首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Based on the Biot theory, the exact solutions for one‐dimensional transient response of single layer of fluid‐saturated porous media and semi‐infinite media are developed, in which the fluid and solid particles are assumed to be compressible and the inertial, viscous and mechanical couplings are taken into account. First, the control equations in terms of the solid displacement u and a relative displacement w are expressed in matrix form. For problems of single layer under homogeneous boundary conditions, the eigen‐values and the eigen‐functions are obtained by means of the variable separation method, and the displacement vector u is put forward using the searching method. In the case of nonhomogeneous boundary conditions, the boundary conditions are first homogenized, and the displacement field is constructed basing upon the eigen‐functions. Making use of the orthogonality of eigen‐functions, a series of ordinary differential equations with respect to dimensionless time and their corresponding initial conditions are obtained. Those differential equations are solved by the state‐space method, and the series solutions for three typical nonhomogeneous boundary conditions are developed. For semi‐infinite media, the exact solutions in integral form for two kinds of nonhomogeneous boundary conditions are presented by applying the cosine and sine transforms to the basic equations. Finally, three examples are studied to illustrate the validity of the solutions, and to assess the influence of the dynamic permeability coefficient and the fluid inertia to the transient response of porous media. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
流体饱和两相多孔介质动力反应计算分析   总被引:1,自引:1,他引:1  
基于流体饱和两相多孔介质的弹性波动方程组,运用显式逐步积分格式与局部透射人工边界相结合的时域显式有限元方法对该波动方程组进行求解,对两相介质在输入地震波作用下的弹性动力反应进行计算和分析;对在是否考虑孔隙流体渗流的两种情况下计算得到的两相介质弹性动力反应结果的差异进行对比研究,从而揭示孔隙流体渗流对两相介质动力反应性质的影响。计算结果表明:两相介质弹性动力反应时程的波形与入射地震波的波形相同,且弹性动力反应的峰值出现的时刻对应于入射地震波的峰值出现的时刻;孔隙流体的渗流将对两相介质的弹性动力反应性质产生显著的影响。数值计算同时表明,时域显式有限元方法是进行流体饱和两相多孔介质弹性动力反应计算分析的一种有效的方法。  相似文献   

3.
基于Zienkiewicz提出的非饱和多孔介质波动理论,考虑两相流体和固体颗粒的压缩性以及惯性、黏滞和机械耦合作用,采用半解析的方法获得了一类典型边界条件下单层非饱和多孔介质一维瞬态响应解。首先推导出无量纲化后以位移表示的控制方程,并将其写成矩阵形式;然后,将边界条件齐次化,求解控制方程所对应的特征值问题,得到了满足齐次边界条件的特征值和相对应的特征函数。根据变异系数法并利用特征函数的正交性,得到了一系列仅黏滞耦合的关于时间的二阶常微分方程及相应的初始条件。在此基础上,运用精细时程积分法给出了常微分方程组的数值解。最后,通过若干算例验证了结果的正确性并探讨了单层非饱和多孔介质一维瞬态动力响应的特点。该方法可推广应用于其他典型的边界条件。  相似文献   

4.
陈星欣  白冰  蔡奇鹏 《岩土力学》2015,36(6):1698-1706
建立考虑吸附-解吸效应的颗粒加速迁移问题控制方程,通过Laplace变换和Fourier变换求出颗粒瞬时和周期性注入情况下点源和面源问题的解析解。同时,开展点源瞬时注入方式下颗粒迁移试验,并将试验和理论计算结果进行对比分析,两者较为吻合,从而验证了解析解的正确性。点源瞬时注入方式下颗粒迁移参数的分析进一步表明:吸附系数越大,颗粒的浓度峰值越小。解吸系数对浓度峰值左侧曲线影响较小,而对浓度峰值右侧曲线来说,解吸系数不仅影响颗粒浓度,也影响颗粒迁移时间;浓度等值线在x-y平面上的形状近似为椭圆形,解吸系数越大,相应的浓度等值线的范围越大;随着y方向弥散系数增大,浓度峰值上、下两侧的等值线梯度逐渐减小。研究成果可为地下污染物治理、地下水开采、核废料处置以及城市固体废弃物填埋等工程提供理论基础。  相似文献   

5.
对二维无限大多孔介质内单向均匀水平流垂直绕过“固体小圆柱-多孔介质环-水环-多孔介质”复杂四层结构下的流场进行了解析求解。内、外多孔介质区域均采用Brinkman模型,纯流体水环采用Stokes模型,通过耦合界面间的质量、动量守恒关系得到了各区域流函数的通用表达式。在此基础上分析了不同几何参数,不同内、外多孔介质渗透系数情况下,圆柱外绕流的流型变化;着重研究了水环间隙以及内、外多孔介质渗透系数的变化对流型及横向、纵向速度分布的影响。结果表明:外部多孔区流型主要受控于外部渗透系数;水环间隙宽度对水环内速度峰值影响较大;内部渗透系数增加到某一临界值情况下,横截面速度分布从阶梯形变为抛物形,即“穿透”现象。研究结果对有类似结构的地埋管换热器、地下水污染物吸收装置、地下水测速装置等的设计研发有理论指导意义。  相似文献   

6.
单层不可压缩饱和多孔介质一维瞬态响应精确解   总被引:1,自引:0,他引:1  
基于Biot理论,考虑惯性、黏滞和机械耦合作用,假定固体颗粒和流体均不可压缩,得到了表面任意竖向荷载作用下单层饱和多孔介质一维瞬态响应的精确解。导出了以固体骨架位移表示的无量纲控制方程,并将边界条件齐次化。求解对应无黏滞耦合作用的特征值问题,得到一组满足齐次边界条件、关于空间坐标的正交函数基。利用变异系数法和基函数的正交性,得到一系列相互解耦的、关于时间的二阶常微分方程及相应的初始条件,并采用状态空间法求解常微分方程,得到位移分量。对整体平衡方程关于空间坐标积分,根据边界条件可确定总应力,并进而求得孔隙压力。通过算例验证所得解法的正确性  相似文献   

7.
饱和土半空间中圆柱形孔洞对平面P波的散射   总被引:1,自引:0,他引:1  
李伟华  赵成刚 《岩土力学》2004,25(12):1867-1872
在 Biot饱和多孔介质动力学理论的基础上,首次建立了求解饱和土半空间中圆柱形孔洞对平面 P 波散射问题的波函数展开法。首先。分析了具有圆柱形孔洞的饱和土半空间场地在平面 P 波入射下产生散射波系,并将入射波和散射波的波函数在圆柱坐标下展开。然后,引入边界条件,求出散射波函数的待定系数,从而,得到饱和土半空间中圆柱形孔洞对平面P波的散射问题的解析解。根据所得的波函数的解,可求解区域内的位移、应力的值,同时,分析了入射波频率、入射角对柱面上的应力集中因子的影响。  相似文献   

8.
刘干斌  姚海林  杨洋  卢正 《岩土力学》2007,28(9):1784-1788
通过对Biot波动方程的修正,得到考虑热-水-力学耦合效应的多孔弹性介质动力响应的控制方程,研究了简谐均布荷载作用下地基土体的热-水-力耦合动力响应问题。利用Fourier变换技术,得到地基中的应力、位移和孔隙水压力积分形式的解答。利用Fourier逆变换得到数值结果,分析了热-水-力学耦合条件下地基土体中温度增量、应力、位移和孔隙水压力响应的分布,并讨论了热源输入的影响, 结果表明:应力、位移和孔隙水压力随 的增大而有一定的减小。  相似文献   

9.
Analytical solutions for advection and dispersion of a conservative solute in a one‐dimensional double‐layered finite porous media are presented. The solutions are applicable to five scenarios that have various combinations of fixed concentration, fixed flux and zero concentration gradient conditions at the inlet and outlet boundaries that provide a wide number of options. Arbitrary initial solute concentration distributions throughout the media can be considered via explicit formulations or numerical integration. The analytical solutions presented have been verified against numerical solutions from a finite‐element‐based approach and an existing closed‐form solution for double‐layered media with an excellent correlation being found in both cases. A practical application pertaining to advective transport induced by consolidation of underlying sediment layers on contaminant movement within a capped contaminated sediment system is presented. Comparison of the calculated concentrations and fluxes with alternative approaches clearly illustrates the need to consider advection processes. Consideration of the different features of contaminant transport due to varying pore‐water velocity fields in primary consolidation and secondary consolidation stages is achieved via the use of non‐uniform initial concentration distributions within the proposed analytical solutions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The response of saturated porous medium is of significant interest in many fields ranging from geomechanics to biomechanics. Biot was the first to formulate the basic equations governing the process of coupled flow and deformation in porous media. Depending on the nature of loading vis‐à‐vis the characteristics of the media, different formulations (fully dynamic, partly dynamic, quasi‐static) are possible. In this study, analytical solutions are developed for the response of saturated and nearly saturated porous media under plane strain condition. The solutions for different formulations are developed in terms of non‐dimensional parameters. The response is studied for various conditions and the regions of validity for various formulations are identified in a parametric space. An assessment of the needed formulation for few important problems is also presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
An analytical solution is developed in this paper to investigate the dynamic response of a large‐diameter end‐bearing pipe pile subjected to torsional loading in viscoelastic saturated soil. The wave propagation in saturated soil and pile are simulated by Biot's two‐phased linear theory and one‐dimensional elastic theory, respectively. The dynamic equilibrium equations of the outer soil, inner soil, and pile are established. The solutions for the outer and inner soils in frequency domain are obtained by Laplace transform technique and the separation of variables method. Then, the dynamic response of the pile is obtained on the basis of the perfect contacts between the pile and the outer soil as well as the inner soil. The results in this paper are compared with that of a solid pile in elastic saturated soil to verify the validity of the solution. Furthermore, the solution in this paper is compared with the classic plane strain solution to verify the solution further and check the accuracy of the plane strain solution. Numerical results are presented to analyze the vibration characteristics and illustrate the effect of the soil parameters and the geometry size of the pile on the complex impedance and velocity admittance of the pile head. Finally, the displacement of the soil at different depth and frequency is analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
王滢  王海萍  高盟 《岩土力学》2022,43(11):3185-3197
在以往关于圆柱形衬砌隧道的瞬态动力响应中,衬砌周围土体大多假定为弹性介质或饱和介质。然而,自然界中的土体大多为非饱和介质。考虑土体与衬砌结构的动力相互作用及动荷载引起的附加质量密度的影响,研究了瞬态荷载作用下非饱和土中无限长深埋圆柱形衬砌隧道的动力响应。基于多孔介质混合物理论和连续介质力学理论,建立了非饱和土中圆柱形衬砌隧道受到瞬态荷载作用时衬砌及周围土体的控制方程,利用Durbin数值反演法得到了衬砌及土体在时间域的动力响应。数值分析了饱和度对瞬态荷载下径向位移、径向应力、环向应力和孔隙水压力的影响。结果表明:饱和度对衬砌及周围土体的瞬态响应影响显著;饱和度对径向位移沿径向的衰减影响较小,对环向应力和孔隙压力沿径向的衰减影响较大。  相似文献   

13.
This paper presents an analytical solution for the lateral dynamic response of a pipe pile in a saturated soil layer. The wave propagations in the saturated soil and the pipe pile are simulated by Biot's three‐dimensional poroelastic theory and one‐dimensional elastic theory, respectively. The governing equations of soil are solved directly without introducing potential functions. The displacement response and dynamic impedances of the pipe pile are obtained based on the continuous conditions between the pipe pile and both the outer and inner soil. A comparison with an existing solution is performed to verify the proposed solution. Selected numerical results for the lateral dynamic responses and impedances of the pipe pile are presented to reveal the lateral vibration characteristics of the pile‐soil system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The purpose of this paper is to examine the importance of different possible simplifying approximations when performing numerical simulations of fluid‐filled porous media subjected to dynamic loading. In particular, the relative importance of the various acceleration terms for both the solid and the fluid, especially the convective contribution, is assessed. The porous medium is modelled as a binary mixture of a solid phase, in the sense of a porous skeleton, and a fluid phase that represents both liquid and air in the pores. The solid particles are assumed to be intrinsically incompressible, whereas the fluid is assigned a finite intrinsic compressibility. Finite element (FE) simulations are carried out while assuming material properties and loading conditions representative for a road structure. The results show that, for the range of the material data used in the simulations, omitting the relative acceleration gives differences in the solution of the seepage velocity field, whereas omitting only the convective term does not lead to significant differences. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A finite element algorithm for frictionless contact problems in a two‐phase saturated porous medium, considering finite deformation and inertia effects, has been formulated and implemented in a finite element programme. The mechanical behaviour of the saturated porous medium is predicted using mixture theory, which models the dynamic advection of fluids through a fully saturated porous solid matrix. The resulting mixed formulation predicts all field variables including the solid displacement, pore fluid pressure and Darcy velocity of the pore fluid. The contact constraints arising from the requirement for continuity of the contact traction, as well as the fluid flow across the contact interface, are enforced using a penalty approach that is regularised with an augmented Lagrangian method. The contact formulation is based on a mortar segment‐to‐segment scheme that allows the interpolation functions of the contact elements to be of order N. The main thrust of this paper is therefore how to deal with contact interfaces in problems that involve both dynamics and consolidation and possibly large deformations of porous media. The numerical algorithm is first verified using several illustrative examples. This algorithm is then employed to solve a pipe‐seabed interaction problem, involving large deformations and dynamic effects, and the results of the analysis are also compared with those obtained using a node‐to‐segment contact algorithm. The results of this study indicate that the proposed method is able to solve the highly nonlinear problem of dynamic soil–structure interaction when coupled with pore water pressures and Darcy velocity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
It is well known that the Babuska–Brezzi stability criterion or the Zienkiewicz–Taylor patch test precludes the use of the finite elements with the same low order of interpolation for displacement and pore pressure in the nearly incompressible and undrained cases, unless some stabilization techniques are introduced for dynamic analysis of saturated porous medium where coupling occurs between the displacement of solid skeleton and pore pressure. The numerical manifold method (NMM), where the interpolation of displacement and pressure can be determined independently in an element for the solution of up formulation, is derived based on triangular mesh for the requirement of high accurate calculations from practical applications in the dynamic analysis of saturated porous materials. The matrices of equilibrium equations for the second‐order displacement and the first‐order pressure manifold method are given in detail for program coding. By close comparison with widely used finite element method, the NMM presents good stability for the coupling problems, particularly in the nearly incompressible and undrained cases. Numerical examples are given to illustrate the validity and stability of the manifold element developed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
This work presents analytical solutions to compute the vertical stresses for a cross‐anisotropic half‐space due to various loading types by batter piles. The loading types are an embedded point load for an end‐bearing pile, uniform skin friction, and linear variation of skin friction for a friction pile. The cross‐anisotropic planes are parallel to the horizontal ground surface. The proposed solutions can be obtained by utilizing Wang and Liao's solutions for a horizontal and vertical point load acting in the interior of a cross‐anisotropic medium. The derived cross‐anisotropic solutions using a limiting approach are in perfect agreement with the isotropic solutions of Ramiah and Chickanagappa with the consideration of pile inclination. Additionally, the present solutions are identical to the cross‐anisotropic solutions by Wang for the batter angle equals to 0. The influential factors in yielded solutions include the type and degree of geomaterial anisotropy, pile inclination, and distinct loading types. An example is illustrated to clarify the effect of aforementioned factors on the vertical stresses. The parametric results reveal that the stresses considering the geomaterial anisotropy and pile batter differ from those of previous isotropic and cross‐anisotropic solutions. Hence, it is imperative to take the pile inclination into account when piles are required to transmit both the axial and lateral loads in the cross‐anisotropic media. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an analytical layer element solution to axisymmetric thermal consolidation of multilayered porous thermoelastic media containing a deep buried heat source. By applying the Laplace–Hankel transform to the state variables involved in the basic governing equations of porous thermoelasticity, the analytical layer elements that describe the relationship between the transformed generalized stresses and displacements of a finite layer and a half‐space are derived. The global stiffness matrix equation is obtained by assembling the interrelated layer elements, and the real solutions in the physical domain are achieved by numerical inversion of the Laplace–Hankel transform after obtaining the solutions in the transformed domain. Finally, numerical calculations are performed to demonstrate the accuracy of this method and to investigate the influence of heat source's types, layering, and the porous thermoelastic material parameters on thermal consolidation behavior. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
20.
This article derives the closed‐form solutions for estimating the vertical surface displacements of cross‐anisotropic media due to various loading types of batter piles. The loading types include an embedded point load for an end‐bearing pile, uniform skin friction, and linear variation of skin friction for a friction pile. The planes of cross‐anisotropy are assumed to be parallel to the horizontal ground surface. The proposed solutions are never mentioned in literature and can be developed from Wang and Liao's solutions for a horizontal and vertical point load embedded in the cross‐anisotropic half‐space. The present solutions are identical with Wang's solutions when batter angle equals to 0°. In addition, the solutions indicate that the surface displacements in cross‐anisotropic media are influenced by the type and degree of material anisotropy, angle of inclination, and loading types. An illustrative example is given at the end of this article to investigate the effect of the type and degree of soil anisotropy (E/E′, G′/E′, and ν/ν′), pile inclination (α), and different loading types (a point load, a uniform skin friction, and a linear variation of skin friction) on vertical surface displacements. Results show that the displacements accounted for pile batter are quite different from those estimated from plumb piles, both driven in cross‐anisotropic media. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号