首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heavy rainfall event during the period from 30th of March to 2nd of April 2009 has been studied using upper air and surface data as well as NOAA HYSPLIT model. This observational study attempts to determine factors responsible for the occurrence of heavy rainfall over Iran induced by Mediterranean cyclone, a western severe sub-tropical storm that made rainfall on most regions of the country. On the surface chart, cyclones, anticyclones and weather fronts were identified. The positions of the cold and warm fronts, which extended from a two-core low pressure center, were quite in good agreements with directions of winds i.e., westerly, southerly and easterly flows as well as the regions of precipitation. The heavy rain event occurred due to a Mediterranean cyclone’s activity over the study area, while other conditions were also responsible for this event such as an unstable atmosphere condition with abundant low-level moisture, which the warm and moist air parcels were brought by the southwesterly low-level jet into the country from Persian Gulf, Oman Sea, Indian Ocean and Caspian Sea at lower levels as well as Mediterranean Sea, Red Sea and Persian Gulf at upper levels over the examined period. A strong low-level convergence zone was observed along the wind-shift line between the southwesterly flow because of the low-level jet and the northeasterly flow due to the Russian high pressure. The amount of precipitable water varied between 20 and 24 kg m?2, surface moisture convergence exceeded 2.5 g kg?1 s?1 and the highest CAPE value in the sounding profiles was observed in Birjand site with 921 J kg?1 during the study period. The HYSPLIT model outputs confirmed the observed synoptic features for the examined system over the country.  相似文献   

2.
Regional Atmospheric Modeling System (RAMS) was applied to the study of the effect of the topographical altitude of the Tibetan Plateau (TP) on a severe drought event which took place in eastern China from November 2008 to January 2009. Two simulations of this drought event were conducted: a control simulation (CNTRL run) using original model settings and a sensitive simulation (TOPO run), where no change other than to reduce the TP topography by 50 %. The results show that the CNTRL simulation validates RAMS by reproducing this drought event fairly accurately. However, as part of the TOPO simulation, the total heat flux showed a decrease over most parts of the TP, latent heat flux underwent a significant increase over the southeastern TP, contrary to sensible heat, and a universal decrease over eastern China; this led to an increase in precipitation over the southeastern TP and a decrease in precipitation over eastern China. The decrease of total heat flux over the TP is collocated with an anomalous anticyclonic circulation from the TP to the coasts of southeastern China. Changes in atmospheric circulation and low-level water vapor transport pathways were consistent with changes in precipitation. In general, reducing the topographical altitude of the TP worsens drought in eastern China and moreover causes a significant decrease in precipitation over southern China.  相似文献   

3.
Simulations of the severe precipitation event that occurred in the warm sector over southern China on 08 May 2014 are conducted using the Advanced Weather Research and Forecasting (WRF-ARWv3.5.1) model to investigate the roles of microphysical latent heating and surface heat fluxes during the severe precipitation processes. At first, observations from surface rain gauges and ground-based weather radars are used to evaluate the model outputs. Results show that the spatial distribution of 24-h accumulated precipitation is well reproduced, and the temporal and spatial distributions of the simulated radar reflectivity agree well with the observations. Then, several sensitive simulations are performed with the identical model configurations, except for different options in microphysical latent heating and surface heat fluxes. From the results, one of the significant findings is that the latent heating from warm rain microphysical processes heats the atmosphere in the initial phase of the precipitation and thus convective systems start by self-triggering and self-organizing, despite the fact that the environmental conditions are not favorable to the occurrence of precipitation event at the initial phase. In the case of the severe precipitation event over the warm sector, both warm and ice microphysical processes are active with the ice microphysics processes activated almost two hours later. According to the sensitive results, there is a very weak precipitation without heavy rainfall belt when microphysical latent heating is turned off. In terms of this precipitation event, the warm microphysics processes play significant roles on precipitation intensity, while the ice microphysics processes have effects on the spatial distribution of precipitation. Both surface sensible and latent heating have effects on the precipitation intensity and spatial distribution. By comparison, the surface sensible heating has a strong influence on the spatial distribution of precipitation, and the surface latent heating has only a slight impact on the precipitation intensity. The results indicate that microphysical latent heating might be an important factor for severe precipitation forecast in the warm sector over southern China. Surface sensible heating can have considerable influence on the precipitation spatial distribution and should not be neglected in the case of weak large-scale conditions with abundant water vapor in the warm sector.  相似文献   

4.
An unusual heavy coastal rainfall event (>231?mm?day?1) occurred during the period of 24?C25 June 1987 over the lowland (elevation less than 200?m) and coastal areas in northwest and central Taiwan. The Weather Research and Forecasting (WRF) model is used to investigate the role of synoptic forcing, orographic effects and the diurnal heating cycle on the generation of a prefrontal localized low-level convergence zone offshore leading to the observed coastal rainfall maximum. This case is well simulated by the control experiment initialized at 0000 UTC (0800 LST) 24 June 1987 using the European Centre for Medium-Range Weather Forecasts data. A model sensitivity test without Taiwan??s terrain fails to reproduce the observed coastal rainfall maximum. It is apparent that for this case, synoptic forcing by the Mei-Yu jet/front system is inadequate to initiate deep convection leading to the development of coastal heavy precipitation. The generation of the localized low-level convergence zone is closely related to the simulated strong winds with a large southwesterly wind component (or the barrier jet) along the northwestern coast as the surface front approaches. The development of the simulated barrier jet is due to a 50?C60% increase in the meridional pressure gradient as a result of orographic blocking. The diurnal heating cycle also impacts the strength of the simulated barrier jet over the northwestern Taiwan coast. The simulated barrier jet is stronger (~3?m?s?1) in the early morning than in the afternoon as orographic blocking is most significant when the surface air is the coldest. The representation of the terrain in the model impacts the simulated barrier jet and rainfall. With a coarse horizontal resolution (45?km), orographic blocking is less significant than the control run with a much weaker meridional wind component over the northwestern coast of Taiwan. The coarse resolution model fails to reproduce the observed rainband off the northwestern coast. Thus, to successfully simulate this type of event, high-resolution mesoscale models adequately depicting Taiwan??s terrain are required.  相似文献   

5.
The meteorological characteristics of the drought of 2005 in Amazonia, one of the most severe in the last 100 years were assessed using a suite of seven regional models obtained from the CLARIS LPB project. The models were forced with the ERA-Interim reanalyses as boundary conditions. We used a combination of rainfall and temperature observations and the low-level circulation and evaporation fields from the reanalyses to determine the climatic and meteorological characteristics of this particular drought. The models reproduce in some degree the observed annual cycle of precipitation and the geographical distribution of negative rainfall anomalies during the summer months of 2005. With respect to the evolution of rainfall during 2004–2006, some of the models were able to simulate the negative rainfall departures during early summer of 2005 (December 2004 to February 2005). The interannual variability of rainfall anomalies for both austral summer and fall over northern and southern Amazonia show a large spread among models, with some of them capable of reproducing the 2005 observed negative rainfall departures (four out of seven models in southern Amazonia during DJF). In comparison, all models simulated the observed southern Amazonia negative rainfall and positive air temperature anomalies during the El Nino-related drought in 1998. The spatial structure of the simulated rainfall and temperature anomalies in DJF and MAM 2005 shows biases that are different among models. While some models simulated the observed negative rainfall anomalies over parts of western and southern Amazonia during DJF, others simulated positive rainfall departures over central Amazonia. The simulated circulation patterns indicate a weaker northeasterly flow from the tropical North Atlantic into Amazonia, and reduced flows from southern Amazonia into the La Plata basin in DJF, which is consistent with observations. In general, we can say that in some degree the regional models are able to capture the response to the forcing from the tropical Atlantic during the drought of 2005 in Amazonia. Moreover, extreme climatic conditions in response to anomalous low-level circulation features are also well captured, since the boundary conditions come from reanalysis and the models are largely constrained by the information provided at the boundaries. The analysis of the 2005 drought suggests that when the forcing leading to extreme anomalous conditions is associated with both local and non-local mechanisms (soil moisture feedbacks and remote SST anomalies, respectively) the models are not fully capable of representing these feedbacks and hence, the associated anomalies. The reason may be a deficient reproduction of the land–atmosphere interactions.  相似文献   

6.
2003年8月“巴蜀夜雨”过程的模拟和分析研究   总被引:6,自引:0,他引:6  
卢萍  宇如聪  周天军 《气象学报》2008,66(3):371-380
结合中尺度数值预报模式AREM的数值试验和观测资料分析,对2003年8月川西地区的9次夜雨过程进行了模拟研究和综合分析.结果表明,在一定环流背景下,川西地区特殊地形引起的沿坡地的辐合上升运动和下垫面提供给低层大气的热通量所导致的大气层结不稳定,对川西夜雨的形成和发展有重要影响.白天,随着陆-气通量交换的增加,低层大气的温度和湿度逐步升高,并在午后达到极值.与此同时,低层偏南暖湿气流在盆地西部由于气旋性弯曲而形成的东北风在午后逐渐加强,这支气流在盆地西部被地形阻挡,产生爬升运动.辐合上升将低层高温高湿的大气向上输送,使得大气不稳定层结的厚度以及强度都增加;日落以后,低层大气的相对湿度随着气温的降低而增大,容易饱和而形成凝结,同时大气中积累了相当可观的对流有效位能,低层辐合抬升等因素容易触发不稳定能量释放,造成对流性夜雨天气.强烈的对流辐合运动需要周围大气的入流补偿,促使偏东风气流增强且向高空伸展,这令辐合抬升作用进一步增强.  相似文献   

7.
利用WRF-ARW中尺度区域数值模式耦合单层城市冠层模式(slab-UCM),采用ERA-interim 0.5°×0.5°再分析资料作为初始场和边界条件,对2016年6月5日郑州地区发生的一次强对流天气进行模拟,并通过改变下垫面的土地利用类型与地形高度数据设置敏感性试验,探究了城市化及郑州西北部山脉地形对对流性强降水过程的影响。结果表明:1)此次强降水过程主要受高层的低槽系统影响,前期的对流不稳定层结为对流触发提供了有利的热力条件;2)城市热岛效应能够改变下垫面的热力状况,有利于在城市地区激发更强的上升运动,使降水向城区集中;3)郑州西北侧山脉激发的重力波能够使郑州地区对流增强;4)山脉能够阻挡低层干空气向郑州地区输送,因此山脉高度的削减造成郑州地区低层相对湿度减小,使雨滴蒸发冷却增强,进而导致与降水相联系的冷池的增强,雨带移速加快,进一步导致累积降水的减少。  相似文献   

8.
Regional climate models, such as RegCM3, generally show large biases in the simulation of western North Pacific (WNP) summer monsoon (WNPSM). In this study, the authors improved the simulation of WNPSM by applying the convection suppression criterion based on the averaged relative humidity from cloud base to cloud top. The simulated rainfall and monsoon circulation are significantly improved. The suppressed convective heating associated with the decrease in convective rainfall simulates a low-level anomalous anticyclone to its north. The anomalous anticyclone reduces the intensity of low-level southwesterly flow and the wind speed at 10 m. The reduction in wind speed at 10 m decreases the evaporation at sea surface. The less supply of water vapor from underlying ocean in turn favors less convective rainfall. The overestimation of simulated convective percentages and the cold bias of 2 m air temperature are also reduced. The different effects of convection suppression criterion in stand-alone RegCM3 and corresponding regional air–sea coupled model are also discussed.  相似文献   

9.
Alpine and Mediterranean areas are undergoing a profound change in the typology and distribution of rainfall. In particular, there has been an increase in consecutive non-rainy days, and an escalation of extreme rainy events. The climatic characteristic of extreme precipitations over short-term intervals is an object of study in the watershed of Lake Maggiore, the second largest freshwater basin in Italy (located in the north-west of the country) and an important resource for tourism, fishing and commercial flower growing. The historical extreme rainfall series with high-resolution from 5 to 45 min and above: 1, 2, 3, 6, 12 and 24 h collected at different gauges located at representative sites in the watershed of Lake Maggiore, have been computed to perform regional frequency analysis of annual maxima precipitation based on the L-moments approach, and to produce growth curves for different return-period rainfall events. Because of different rainfall-generating mechanisms in the watershed of Lake Maggiore such as elevation, no single parent distribution could be found for the entire study area. This paper concerns an investigation designed to give a first view of the temporal change and evolution of annual maxima precipitation, focusing particularly on both heavy and extreme events recorded at time intervals ranging from few minutes to 24 h and also to create and develop an extreme storm precipitation database, starting from historical sub-daily precipitation series distributed over the territory. There have been two-part changes in extreme rainfall events occurrence in the last 23 years from 1987 to 2009. Little change is observed in 720 min and 24-h precipitations, but the change seen in 5, 10, 15, 20, 30, 45, 60, 120, 180 and 360 min events is significant. In fact, during the 2000s, growth curves have flattened and annual maxima have decreased.  相似文献   

10.
Rainfall amount in mid-summer(July and August)is much greater over eastern than western Sichuan,which are characterized by basin and plateau,respectively.It is shown that the interannual variations of extreme rainfall over these two regions are roughly independent,and they correspond to distinct anomalies of both large-scale circulation and sea surface temperature(SST).The enhanced extreme rainfall over western Sichuan is associated with a southward shift of the Asian westerly jet,while the enhanced extreme rainfall over eastern Sichuan is associated with an anticyclonic anomaly in the upper troposphere over China.At low levels,on the other hand,the enhanced extreme rainfall over western Sichuan is related to two components of wind anomalies,namely southwesterly over southwestern Sichuan and northeasterly over northeastern Sichuan,which favor more rainfall under the effects of the topography.Relatively speaking,the enhanced extreme rainfall over eastern Sichuan corresponds to the low-level southerly anomalies to the east of Sichuan,which curve into northeasterly anomalies over the basin when they encounter the mountains to the north of the basin.Therefore,it can be concluded that the topography in and around Sichuan plays a crucial role in inducing extreme rainfall both over western and eastern Sichuan.Finally,the enhanced extreme rainfall in western and eastern Sichuan is related to warmer SSTs in the Maritime Continent and cooler SSTs in the equatorial central Pacific,respectively.  相似文献   

11.
2017年6月22日-7月2日湖南出现了一次罕见的大范围持续暴雨、大暴雨过程,持续强降雨造成了重大人员伤亡和财产损失。本文利用地面常规探测资料、自动站资料和NCEP/NCAR再分析资料,对此次极端降雨过程的成因进行了分析。结果表明:(1)过程发生在单阻型稳定背景条件下,西太平洋副高较常年位置偏南,带状副高与北方冷涡对峙,导致了梅雨锋雨带在湖南摆动;(2)高低空急流加强了低层辐合高空辐散的动力作用,同时高能高湿激发了对流不稳定的产生,为大暴雨产生提供了动、热力条件;(3)水汽异常偏高,整层可降水量超过常年同期1-2个标准差,其大值区的演变与实际强降水区域对应较好;(4)湖南地形对降水有一定的增幅作用,地形坡度绝对值与降水量变化十分吻合,地形变化越剧烈降水强度越大,且在地形复杂的2个山峰之间区域通常对应着降水的峰值。  相似文献   

12.
【目的】分析滇西北横断山脉2020年5月24—27日持续性强降水天气过程特征和成因。【方法】利用ERA5再分析资料和怒江州气象观测站雨量数据,基于HYSPLIT模式及天气学诊断分析。【结果】(1)中高纬环流的调整使南支槽稳定在青藏高原南部,上游风速增大使中高层形成西风急流,低层西南气流辐合,93~98°E、26~28°N区域维持大于20 m·s-1的纬向风且扩大东移。(2)贡山站过程累积雨量历史排行第二,暴雨持续日数达历年最高,具有一定的极端性。最大小时雨量9.9 mm,长时间降水的维持是引起此次过程的重要条件。(3)过程期间大气低层强辐合、中高层强辐散,抽吸作用明显,降水强盛期前97~99°E区域低层强辐合中层强辐散中心与强降水落区相对应,中高层上升气流加强时期与降水集中时段对应较好,物理量的变化对降水趋势变化有指示意义。(4)低层水汽辐合强且向中高层输送,大于90%的相对湿度伸展至高层。水汽主要来源于孟加拉湾及阿拉伯海,部分水汽来自喇叭口地形作用及天气系统。【结论】加深对此类过程的了解和认识,为开展预报预警服务提供参考。  相似文献   

13.
Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land–atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant sensitivity responses are found over the karst regions, including pronounced warming and cooling effects on the near-surface atmosphere from barren and forested land cover, respectively; (3) the barren ground in the karst regions provides conditions favourable for convective development under certain conditions. Therefore, it is suggested that karst and non-karst landscapes should be distinguished, and their physical processes should be considered for future model development.  相似文献   

14.
Present-day (1979–2003) and future (2075–2099) simulations of mean and extreme rainfall and temperature are examined using data from the Meteorological Research Institute super-high-resolution atmospheric general circulation model. Analyses are performed over the 20-km model grid for (1) a main Caribbean basin, (2) sub-regional zones, and (3) specific Caribbean islands. Though the model’s topography underestimates heights over the eastern Caribbean, it captures well the present-day spatial and temporal variations of seasonal and annual climates. Temperature underestimations range from 0.1 °C to 2 °C with respect to the Japanese Reanalysis and the Climatic Research Unit datasets. The model also captures fairly well sub-regional scale variations in the rainfall climatology. End-of-century projections under the Intergovernmental Panel on Climate Change SRES A1B scenario indicate declines in rainfall amounts by 10–20 % for most of the Caribbean during the early (May–July) and late (August–October) rainy seasons relative to the 1979–2003 baselines. The early dry season (November–January) is also projected to get wetter in the far north and south Caribbean by approximately 10 %. The model also projects a warming of 2–3 °C over the Caribbean region. Analysis of future climate extremes indicate a 5–10 % decrease in the simple daily precipitation intensity but no significant change in the number of consecutive dry days for Cuba, Jamaica, southern Bahamas, and Haiti. There is also indication that the number of hot days and nights will significantly increase over the main Caribbean basin.  相似文献   

15.
张瑛  肖安  马力  王欢  马中元  周芳 《气象》2011,37(9):1060-1069
利用WRF模式与4个陆面过程的耦合,对2010年6月19—20日的暴雨过程进行了数值模拟,并分析陆面过程对暴雨强度和范围的敏感性。结果显示:WRF耦合4个陆面过程模拟的雨带和实况分布一致,均为东西向的雨带形状,且均预报出与实况资料相似的强降水中心。在无陆面方案情况下,强降水中心的位置、范围、强度等都发生明显变化。另外地表径流预报量和降水趋势表现一致,由于土壤含水量趋于饱和,多余的降水分配给地表径流,这种剧增的地表径流也是洪水暴涨、水位上升的重要原因。在较湿的土壤状况下,由于净辐射增长,有利于产生厚度更小的边界层高度以及更大的地表向上潜热通量,这也是导致本次降水过程异常增幅的一个重要原因。  相似文献   

16.
The rainfall from January to March in 2010 in East Asia is positive anomaly and the temporal evolution characteristics present the cycle of 20–40 days. In the present paper, the low-frequency circulations and its formation mechanism are analyzed. The results show that during the peak rainfall phase, the upstream of the rainfall regions is controlled by low-frequency cyclone, and the downstream is controlled by low-frequency anticyclone in the middle and low troposphere. In the upper troposphere, the westerly jet presents the oscillation characteristics between the north and the south. Both the integrated (from the surface to 100 hPa) diabatic heating and the horizontal vorticity advection contribute to the vertical velocity. In addition, the vorticity vertical advection has effects on the vertical speed, which is a self-feedback process. The latent heating in the precipitation has influences on the westerly jet in the upper troposphere. The interactions between the precipitation and the westerly jet are mainly manifested as the intraseasonal oscillations.  相似文献   

17.
聂云  周继先  杨帆  杨群  杜小玲 《暴雨灾害》2021,50(2):125-135

利用常规气象观测资料、卫星云图、多普勒天气雷达资料、区域自动气象站资料与NECP/NCAR 1°×1°逐6 h全球再分析资料,对2016年7月3—4日梵净山东南侧暖区特大暴雨的中尺度系统演变与环境场特征进行了分析。结果表明:(1)该过程暴雨发生在副热带高压西北侧高空槽区、低层暖切变南侧、低空急流左前端及高空200 hPa分流辐散区,主要影响系统为500 hPa高空槽和850 hPa暖切变线,地面无明显冷空气影响,属贵州暖区极端暴雨。(2)此次暖区暴雨是由4个对流云团连续影响直接造成,强降雨出现在对流云团中心附近及其后侧云顶亮温(TBB)等值线梯度大值区。(3)暴雨由积状云为主的混合降水回波造成;暖云层和湿层深厚、低层水汽输送充沛、异常偏低的自由对流高度(LFC)和抬升凝结高度(LCL)及中等强度“瘦高”型对流有效位能分布,是形成高效率降水的有利环境条件。(4)梵净山对水汽向北输送具有阻挡作用,使水汽通量大值带和水汽辐合中心集中在其东南侧;边界层偏东风在山前转向南流与南来偏南气流在暴雨区形成东西向稳定中尺度辐合线,对流在辐合线附近触发、合并、加强和东移是造成特大暴雨的重要原因;迎风坡和喇叭口地形的中小尺度动力强迫有利于边界层水汽输送和抬升凝结。

  相似文献   

18.
We investigate the dust radiative forcing and its feedback on the Arabian Peninsula’s wet season climate using the International Centre for Theoretical Physics-Regional Climate Model (ICTP-RegCM4). We have found that the dust plumes exert a negative (positive) radiative forcing at the surface (top of the atmosphere) by reducing incoming solar radiation reaching the ground and locally heating up the atmosphere column. Consequently, the surface air temperature is cooler, hence indicating a decrease in the warm bias and an increase in the temperature gradient. This reduces the geopotential heights and enhances the low-level wind convergence, suggesting stronger upward motion. These changes increase evaporation, the difference between precipitation and evaporation in the atmosphere and rainfall over the Peninsula, indicating an intensification of the hydrologic cycle. The decrease in the precipitation dry bias and the large reduction in the temperature warm bias caused by the impact of dust over the entire Peninsula represent a significant success for the RegCM4 simulation. Therefore, the inclusion of dust in the simulation of the Arabian Peninsula’s climate for the wet season contributes to an improved performance of this regional climate model over the region.  相似文献   

19.
一次华南暴雨过程的数值模拟和试验   总被引:14,自引:9,他引:5  
张立凤  查石祥 《气象科学》2000,20(2):120-128
本文利用有限区域数值预报模式MM4对一次华南暴雨过程进行了数值模拟和试验.用该模式预报的形势场与实况较一致,预报的暴雨强度、位置也与实况相近.此外由控制试验和敏感性试验可知,该暴雨强度对地形、辐射和下垫面过程比较敏感.  相似文献   

20.
The tail of the distribution of daily precipitation for August–September–October was examined over the United States and Mexico in relation to the Atlantic Multidecadal Oscillation (AMO). As expected from previous studies linking the AMO to hurricane activity, Florida and the coastal Southeast US showed an increase in precipitation intensity when the Atlantic was in a warm phase (AMO+). Also during AMO+ Northwest Mexico was dry and exhibited a reduction of extreme events and the Mid-Atlantic Appalachian Mountains showed evidence of an increase in heavy precipitation compared to when the Atlantic was cool. It is proposed that the aforementioned decadal variations in extreme rainfall are forced by changes in the large-scale surface winds and air temperature in conjunction with the AMO. Namely, an anomalous cyclonic circulation is observed off the Southeast coast, leading to a reduction of moisture flux into the decaying North American monsoon, and an increase in moisture flux into the Mid-Atlantic. Further, the Mid-Atlantic shows a relatively strong increase in the mid-tropospheric lapse rate. Thus, the unique combination of low-level humidity, potential instability, and elevated topography are consistent with an enhanced risk of intense rainfall during AMO+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号