首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An examination has been made of the behaviour of a finite layer of elastic material of constant Poisson's ratio, whose Young's modulus increases linearly with depth, and which rests on a rough rigid base. Values of surface settlement at the corner of a rectangular area of uniform loading are presented for values of Poisson's ratio of \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{1}{2} $\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}$ \frac{1}{3} $\end{document} and 0, and for wide ranges of degree of inhomogeneity and loading breadth to depth ratio.  相似文献   

2.
Analytical solutions for wave velocities and wave vectors are yielded for a continuously inhomogeneous cross‐anisotropic medium, in which Young's moduli (E, E′) and shear modulus (G′) varied exponentially as depth increased. However, for the rest moduli in cross‐anisotropic materials, ν and ν′ remained constant regardless of depth. We assume that cross‐anisotropy planes are parallel to the horizontal surface. The generalized Hooke's law, strain–displacement relationships, and equilibrium equations are integrated to constitute governing equations. In these equations, displacement components are fundamental variables and, hence, the solutions of three quasi‐wave velocities, VP, VSV, and VSH, and the wave vectors, $\mathop{\mathop{l}\limits^{\rightharpoonup}}\nolimits_{P}$ $\mathop{\mathop{l}\limits^{\rightharpoonup}}\nolimits_{\mathit{SV}}$, and $\mathop{\mathop{l}\limits^{\rightharpoonup}}\nolimits_{{\mathit{SH}}}$, can be generated for the inhomogeneous cross‐anisotropic media. The proposed solutions and those obtained by Daley and Hron, and Levin correlate well with each other when the inhomogeneity parameter, k, is 0. Additionally, parametric study results indicate that the magnitudes and directions of wave velocity are markedly affected by (1) the inhomogeneous parameter, k; (2) the type and degree of geomaterial anisotropy (E/E′, G′/E′, and ν/ν′); and (3) the phase angle, θ. Consequently, one must consider the influence of inhomogeneous characteristic when investigating the behaviors of wave propagation in a cross‐anisotropic medium. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The purpose of this paper is to present a parameter identification method to determine the force of a blast and the elastic modulus of the ground using the measurements of a dynamic elastic wave, the adjoint equation method of optimal control theory, and the finite element method. Before the excavation of rocky ground, it is important to estimate the ground properties. In this paper, the elastic modulus is determined as the performance function is minimized using a technique based on the first‐order adjoint method. The performance function is a square sum of the discrepancies between the computed and the observed values of the velocities. After the determination of the magnitude of the blasting force, we can determine the elastic modulus of the rock. As the basic equation to calculate the velocities of dynamic elastic body, elastic equilibrium equations with linear viscosity are employed. The adjoint equation method has been utilized in order to calculate the gradient of the performance function with respect to the parameters. The gradient of the performance function is calculated using the first‐order adjoint equation. The weighted gradient method is applied for minimization. In order to solve the state equations in space and time, the finite element method and the Newmark $\frac{1}{4}$ method are used. In this paper, we tested the practical application of our proposed method for determination of the elastic modulus of rock at the Ikawa tunnel located in the Tokushima prefecture, Japan. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
A set of thermodynamic models is presented that, for the first time, allows partial melting equilibria to be calculated for metabasic rocks. The models consist of new activity–composition relations combined with end‐member thermodynamic properties from the Holland & Powell dataset, version 6. They allow for forward modelling in the system NaO–CaO–KO–FeO–MgO–AlO–SiO–HO–TiO–FeO. In particular, new activity–composition relations are presented for silicate melt of broadly trondhjemitic–tonalitic composition, and for augitic clinopyroxene with Si–Al mixing on the tetrahedral sites, while existing activity–composition relations for hornblende are extended to include KO and TiO. Calibration of the activity–composition relations was carried out with the aim of reproducing major experimental phase‐in/phase‐out boundaries that define the amphibolite–granulite transition, across a range of bulk compositions, at ≤13 kbar.  相似文献   

5.
This study focuses on non‐coaxial flow behavior of cohesionless soil undergoing cyclic rotational shear, with a special interest in the effects of particle‐scale characteristics. To this end, we perform a series of 2D discrete element simulations with various particle shapes, inter‐particle coefficient of friction, initial density, and stress ratios. The validity and efficacy of the numerical model is established by systematically comparing numerical simulation results with existing laboratory testing results. Such comparison shows that the numerical simulations are capable of capturing mechanical behavior observed in laboratory testing under rotational shear. We further demonstrate and quantify a strong yet simple relationship between the deviatoric part of the normalized strain increment and the non‐coaxial angle, denoted by and ψ, respectively. This quantitative correlation between ψ and is independent of applied stress ratio, initial and current void ratio, and the number of cycles applied, but dependent on the principal stress orientation and particle‐scale characteristics. At the same , specimens with higher inter‐particle friction angle or smaller particle aspect ratio show greater non‐coaxial angles. A simple model is able to fit this ψ‐ relationship well, which provides a useful relationship that can be exploited in developing constitutive models for rotational shearing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The Mogok metamorphic belt of Palaeogene age, which records subduction‐ and collision‐related events between the Indian and Eurasian plates, lies along the western margin of the Shan plateau in central Myanmar and continues northwards to the eastern Himalayan syntaxis. Reaction textures of clinohumite‐ and scapolite‐bearing assemblages in Mogok granulite facies metacarbonate rocks provide insights into the drastic change in fluid composition during exhumation of the collision zone. Characteristic high‐grade assemblages of marble and calcsilicate rock are clinohumite+forsterite+spinel+phlogopite+pargasite/edenite+calcite+dolomite, and scapolite+diopside+anorthite+quartz+calcite respectively. Calculated petrogenetic grids in CaO–MgO–Al2O3–SiO2–H2O–CO2 and subsets of this system were employed to deduce the pressure–temperature–fluid evolution of the clinohumite‐ and scapolite‐bearing assemblages. These assemblages suggest higher temperature (>780–810°C) and [=CO2/(CO2+H2O) >0.17–0.60] values in the metamorphic fluid for the peak granulite facies stage, assuming a pressure of 0.8 GPa. Calcite grains commonly show exsolution textures with dolomite particles, and their reintegrated compositions yield temperatures of 720–880°C. Retrograde reactions are mainly characterized by a reaction zone consisting of a dolomite layer and a symplectitic aggregate of tremolite and dolomite grown between clinohumite and calcite in marble, and a replacement texture of scapolite by clinozoisite in calcsilicate rock. These textures indicate that the retrograde reactions developed under lower temperature (<620°C) and (<0.08–0.16) conditions, assuming a pressure of 0.5 GPa. The metacarbonate rocks share metamorphic temperatures similar to the Mogok paragneiss at the peak granulite facies stage. The values of the metacarbonate rock at peak metamorphic stage are, however, distinctly higher than those previously deduced from carbonate mineral‐free paragneiss. Primary clinohumite, phlogopite and pargasite/edenite in marble have F‐rich compositions, and scapolite in calcsilicate rock contains Cl, suggesting a contrast in the halogen compositions of the metamorphic fluids between these two lithologies. The metamorphic fluid compositions were probably buffered within each lithology, and the effective migration of metamorphic fluid, which would have extensively changed the fluid compositions, did not occur during the prograde granulite facies stage throughout the Mogok metamorphic belt. The lower conditions of the Mogok metacarbonate rocks during the retrograde stage distinctly contrast with higher conditions recorded in metacarbonate rocks from other metamorphic belts of granulite facies. The characteristic low conditions were probably due to far‐ranging infiltration of H2O‐dominant fluid throughout the middle segment of the Mogok metamorphic belt under low‐amphibolite facies conditions during the exhumation and hydration stage.  相似文献   

7.
The equivalent Mohr–Coulomb (M‐C) friction angle ? (J. Geotech. Eng. 1990; 116 (6):986–999) of the extended Matsuoka–Nakai (E‐M‐N) criterion has been examined under all possible stress paths. It is shown that ? depends only on the ratio of cohesion to confining stress c/σ and the frictional angle ?, where ? is the friction angle measured in triaxial compression (or extension) to which the E‐M‐N surface is fitted. It is also shown that ? is independent of c, when σ=0 and of σ when c=0, with the former representing an upper bound and the latter a lower bound of ? for any particular stress path. The closest point projection method has also been implemented successfully with the E‐M‐N criterion, and plane strain and axisymmetric element tests performed to verify some theoretical predictions relating to failure and post‐yielding behavior. Finally, a bearing capacity problem was analyzed using both E‐M‐N and M‐C, highlighting the conservative nature of M‐C for different friction angles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Dolomite [CaMg(CO3)2] forms in numerous geological settings, usually as a diagenetic replacement of limestone, and is an important component of petroleum reservoir rocks, rocks hosting base metal deposits and fresh water aquifers. Dolomite is a rhombohedral carbonate with a structure consisting of an ordered arrangement of alternating layers of Ca2+ and Mg2+ cations interspersed with anion layers normal to the c‐axis. Dolomite has symmetry, lower than the (CaCO3) symmetry of calcite primarily due to Ca–Mg ordering. High‐magnesium calcite also has symmetry and differs from dolomite in that Ca2+ and Mg2+ ions are not ordered. High‐magnesium calcite with near‐dolomite stoichiometry (≈50 mol% MgCO3) has been observed both in nature and in laboratory products and is referred to in the literature as protodolomite or very high‐magnesium calcite. Many dolomites display some degree of cation disorder (Ca2+ on Mg2+ sites and vice versa), which is detectable using transmission electron microscopy and X‐ray diffractometry. Laboratory syntheses at high temperature and pressure, as well as studies of natural dolomites show that factors affecting dolomite ordering, stoichiometry, nucleation and growth include temperature, alkalinity, pH, concentration of Mg and Ca, Mg to Ca ratio, fluid to rock ratio, mineralogy of the carbonate being replaced, and surface area available for nucleation. In spite of numerous attempts, dolomite has not been synthesized in the laboratory under near‐surface conditions. Examination of published X‐ray diffraction data demonstrates that assertions of dolomite synthesis in the laboratory under near‐ambient conditions by microbial mediation are unsubstantiated. These laboratory products show no evidence of cation ordering and appear to be very high‐magnesium calcite. Elevated‐temperature and elevated‐pressure experiments demonstrate that dolomite nucleation and growth always are preceded by very high‐magnesium calcite formation. It remains to be demonstrated whether microbial‐mediated growth of very high‐magnesium calcite in nature provides a precursor to dolomite nucleation and growth analogous to reaction paths in high‐temperature experiments.  相似文献   

9.
Building Damage Extraction from Post-earthquake Airborne LiDAR Data   总被引:1,自引:0,他引:1  
Building collapse is a significant cause of earthquake-related casualties; therefore, the rapid assessment of buildings damage is important for emergency management and rescue. Airborne light detection and ranging(Li DAR) can acquire point cloud data in combination with height values, which in turn provides detailed information on building damage. However, the most previous approaches have used optical images and LiDAR data, or pre- and post-earthquake LiDAR data, to derive building damage information. This study applied surface normal algorithms to extract the degree of building damage. In this method, the angle between the surface normal and zenith(θ) is used to identify damaged parts of a building, while the ratio of the standard deviation to the mean absolute deviation(σ/δ) of θ is used to obtain the degree of building damage. Quantitative analysis of 85 individual buildings with different roof types(i.e., flat top or pitched roofs) was conducted, and the results confirm that post-earthquake single LiDAR data are not affected by roof shape. Furthermore, the results confirm that θ is correlated to building damage, and that σ/δ represents an effective index to identify the degree of building damage.  相似文献   

10.
Improved, microfabric‐inspired rotational hardening rules for the plastic potential and bounding surfaces associated with the generalized bounding surface model for cohesive soils are presented. These hardening rules include 2 new functions, fη and , that improve the simulation of anisotropically consolidated cohesive soils. Three model parameters are associated with the improved hardening rules. A detailed procedure for obtaining suitable values for these parameters is presented. The first 2 parameters affect the simulation of constant stress ratio loading where, because of the presence of fη, the third parameter is inactive. The second new function, , accelerates the rotation of the plastic potential and bounding surfaces during shearing, which is particularly important for overconsolidated soils tested in extension. This paper also describes the proper manner in which to define the inherent anisotropy. This seemingly straightforward test has rarely been discussed in sufficient detail.  相似文献   

11.
When graphite is present, carbon‐bearing species dissolve in the C‐O‐H fluid and lower the activity of water (). Accordingly, metamorphic reactions that involve water, namely dehydration and partial melting reactions, adjust their P–T positions to accommodate the change of . In this modelling study, pseudosections are calculated for graphite‐bearing systems that are either closed or that progressively lose fluid and/or melt. The diagrams incorporate a new model of CO2 solubility in felsic melts that we derived to be compatible with a recently published melt model. As the result of the lowered in the carbon‐bearing systems, the temperature displacements of the solidus can be as large as 50 °C at low pressures in cordierite‐bearing zones (<4 kbar), but are smaller than 15 °C at mid‐pressure P–T conditions (4–9 kbar). In the supersolidus region, the phase relations among silicate minerals + melt are very close to those in carbon‐free systems. The fluid CO2 content increases as temperature increases in the supersolidus assemblages. The CO2‐rich fluid can be stable in granulite facies conditions in an oxidized system. In graphitic systems, melt and/or cordierite dominate the CO2 budget of high‐grade rocks. During cooling, the fluid that exsolves from such crystalizing melt is CO2‐rich. In addition to the phase relations, the pseudosections presented in this study enable researchers to quantitatively investigate the evolution of phase modes, including graphite, along specific metamorphic P–T paths. At low pressures in the cordierite stability field, graphite is predicted to precipitate as the pressure increases or temperature decreases in the subsolidus assemblages, or temperature increases in the region of melt + fluid coexistence. On the other hand, the graphite abundance remains nearly constant along the mid‐pressure P–T series, but the graphite mode in the supersolidus region may increase due to residual enrichment if the melt is extracted. The modelling results show that metamorphic processes in closed systems lead to only small changes in graphite mode (a few tenths of a per cent). This strongly suggests that open‐system behaviours are required for large amounts of graphite deposition, including fluid infiltration and mixing or residual enrichment processes in high‐grade rocks. In addition to P–T pseudosections, P/T–XO diagrams (XO = O/(H + O) in the fluid) illustrate the thermodynamic features of internal buffering from another perspective, and explore the dependence of phase relations on the externally imposed redox state. If the system is equilibrated with CO2 or CH4‐rich infiltrating fluid, the temperature displacements of metamorphic reactions can be larger than 50 °C, compared with carbon‐free systems.  相似文献   

12.
Ridge subduction is an inescapable plate tectonic process, but has only been documented in modern circum‐Pacific environments and not yet been recognized from suture zones associated with supercontinent assembly, likely because its imprint is obliterated by later collision. The formation of the Pan‐African Damara Belt of central Namibia involved northward subduction of the Khomas Sea underneath the Congo Craton, prior to final suturing of the Congo and Kalahari Cratons. The accretionary history of the Belt is preserved in the Southern and Southern Marginal Zones, which consist of turbiditic metasedimentary and intercalcated mafic rocks with MORB affinity. Two localities in the Kuiseb and Gaub canyons reveal that aluminous metapelites contain a fabric‐defining assemblage of fine‐grained muscovite, chlorite, biotite, quartz and graphite that is overprinted by randomly oriented porphyroblasts and poikiloblasts of garnet, staurolite, kyanite and biotite. Associated metamafic rocks consist of hornblende, chlorite, epidote, rutile and quartz, with actinolite cores preserved in amphibole porphyroblasts. Metamorphic conditions for the fabric‐defining assemblage are estimated at ~10 kbar and 540–560 C, whereas peak metamorphism likely occurred at 10–10.5 kbar and 600 C. Consequently, these rocks preserve a two‐stage prograde metamorphic history, where initial tectonic burial was followed by relatively rapid, near‐isobaric heating without attendant deformation to peak metamorphic conditions. We propose that initial burial occurred through subduction and underplating to the accretionary prism, before ridge subduction and opening of a slab window heated the rocks to peak metamorphic conditions. The exceptional preservation of the tectono‐thermal imprint of the accretionary orogenic stage is due to the relatively soft, largely aborted collision that characterized the Damara orogeny, which can be attributed to the confined extent of the Khomas Sea.  相似文献   

13.
An earlier publication1 considered the properties of circular conical failure surfaces whose axes coincide with the space diagonal in principal stress space. The present work uses a similar approach to analyse conical surfaces that are offset from the space diagonal. It is shown that cones fitted to the Mohr–Coulomb surface in triaxial compression contain a potential singularity. The occurrence and location of the singularity depends on the Mohr–Coulomb friction angle to which the surface is fitted in triaxial extension. It is shown that for a cone fitted to the same friction angle in both triaxial extension and compression, singular conditions occur when that angle reaches \documentclass{article}\pagestyle{empty}\begin{document}$ \sin ^{ - 1} \left({\sqrt 7 - 2} \right)\left({ = 40.22^\circ } \right) $\end{document}. Even cones fitted to smaller friction angles give significant overestimations of material strength for certain stress paths.  相似文献   

14.
Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as:
$ D_{{{\text{H}}_{ 2} {\text{O}}_{\text{t}} }} = D_{{{\text{H}}_{ 2} {\text{O}}_{\text{m}} }} \left( {1 - \frac{0.5 - X}{{\sqrt {[4\exp (3110/T - 1.876) - 1](X - X^{2} ) + 0.25} }}} \right), $
$ {\text{with}}\;D_{{{\text{H}}_{ 2} {\text{O}}_{\text{m}} }} = \exp \left[ { - 1 2. 7 8 9- \frac{13939}{T} - 1229.6\frac{P}{T} + ( - 27.867 + \frac{60559}{T})X} \right], $
where D is in m2 s?1, T is the temperature in K, P is the pressure in GPa, and X is the mole fraction of water and calculated as = (C/18.015)/(C/18.015 + (100 ? C)/33.14), where C is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000-ad eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H2O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.
  相似文献   

15.
Coulomb土压力理论的两种解法   总被引:2,自引:0,他引:2  
李兴高  刘维宁 《岩土力学》2006,27(6):981-985
采用极限平衡变分法和Culmann分析方法,对土压力问题进行了研究。在极限平衡变分法中,以滑动体静力平衡的2个力的平衡方程为基础,引入Lagrange乘子,将以变分学观点来描述的主动土压力和被动土压力问题,转化为确定含有2个函数自变量的泛函极值问题。依据泛函取极值时,必须满足Euler方程,得出了主动土压力和被动土压力取极值时墙后土体沿平面滑动破坏的结论。在Culmann分析方法中,沿用了Coulomb土压力理论关于平面滑动破坏的假定,而在推导土压力计算公式的过程中,仅利用了滑动体沿某一特定方向的一个力的平衡方程。与目前通行的Coulomb土压力公式的证明过程相比,Culmann分析方法更为简洁。  相似文献   

16.
At the mesoscopic scale, concrete can be considered as a mix of coarse aggregates with a mortar paste matrix. In this paper, we investigate numerically the influence of aggregates arrangements and loading rate on the tensile response of concrete. Each coarse aggregate is assumed to be circular with six different radiuses following the aggregates size distribution of real gravel. Rate‐independent cohesive elements are used to model failure within the mesostructure. Our results show that the spatial distribution of heterogeneities does not influence the peak strength, while it changes the post‐peak macroscopic response. This implies that our specimen size is large enough for strength computation but that larger mesostructures should be considered to obtain fully reliable toughness predictions. Although the cohesive approach is able to capture the transition from one macro‐crack in quasi‐static to multiple micro‐cracks in fast dynamics, which increases the dissipated fracture energy, our results suggest that the full extent of the high‐rate strengthening of concrete observed experimentally for loading rates greater than 1/s cannot be captured with rate independent constitutive laws.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The failure mechanisms induced by a wedge‐shaped tool indenting normally against a rock surface are investigated using the discrete element method (DEM). The main focus of this study is to explore the conditions controlling the transition from a ductile to a brittle mode of failure. The development of a damage zone and the initiation and propagation of a brittle fracture is well captured by the DEM simulations. The numerical results support the conjecture that initiation of brittle fractures is governed by a scaled flaw length Λ, a ratio between the flaw size λ and the characteristic length (where KIc is the toughness and σc the uniaxial compressive strength). The size of the damage zone agrees well with analytical predictions based on the cavity expansion model. The effects of a far‐field confining stress and the existence of a relief surface near the indenter are also examined.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Bagnold's sediment transport equation has proved to be important in studying tidal marine environments. This paper discusses three problems concerning Bagnold's transport equation and its practical application:
  • 1 Bagnold's suspended-load transport equation and the total-load transport equation with are incorrect from the viewpoint of energy conservation. In these equations the energy loss due to bedload transport has been counted twice. The correct form should be for suspended-load transport and for total-load transport with
  • 2 The commonly used Bagnold's transport coefficient K varies as a non-linear function of the dimensionless excess shear stress, which can be represented best by the power law , where the coefficient A and exponent B depend on sediment grain size D. The empirical values of A and B for fine to medium grained sands are determined using Guy et al.'s (1966) flume-experiment data.
  • 3 The sediment transport rates predicted from this equation are compared with bedform migration measurements in the flume and the field. This comparison shows that the sediment transport rates measured from bedform migrations are higher than the predicted bedload transport rates, but comparable to the calculated total-load (bedload plus intermittent suspended-load) transport rates. This indicates that bedform migration involves both bedload and intermittent suspended-load transport. As a logical conclusion, bedform migration data should be compared with Bagnold's total-load transport equation rather than with his bedload transport equation. In this respect the term ‘bed material’ might be more appropriate than the term ‘bedload’ for estimating sediment transport rate from bedform migration data.
The sediment transport rates predicted from this modified Bagnold transport equation are in good agreement with field measurements of bedform migration rates in four individual tidal marine environments, which cover a wide range of sediment grain size, flow velocity and bedform conditions (ranging from small ripples, megaripples to sandwaves).  相似文献   

19.
A devastating earthquake of magnitude 7 struck very close and almost beneath Port au Prince the capital of Haiti, the western half of the island of Hispaniola, early in the morning of Tuesday, 12 January 2010 ( Fig. 1 ). While in absolute terms this was by no means the largest earthquake recorded this year globally, the death toll is around 230 000, making it one of the world's worst earthquakes in terms of casualties in recorded history, with almost uncountable economic loss to one of the poorest countries in the world.
Figure 1 Open in figure viewer PowerPoint Intensity map of 2010 Haiti earthquake (Image: USGS).  相似文献   

20.
At Bangriposi, variable stages in replacement of staurolite by chloritoid – Na–K–Ca mica shimmer aggregates in muscovite schists provides insight into the complex interplay between fluid flow, mass transfer, and dissolution–precipitation during pseudomorph growth. Idioblastic chloritoid growing into mica caps without causing visible deformation, and monomineralic chloritoid veins (up to 300 μm wide) within shimmer aggregates replacing staurolite attest to chloritoid nucleation in fluid‐filled conduits along staurolite grain boundaries and crystallographic planes. The growth of shimmer aggregates initiated along staurolite margins, and advanced inwards into decomposing staurolite along networks of crystallographically controlled fluid‐filled conduits. Coalescence among alteration zones adjacent to channel fills led to dismemberment and the eventual demise of staurolite. Mass balance calculation within a volume‐fixed, silica‐conserved reference frame indicate the shimmer aggregates grew via precipitation from fluids in response to mass transport that led to the addition of H2O, K2O, Na2O and CaO in the reaction zone, and Al2O3 was transported outward from the inward‐retreating margin of decomposing staurolite. This aided precipitation of chloritoid in veins and in the outer collars, and as disseminated grains in the shimmer aggregates at mid‐crustal condition (~520 ± 20 °C, 5.5 ± 2.0 kbar). Computation using one‐dimensional transport equation suggests that staurolite decomposition involved advection dominating over diffusive transport; the permeation of externally derived H2O caused flattening of chemical potential gradients in H2O and aqueous species, for example, and , computed using the Gibbs method. This suggests that staurolite decomposition was promoted by the infiltration of a large volume of H2O that flattened existing chemical potential gradients. In the initial stages of replacement, chloritoid super‐saturation in fluid caused preferential nucleation and growth of chloritoid at staurolite grain boundaries and in crystallographic planes. As reaction progressed, further chloritoid nucleation was halted, but chloritoid continued to grow as the 3‐mica aggregates continued to replace the remaining staurolite in situ, while the chloritoid‐compatible elements were transported in the water‐rich phase facilitating continued growth of the existing chloritoid grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号