首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
Extending an earlier study, the best track minimum sea level pressure (MSLP) data are assimilated for landfalling Hurricane Ike (2008) using an ensemble Kalman filter (EnKF), in addition to data from two coastal ground-based Doppler radars, at a 4-km grid spacing. Treated as a sea level pressure observation, the MSLP assimilation by the EnKF enhances the hurricane warm core structure and results in a stronger and deeper analyzed vortex than that in the GFS (Global Forecast System) analysis; it also improves the subsequent 18-h hurricane intensity and track forecasts. With a 2-h total assimilation window length, the assimilation of MSLP data interpolated to 10-min intervals results in more balanced analyses with smaller subsequent forecast error growth and better intensity and track forecasts than when the data are assimilated every 60 minutes. Radar data are always assimilated at 10-min intervals. For both intensity and track forecasts, assimilating MSLP only outperforms assimilating radar reflectivity (Z) only. For intensity forecast, assimilating MSLP at 10-min intervals outperforms radar radial wind (Vr) data (assimilated at 10-min intervals), but assimilating MSLP at 60-min intervals fails to beat Vr data. For track forecast, MSLP assimilation has a slightly (noticeably) larger positive impact than Vr(Z) data. When Vr or Z is combined with MSLP, both intensity and track forecasts are improved more than the assimilation of individual observation type. When the total assimilation window length is reduced to 1h or less, the assimilation of MSLP alone even at 10-min intervals produces poorer 18-h intensity forecasts than assimilating Vr only, indicating that many assimilation cycles are needed to establish balanced analyses when MSLP data alone are assimilated; this is due to the very limited pieces of information that MSLP data provide.  相似文献   

2.
In this paper, firstly, the bias between observed radiances from the Advanced TIROS-N Operational Vertical Sounder (ATOVS) and those simulated from a model first-guess are corrected. After bias correction, the observed minus calculated (O-B) radiances of most channels were reduced closer to zero, with peak values in each channel shifted towards zero, and the distribution of O-B closer to a Gaussian distribution than without bias correction. Secondly, ATOVS radiance data with and without bias correction are assimilated directly with an Ensemble Kalman Filter (EnKF) data assimilation system, which are then adopted as the initial fields in the forecast model T106L19 to simulate Typhoon Prapiroon (2006) during the period 2-4 August 2006. The prediction results show that the assimilation of ATOVS radiance data with bias correction has a significant and positive impact upon the prediction of the typhoon’s track and intensity, although the results are not perfect.  相似文献   

3.
赵颖  王斌 《大气科学进展》2008,25(4):692-703
Two sets of assimilation experiments on a landfalling typhoon—Typhoon Dan(1999)over the western North Pacific were designed to compare the performances of two kinds of variational data assimilation schemes that are the 3-Dimensional Variational data assimilation of Mapped observation(3DVM)and the 4-dimensional variational data assimilation(4DVar).Results show that:(1)both the 3DVM and 4DVar successfully improved the simulations of typhoon intensity and track incorporating the satellite AMSU-A retrieved temperature and wind data into the initial conditions,and the 3DVM more significantly due to the flow-dependent of background error covariance matrix and observation error covariance matrix like 3-dimensional variational data assimilation(3DVar)circle;(2)inclusions of extra model integration iterations at each observation time in the 3DVM make it more consistent with prediction model;(3)the 3DVM is much more time-saving due to the exclusion of the adjoint technique in it.  相似文献   

4.
Although radar observations capture storm structures with high spatiotemporal resolutions, they are limited within the storm region after the precipitation formed. Geostationary satellites data cover the gaps in the radar network prior to the formation of the precipitation for the storms and their environment. The study explores the effects of assimilating the water vapor channel radiances from Himawari-8 data with Weather Research and Forecasting model data assimilation system(WRFDA) for a severe storm case over north China. A fast cloud detection scheme for Advanced Himawari imager(AHI)radiance is enhanced in the framework of the WRFDA system initially in this study. The bias corrections, the cloud detection for the clear-sky AHI radiance, and the observation error modeling for cloudy radiance are conducted before the data assimilation. All AHI radiance observations are fully applied without any quality control for all-sky AHI radiance data assimilation. Results show that the simulated all-sky AHI radiance fits the observations better by using the cloud dependent observation error model, further improving the cloud heights. The all-sky AHI radiance assimilation adjusts all types of hydrometeor variables, especially cloud water and precipitation snow. It is proven that assimilating all-sky AHI data improves hydrometeor specifications when verified against the radar reflectivity. Consequently, the assimilation of AHI observations under the all-sky condition has an overall improved impact on both the precipitation locations and intensity compared to the experiment with only conventional and AHI clear-sky radiance data.  相似文献   

5.
In order to solve the difficult problem of typhoon track prediction due to the sparsity of conventionaldata over the tropical ocean, in this paper, the No. 0205 typhoon Rammasun of 4-6 July 2002 is studiedand an experiment of the typhoon track prediction is made with the direct use of the Advanced TIROS-NOperational Vertical Sounder (ATOVS) microwave radiance data in three-dimensional variational dataassimilation. The prediction result shows that the experiment with the ATOVS microwave radiance datacan not only successfully predict the observed fact that typhoon Rammasun moves northward and turnsright, but can also simulate the action of the fast movement of the typhoon, which cannot be simulated withonly conventional radiosonde data. The skill of the typhoon track prediction with the ATOVS microwaveradiance data is much better than that without the ATOVS data. The typhoon track prediction of theformer scheme is consistent in time and in location with the observation. The direct assimilation of ATOVSmicrowave radiance data is an available way to solve the problem of the sparse observation data over thetropical ocean, and has great potential in being applied to typhoon track prediction.  相似文献   

6.
China’s new generation of polar-orbiting meteorological satellite FY-3A was successfully launched on May 26,2008,carrying microwave sounding devices which had similar performance to ATOVS of NOAA series.In order to study the application of microwave sounding data in numerical prediction of typhoons and to improve typhoon forecasting,we assimilated data directly for numerical forecasting of the track and intensity of the 2009 typhoon Morakot(0908)based on the WRF-3DVar system.Results showed that the initial fields of the numerical model due to direct assimilation of FY-3A microwave sounding data was improved much more than that due to assimilation of conventional observations alone,and the improvement was especially significant over the ocean,which is always without conventional observations.The model initial fields were more reasonable in reflecting the initial situation of typhoon circulation as well as temperature and humidity conditions,and typhoon central position at sea was also adjusted.Through direct 3DVar assimilation of FY-3A microwave data,the regional mesoscale model improves the forecasting of typhoon track.Therefore,the FY-3A microwave data could efficiently improve the numerical prediction of typhoons.  相似文献   

7.
Precipitation detection is an essential step in radiance assimilation because the uncertainties in precipitation would affect the radiative transfer calculation and observation errors. The traditional precipitation detection method for microwave only detects clouds and precipitation horizontally, without considering the three-dimensional distribution of clouds.Extending precipitation detection from 2D to 3D is expected to bring more useful information to the data assimilation without using the a...  相似文献   

8.
Constructing β-mesoscale weather systems in initial fields remains a challenging problem in a mesoscale numerical weather prediction (NWP) model. Without vertical velocity matching the β-mesoscale weather system, convection activities would be suppressed by downdraft and cooling caused by precipitating hydrometeors. In this study, a method, basing on the three-dimensional variational (3DVAR) assimilation technique, was developed to obtain reasonable structures of β-mesoscale weather systems by assimilating radar data in a next-generation NWP system named GRAPES (the Global and Regional Assimilation and Prediction System) of China. Single-point testing indicated that assimilating radial wind significantly improved the horizontal wind but had little effect on the vertical velocity, while assimilating the retrieved vertical velocity (taking Richardson's equation as the observational operator) can greatly improve the vertical motion. Experiments on a typhoon show that assimilation of the radial wind data can greatly improve the prediction of the typhoon track, and can ameliorate precipitation to some extent. Assimilating the retrieved vertical velocity and rainwater mixing ratio, and adjusting water vapor and cloud water mixing ratio in the initial fields simultaneously, can significantly improve the tropical cyclone rainfall forecast but has little effect on typhoon path. Joint assimilating these three kinds of radar data gets the best results. Taking into account the scale of different weather systems and representation of observational data, data quality control, error setting of background field and observation data are still requiring further in-depth study.  相似文献   

9.
Observational and bogus satellite data are directly assimilated into the Weather Research and Forecasting (WRF) model in simulations of Typhoon Kalmaegi (2008). The data assimilation is performed using the Radiative Transfer for TIROS-N Operational Vertical Sounder (RTTOV) model and the three-dimensional variational data assimilation (3DVAR) technique, with satellite observations taken from the National Oceanic and Atmospheric Administration-16 (NOAA-16) Advanced TIROS Vertical Sounder (ATOVS) system composed of the High-resolution Infrared Radiation Sounder (HIRS), the Advanced Microwave Sounding Unit-A (AMSU-A), and the Advanced Microwave Sounding Unit-B (AMSU-B). Data assimilation experiments are initialized at three different times. Improvements in the numerical simulation of the typhoon are discussed in the context of wind, temperature, pressure, and geopotential fields. The results indicate that assimilation of satellite data can improve both the representation of the initial conditions and the subsequent simulation of the typhoon. Different satellite data have different impacts on the typhoon track. In these simulations, data from AMSU-A play a greater role in improving the simulation of the typhoon than data from AMSU-B or HIRS. Assimilation of satellite data significantly affects the simulation of the subtropical high and the steering of the typhoon by the environmental flow. The subtropical high is enhanced and extends westward in the data assimilation experiments. The background flow therefore steers the typhoon more westward, improving the simulated typhoon track. Although direct assimilation of satellite brightness temperature improves the simulated environmental conditions, it does not significantly improve the simulated intensity of the typhoon. By contrast, initializing the typhoon simulation using bogus data in tandem with satellite data improves not only the environmental conditions but also the simulated inner-core structure of the typhoon. Assimilation of both types of data therefore improves the simulation of both the typhoon track and the typhoon intensity. The results of these experiments offer new insight into improving numerical simulations of typhoons.  相似文献   

10.
Millimeter-wavelength radar has proved to be an effective instrument for cloud observation and research. In this study, 8-mm-wavelength cloud radar (MMCR) with Doppler and polarization capabilities was used to investigate cloud dynamics in China for the first time. Its design, system specifications, calibration, and application in measuring clouds associated with typhoon are discussed in this article. The cloud radar measurements of radar reflectivity (Z), Doppler velocity (Vr), velocity spectrum width (Sw) and the depolar-ization ratio (LDR) at vertical incidence were used to analyze the microphysical and dynamic processes of the cloud system and precipitation associated with Typhoon Nuri, which occurred in southern China in August 2008. The results show the reflectivity observed using MMCR to be consistent with the echo height and the melting-layer location data obtained by the nearby China S-band new-generation weather radar (SA), but the Ka-band MMCR provided more detailed structural information about clouds and weak precipitation data than did the SA radar. The variation of radar reflectivity and LDR in vertical structure reveals the transformation of particle phase from ice to water. The vertical velocity and velocity spectrum width of MMCR observations indicate an updraft and strong turbulence in the stratiform cloud layer. MMCR provides a valuable new technology for meteorological research in China.  相似文献   

11.
红外高光谱大气探测仪IASI可提供高精度的大气垂直温度和湿度信息,能够探测台风结构特征,有效弥补台风影响区域观测资料稀缺的不足。以WRFDA三维变分同化系统为基础构建IASI同化试验平台,实现McNally提出的MW云检测方法,并调整参数形成大阈值的LMW云检测方法,以超强台风“红霞”(1506)和“莫兰蒂”(1614)为试验个例,对IASI观测资料进行同化对比试验。对于台风“红霞”,MW云检测方案对于高层通道299保留的观测数目仅为大阈值LMW云检测的16.2%和WRFDA系统默认的MMR云检测的9.2%,对于底层通道921分别为3.3%和2.6%。但是MW试验分析场强度最强,获得的72 h台风路径预报最接近真实路径,路径误差最小。两个台风个例试验结果相似,表明有效的云检测过程能提高IASI资料同化分析场的准确性,同化IASI资料有利于改善台风预报技巧。   相似文献   

12.
多普勒雷达资料循环同化在台风“鲇鱼”预报中的应用   总被引:9,自引:5,他引:4  
李新峰  赵坤  王明筠  明杰 《气象科学》2013,33(3):255-263
高分辨率的中尺度预报模式ARPS及其3DVAR/云分析系统,针对2010年登陆福建的超强台风“鲇鱼”,研究对流可分辨尺度下,每1h循环同化沿海新一代多普勒雷达网资料分析、研究对台风初始场和预报场的改进作用.结果表明:单独同化雷达资料可显著改善初始场中的台风内核区动力和热力结构,以及台风强度和位置,进而提高18h台风强度、路径和降水预报,但预报路径和降水分布与实况仍存在差异.在雷达资料同化基础上加入常规观测资料,对初始场中台风内核区结构改进不大.但在显著调整大尺度背景场,从而进一步减少台风路径预报误差,能准确预报出福建沿海两个强降水区域的位置和强度.总体而言,雷达资料同化主要提高台风结构分析,而常规观测资料同化主要改善环境场分析,两者有效结合使得预报结果和实况最为接近.  相似文献   

13.
基于WRF中尺度模式,采用集合卡尔曼滤波方法同化中国岸基多普勒天气雷达径向速度资料,对2015年登陆台风彩虹(1522)进行数值试验。从台风强度、路径、结构等方面验证了同化效果,并对不同区域雷达观测资料的同化敏感性进行讨论。试验结果表明:在同化窗内同化分析场台风位置误差相比未同化平均减小15 km,最多时刻减小38 km,同化资料时次越多,确定性预报路径误差越小。同化雷达资料后较好地反映出台风彩虹(1522)近海加强过程,台风中心最低气压同化分析和预报误差相比未同化最大减小超过25 hPa,台风眼的尺度、眼墙处对流非对称结构相比未同化与观测更加接近。试验还表明:台风内核100 km范围内的雷达观测对同化效果影响最大,仅同化这部分资料(约占总量的20%)各方面效果与同化全部资料相近,而仅同化100 km以外资料效果明显不及同化所有资料。仅同化台风内核雷达观测资料可以在不影响同化效果的前提下,使集合同化计算机时减小为原来的1/3,该策略可为台风实际业务预报提供一定参考。  相似文献   

14.
利用华南精细数值天气预报模式,设计了无同化资料(CTRL)、同化雷达反演水汽(EXP1)以及同化雷达反演水汽、地面和探空资料(EXP2)三个试验,对2017年登陆广东沿海的四个台风降水预报与路径预报进行模拟,以评估资料同化对登陆台风短期降水预报、路径预报的影响。分析结果如下:雷达反演水汽同化后对未来24小时降水预报技巧均有正的改善,对台风路径预报影响不大;在此基础上同化地面、探空资料后对台风路径预报有改进,对降水预报改进不明显(与EXP1比)。通过诊断分析台风“玛娃”,发现模式初值场水汽的增量配合对流上升区有利于短时间内成云致雨,从而提高短时降水预报;地面及探空资料同化有利于登陆台风的短时路径预报。   相似文献   

15.
将中国气象科学研究院(CAMS)混合双参数云微物理方案用于中尺度天气模式WRF,开展了对2013年超强台风天兔(1319)的模拟,通过与台风最佳路径、强度及热带降雨测量卫星(TRMM)资料对比,分析CAMS云微物理方案在模拟台风中的适用性及云微物理过程对模拟台风天兔的影响机制。设计了3组敏感性试验:修改雪粒子质量和落速系数(EXP1),采用海洋性云滴参数(EXP2),同时修改雪粒子质量和落速系数并采用海洋性云滴参数(EXP3)。结果表明:EXP1和EXP3由于霰碰并雪速率的增加及减小的雪下落通量,导致雪含量显著降低,同时也减少了整体冰相物的含量;EXP2和EXP3模拟的台风眼区对流有效位能快速减小,再现了前期台风的快速增强过程,路径偏差也最小;各试验模拟的小时降水率总体偏强,EXP3的降水空间分布与实况更接近,明显降低雪粒子含量,并一定程度上改善模拟的台风路径、强度及降水分布等。该结果不但可为改进适用于台风的云微物理参数化方案提供思路,也可加深云微物理过程对台风影响的认识。  相似文献   

16.
本文以2015年13号超强台风“苏迪罗”为个例,利用WRF模式及其3DVar同化系统对NOAA15、NOAA18和NOAA19的AMSU-A微波遥感资料分别同化及组合同化,探究同化不同卫星的同一种微波遥感资料对于台风路径模拟效果的影响。结果表明:同化不同卫星的同一种微波遥感资料对于台风路径模拟具有不同的调整,本文中NOAA15的同化效果最好,其次是NOAA18,最后是NOAA19;同时同化NOAA15、NOAA18和NOAA19的AMSU-A资料并没有取得最好的同化效果,而组合NOAA15和NOAA18则取得了最好的同化效果,即不是同化的卫星数量越多,同化效果越好;同化试验3个时刻的增量场表明同化不同卫星的同一种微波遥感资料对物理场具有不同的调整,这与其对台风模拟路径的调整有着较好的对应,相对于温度场、海平面气压场、位势高度场和风场的增量结构与模拟台风路径的调整更为密切。  相似文献   

17.
FY-2C云迹风资料同化应用对台风预报的影响试验研究   总被引:3,自引:2,他引:1  
刘瑞  翟国庆  王彰贵 《大气科学》2012,36(2):350-360
针对0505号台风“海棠”, 采用WRF区域中尺度模式进行控制试验和两个同化试验, 利用WRF-3DVAR同化系统同化FY-2C红外和水汽两个通道云迹风反演产品, 同化分云迹风经质量控制和未经质量控制两组同化试验。通过三组试验分析云迹风资料对降水和风场等的预报结果的影响, 并进行24小时降水量分级Ts评分检验以及风场点对点检验。结果表明: 同化经质量控制云迹风资料可以提高降水落区和强度预报的准确度, 不同等级的Ts评分较其它试验都有较明显改进; 风场预报模拟也有所改善。增加两例台风, 使用与“海棠” 相似的处理方法进行模拟试验, 并对模拟结果24小时降水分析与检验, 得到与“海棠”类似结论。因此, 经过合理性选择的云迹风资料的加入, 有利于补充初始场中可能未包含的中尺度信息, 从而提高试验中对于降水、风场等的模拟效果, 提高WRF模式的模拟预报能力。  相似文献   

18.
雷达资料在登陆台风“桑美”数值模拟中的应用   总被引:5,自引:2,他引:5       下载免费PDF全文
将国内多普勒天气雷达的反射率因子及径向风资料引入ARPS-3DVar同化系统进行同化,针对2006年登陆浙江苍南并造成严重影响的超强台风“桑美”,探讨多普勒雷达资料同化对台风模拟初始场和预报场的改进作用。结果表明:利用ARPS-3DVar同化雷达资料可以明显改善6 h同化窗口内的降水、风场和回波结构,并能提高模式对中尺度雨团位置、强度的模拟能力;雷达资料初始场同化后模拟的台风涡旋和台风眼结构与位置更加接近实况,各物理量空间分布结构更具有明显中尺度特征,从而改善了台风路径和降水的预报。但模拟过程中台风强度模拟偏弱,有待进一步改进。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号