灾害防治提供技术依据。  相似文献   

10.
四川省小流域泥石流危险性评价   总被引:1,自引:0,他引:1  
泥石流危险性评价是泥石流防灾减灾的重要内容。本文以四川省为研究区,以DEM为数据源,通过提取水流方向,计算汇流累积量,实现四川省小流域划分。基于收集的已查明泥石流流域资料,分析了泥石流孕灾环境与成灾特点,选择流域高差、流域面积为指标,建立基于能量条件的潜势泥石流流域判识模型,对划分的小流域进行判识,识别出7798个小流域具备泥石流发生所需能量条件,面积为31.1×104 km2,占四川省总面积的64.18 %。进而建立了泥石流危险性评价指标体系和可拓物元模型,开展了小流域泥石流危险性评价,划分了危险度等级,得到中度、高度、极高危险区的小流域个数分别为1946、1725和1002个,面积分别为9.1×104、7.7×104和3.4×104 km2,中度以上危险区面积共20.2×104 km2,占四川省总面积的41.67%。最后对评价结果可靠性和各等级泥石流危险区在各地市级行政区、各大流域的分布进行了分析。其结果对促进泥石流判识与危险性评价理论,区域泥石流防灾减灾与山区可持续发展等具有重要的理论和现实意义。  相似文献   

11.
Accurate prediction on geological hazards can prevent disaster events in advance and greatly reduce property losses and life casualties.Glacial debris flows are the most serious hazards in southeastern Tibet in China due to their complexity in formation mechanism and the difficulty in prediction.Data collected from 102 glacier debris flow events from 31 gullies since 1970 and regional meteorological data from 1970 to 2019 in ParlungZangbo River Basin in southeastern Tibet were used for Artificial Neural Network(ANN)-based prediction of glacial debris flows.The formation mechanism of glacial debris flows in the ParlungZangbo Basin was systematically analyzed,and the calculations involving the meteorological data and disaster events were conducted by using the statistical methods and two layers fully connected neural networks.The occurrence probabilities and scales of glacial debris flows(small,medium,and large)were predicted,and promising results have been achieved.Through the proposed model calculations,a prediction accuracy of 78.33%was achieved for the scale of glacial debris flows in the study area.The prediction accuracy for both large-and medium-scale debris flows are higher than that for small-scale debris flows.The debris flow scale and the probability of occurrence increase with increasing rainfall and temperature.In addition,the K-fold cross-validation method was used to verify the reliability of the model.The average accuracy of the model calculated under this method is about 93.3%,which validates the proposed model.Practices have proved that the combination of ANN and disaster events can provide sound prediction on geological hazards under complex conditions.  相似文献   

12.
An increase in extreme precipitation events due to future climate change will have a decisive influence on the formation of debris flows in earthquake-stricken areas. This paper aimed to describe the possible impacts of future climate change on debris flow hazards in the Upper Minjiang River basin in Northwest Sichuan of China, which was severely affected by the 2008 Wenchuan earthquake. The study area was divided into 1285 catchments, which were used as the basic assessment units for debris flow hazards. Based on the current understanding of the causes of debris flows, a binary logistic regression model was used to screen key factors based on local geologic, geomorphologic, soil, vegetation, and meteorological and climatic conditions. We used the weighted summation method to obtain a composite index for debris flow hazards, based on two weight allocation methods: Relative Degree Analysis and rough set theory. Our results showed that the assessment model using the rough set theory resulted in better accuracy. According to the bias corrected and downscaled daily climate model data, future annual precipitation (2030-2059) in the study area are expected to decrease, with an increasing number of heavy rainfall events. Under future climate change, areas with a high-level of debris flow hazard will be even more dangerous, and 5.9% more of the study area was categorized as having a high-level hazard. Future climate change will cause an increase in debris flow hazard levels for 128 catchments, accounting for 10.5% of the total area. In the coming few decades, attention should be paid not only to traditional areas with high-level of debris flow hazards, but also to those areas with an increased hazard level to improve their resilience to debris flow disasters.  相似文献   

13.
The Wenchuan Earthquake of May 12,2008 triggered large numbers of geo-hazards.The heavy rain on 13 August 2010 triggered debris flows with total volume of more than 6 million cubic meters and the debris flows destroyed 500 houses and infrastructure built after the Wenchuan Earthquake.The study area Qingping Town was located in the northwestern part of the Sichuan Basin of China,which needs the second reconstructions and the critical evaluation of debris flow.This study takes basin as the study unit and defines collapse,landslide and debris flow hazard as a geo-hazard system.A multimode system composed of principal series system and secondary parallel system were established to evaluate the hazard grade of debris flow in 138 drainage basins of Qingping Town.The evaluation result shows that 30.43% of study basins(42 basins) and 24.58% of study area,are in extremely high or high hazard grades,and both percentage of basin quantity and percentage of area in different hazard grades decrease with the increase of hazard grade.According to the geo-hazard data from the interpretation of unmanned plane image with a 0.5-m resolution and field investigation after the Wenchuan Earthquake and 8.13 Big Debris Flow,the ratio of landslides and collapses increased after the Wenchuan Earthquake and the ratios of extremely high or high hazard grades were more than moderate or low hazard grades obviously.23 geo-hazards after8.13 Big Debris Flow in Qingping town region all occurred in basins with extremely high or high hazard grades,and 9 debris flows were in basins with extremely high hazard grade.The model of multimode system for critical evaluation could forecast not only the collapse and landslide but also the debris flow precisely when the basin was taken as the study unit.  相似文献   

14.
Forestry has played an important role in hazard mitigation associated with debris flows. Most forest mitigation measures refer to the experience of soil and water conservation, which disregard the destructive effect of debris flows, causing potentially serious consequences. Determination of the effect of a forest on reducing debris-flow velocity and even stopping debris flows requires distinguishing between when the debris flow will destroy the forest and when the trees will withstand the debris-flow impact force. In this paper, we summarized two impact failure models of a single tree: stem breakage and overturning. The influences of different tree sizes characteristics(stem base diameter, tree weight, and root failure radius) and debris-flow characteristics(density, velocity, flow depth, and boulder diameter) on tree failure were analyzed. The observations obtained from the model adopted in this study show that trees are more prone to stem breakage than overturning. With an increase in tree size, the ability to resist stem breakage and overturning increases. Debris-flow density influences the critical failure conditions of trees substantially less than the debrisflow velocity, depth, and boulder diameter. The application conditions of forests in debris-flow hazard mitigation were proposed based on the analysis of the model results. The proposed models were applied in the Xiajijiehaizi Gully as a case study, and the results explain the destruction of trees in the forest dispersing zone. This work provides references for implementing forest measures for debris-flow hazard mitigation.  相似文献   

15.
Techniques of gully-specific debris flow hazard assessment developed in four periods since the end of the1980s have been discussed in the present paper. The improvement for the empirical assessment method is the sectional-ized function transformation for the factor value, rather than the classified logical transformation. The theoretical equationof the gully-specific debris flow hazard is expressed as the definite integral of an exponential function and its numericalsolution is expressed by the Poisson Limit Equation. Current methods for assessment of debris flow hazard in China arestill valid and practical. The further work should be put on the study of the reliability (or uncertainty) of the techniques.For the future, we should give a high priority to the relationship between debris flow magnitude and its frequency of occur-rence, make more developments of prediction model on debris flow magnitude, so as to finally reach the goal of assessingthe hazard of debris flow by theoretical model, and realize both actuality assessment and prediction appraisal of debris flow.  相似文献   

16.
The assessment of the areas endangered by debris flows is a major issue in the context of mountain watershed management. Depending on the scale of analysis, different methods are required for the assessment of the areas exposed to debris flows. While 2-D numerical models are advised for detailed mapping of inundation areas on individual alluvial fans, preliminary recognition of hazard areas at the regional scale can be adequately performed by less data-demanding methods, which enable priority ranking of channels and alluvial fans at risk by debris flows. This contribution focuses on a simple and fast procedure that has been implemented for regional-scale identification of debris-flow prone channels and prioritization of the related alluvial fans. The methodology is based on the analysis of morphometric parameters derived from Digital Elevation Models (DEMs). Potential initiation sites of debris flows are identified as the DEM cells that exceed a threshold of slope-dependent contributing area. Channel reaches corresponding to debris flows propagation, deceleration and stopping conditions are derived from thresholds of local slope. An analysis of longitudinal profiles is used for the computation of the runout distance of debris flows. Information on erosion-resistant bedrock channels and sediment availability surveyed in the field are taken into account in the applications. A set of software tools was developed and made available (https://github.com/HydrogeomorphologyTools) to facilitate the application of the procedure. This approach, which has been extensively validated by means of field checks, has been extensively applied in the eastern Italian Alps. This contribution discusses potential and limitations of the method in the frame of the management of small mountain watersheds.  相似文献   

17.
Debris flow in metropolitan area — 2011 Seoul debris flow   总被引:4,自引:2,他引:2  
A large number of debris flows occurred simultaneously at around 8:30 to 8:50 a.m. on July 27, 2011, at the center of Seoul, Korea. This area is located in the southern part of Seoul and is a densely populated district. As a result of the debris flow event, 16 people were killed, 30 houses were buried, and 116 houses were damaged around Umyeon Mountain, a relatively small mountain with a height of 312.6 m. Since the debris flow event, field investigations on the initiation and transportation zones of debris flows have been carried out. Rainfall data were collected from the automatic weather stations (AWSs) which are operated by the Korea Meteorological Administration (KMA). Video files recorded by residents were also acquired and used to analyze the flow characteristics of the debris flow. Field investigation shows that about 40 debris flows occurred around Umyeon Mountain and most of the debris flows were initiated by small slope failures. The effects of the precipitation that triggered the debris flows were analyzed as well. A landslide hazard map which considers slope gradient and aspect, strength of soil, hazard record, rainfall conditions, and vegetation, was constructed and compared with the initiation zones of debris flows.  相似文献   

18.
Since the Wenchuan earthquake in China on May 12th, 2008, highways in earthquake-affected areas have been frequently interrupted by debris flows. We analyzed the hazard effect modes and damage processes along highways and developed three key indexes, scale of debris flows, deposits on highways and river blockage, to describe quantitatively the highway disasters. By combining the empirical methods and the actual terrain conditions, we proposed new methods to determine the value of hazard indexes. In addition, we used the economic value and resistance of highway as vulnerability assessment indexes, then determined the specific subindexes for the subgrade, bridges and culverts, and developed a way for the quantified vulnerability zoning. Moreover, we proposed the assessment and mapping methods for highway risk. The risk is described into 5 grades: extremely low risk, low risk, middle risk, high risk and extremely high risk. We applied these methods in a case study carried out on provincial highway S303 from Yingxiu Town to Wolong Town, in Wenchuan County. Analysis of debris flow risk for the whole highway, showed that the total length of highway in extremely low risk area was 28.26 km, 4.83 km in low risk area, 8.0 km in middle risk area, 3.65 km in high risk area, and 3.06 km in extremely high risk area. The assessment results are consistent with the field survey data which reflected the disaster situation. This risk method can be used objectively to evaluate the debris-flow risk along highways, and is useful for highway reconstruction in mountainous areas suffering from active debris flows.  相似文献   

19.
Debris flows are recurrent natural hazards in many mountainous regions.This paper presents a numerical study on the propagation of debris flows in natural erodible open channels,in which the bed erosion and sedimentation processes are important.Based on the Bingham fluid theory,a mathematical model of the two-dimensional non-constant debris flow is developed.The governing equations include the continuity and momentum conservation equations of debris flow,the sediment convection-diffusion equation,the bed erosion-deposition equation and the bed-sediment size gradation adjustment equation.The yield stress and shear stress components are included to describe the dynamic rheological properties.The upwind control-volume Finite Volume Method (FVM) is applied to discretize the convection terms.The improved SIMPLE algorithm with velocity-free-surface coupled correction is developed to solve the equations on non-orthogonal,quadrilateral grids.The model is applied to simulate a debris flow event in Jiangjia Gully,Yunnan Province and to predict the flow pattern and bed erosion-deposition processes.The results show the effectiveness of the proposed numercial model in debris flow simulation and potential hazard analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号