首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
In this paper, the author proposes a rotation of axes in the solution of slip line equations for determination of lateral earth pressure with the presence of seismic loading under general conditions. A general cφ soil system under a general condition can be considered so that K, Kpc, Kpq, K, Kac and Kaq can all be determined. For passive pressure, Kpc is found to be much greater than K and the effect of seismic coefficient on passive pressure is relatively small as compared with the corresponding situation for active pressure. The use of iterative analysis is found to be useful for passive pressure determination but unimportant for active pressure determination.  相似文献   

2.
We revised an equation for estimating palaeostress magnitude using the microboudin technique by incorporating the influence of time on the fracture strength of minerals. The equation was used to estimate triaxial palaeostresses from a rare sample of metachert from Turkey that contains microboudinaged, columnar tourmaline grains in a wide range of orientations within the foliation plane. The estimated principal palaeostresses are σ1 = 605 MPa, σ2 = 598 MPa, and σ3 = 597 MPa. As the microboudinage is considered to have occurred immediately before the rock encountered the brittle-plastic transition during exhumation, these stress values correspond to conditions at approximately 18 km depth and 300 °C within a Cretaceous orogenic belt.  相似文献   

3.
根据X射线衍射(XRD)分析发现: A Fe3(SO4)2(OH)6(A=K+、H3O+)系列铁钒的XRD数据十分相近,难以用XRD区别,需通过能谱(EDS)辅助分析,才能区分此类铁矾。另外,此类铁矾的003和107面网间距d随K+含量增大而增大,且呈一元三次方程的关系;而033和220面网间距d随K+含量增大而减小,呈一元二次方程的关系。对该现象从铁矾晶体结构方面进行解释:K+、H3O+离子位于较大空隙中,且沿着Z轴方向排列,当K+、H3O+离子之间相互替换时,会导致该铁矾晶体结构在Z轴方向有较明显的变化。  相似文献   

4.
The solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3 · 26H2O) was measured in a series of precipitation and dissolution experiments at 20 °C and at pH-values between 11.0 and 14.0 using synthesised material. A time-series study showed that equilibrium was reached within 180 days of ageing. After equilibrating, the solid phases were analysed by XRD and TGA while the aqueous solutions were analysed by ICP-OES (calcium, sulphur) and ICP-MS (iron). Fe-ettringite was found to be stable up to pH 13.0. At higher pH-values Fe-monosulphate (Ca4[Fe(OH)6]2(SO4) · 6H2O) and Fe-monocarbonate (Ca4[Fe(OH)6]2(CO3) · 6H2O) are formed. The solubilities of these hydrates at 25 °C are:   相似文献   

5.
6.
7.
The solubility of crystalline Mg(OH)2(cr) was determined by measuring the equilibrium H+ concentration in water, 0.01-2.7 m MgCl2, 0.1-5.6 m NaCl, and in mixtures of 0.5 and 5.0 m NaCl containing 0.01-0.05 m MgCl2. In MgCl2 solutions above 2 molal, magnesium hydroxide converted into hydrated magnesium oxychloride. The solid-liquid equilibrium of Mg2(OH)3Cl·4H2O(cr) was studied in 2.1-5.2 m MgCl2. Using known ion interaction Pitzer coefficients for the system Mg-Na-H-OH-Cl-H2O (25°C), the following equilibrium constants at I = 0 are calculated:
  相似文献   

8.
The kinetics of crystallization of strontium carbonate (strontianite) from strontium bicarbonate solutions were examined. CO2 was stripped from a slightly acidic solution of Sr(HCO3)2 by stirring resulting in critical supersaturation and precipitation of strontianite. The reduction of the Sr2+ concentration was recorded as a function of time by measuring the electrolytic conductivity and the pH value.

Homogeneous primary nucleation is dominant at high supersaturations, whereas heterogeneous primary nucleation prevails at low supersaturations. The crystal growth rate increases with increasing supersaturation. This effect is less pronounced at higher supersaturations. The growth rate is mostly transport-controlled at high supersaturation. At lower supersaturation the crystal growth is mainly determined by integration of ions into the crystal lattice. These results may be used to explain the deposition of strontianite in natural systems.  相似文献   


9.
We report rates of oxygen exchange with bulk solution for an aqueous complex, IVGeO4Al12(OH)24(OH2)128+(aq) (GeAl12), that is similar in structure to both the IVAlO4Al12(OH)24(OH2)127+(aq) (Al13) and IVGaO4Al12(OH)24(OH2)127+(aq) (GaAl12) molecules studied previously. All of these molecules have ε-Keggin-like structures, but in the GeAl12 molecule, occupancy of the central tetrahedral metal site by Ge(IV) results in a molecular charge of +8, rather than +7, as in the Al13 and GaAl12. Rates of exchange between oxygen sites in this molecule and bulk solution were measured over a temperature range of 274.5 to 289.5 K and 2.95 < pH < 4.58 using 17O-NMR.Apparent rate parameters for exchange of the bound water molecules (η-OH2) are kex298 = 200 (±100) s−1, ΔH = 46 (±8) kJ · mol−1, and ΔS = −46 (±24) J · mol−1 K−1 and are similar to those we measured previously for the GaAl12 and Al13 complexes. In contrast to the Al13 and GaAl12 molecules, we observe a small but significant pH dependence on rates of solvolysis that is not yet fully constrained and that indicates a contribution from the partly deprotonated GeAl12 species.The two topologically distinct μ2-OH sites in the GeAl12 molecule exchange at greatly differing rates. The more labile set of μ2-OH sites in the GeAl12 molecule exchange at a rate that is faster than can be measured by the 17O-NMR isotopic-equilibration technique. The second set of μ2-OH sites have rate parameters of kex298 = 6.6 (±0.2) · 10−4 s−1, ΔH = 82 (±2) kJ · mol−1, and ΔS = −29 (±7) J · mol−1 · K−1, corresponding to exchanges ≈40 and ≈1550 times, respectively, more rapid than the less labile μ2-OH sites in the Al13 and GaAl12 molecules. We find evidence of nearly first-order pH dependence on the rate of exchange of this μ2-OH site with bulk solution for the GeAl12 molecule, which contrasts with Al13 and GaAl12 molecules.  相似文献   

10.
Phosphoinnelite, an analogue of innelite with P > S, has been found in a peralkaline pegmatite vein crosscutting calcite carbonatite at the phlogopite deposit, Kovdor pluton, Kola Peninsula. Cancrinite (partly replaced with thomsonite-Ca), orthoclase, aegirine-augite, pectolite, magnesioarfvedsonite, golyshevite, and fluorapatite are associated minerals. Phosphoinnelite occurs as lath-shaped crystals up to 0.2 × 1 × 6 mm in size, which are combined typically in bunch-, sheaf-, and rosettelike segregations. The color is yellow-brown, with vitreous luster on crystal faces and greasy luster on broken surfaces. The mineral is transparent. The streak is pale yellowish. Phosphoinnelite is brittle, with perfect cleavage parallel to the {010} and good cleavage parallel to the {100}; the fracture is stepped. The Mohs hardness is 4.5 to 5. Density is 3.82 g/cm3 (meas.) and 3.92 g/cm3 (calc.). Phosphoinnelite is biaxial (+), α = 1.730, β = 1.745, and γ = 1.764, 2V (meas.) is close to 90°. Optical orientation is Z^c ∼ 5°. Chemical composition determined by electron microprobe is as follows (wt %): 6.06 Na2O, 0.04 K2O, 0.15 CaO, 0.99 SrO, 41.60 BaO, 0.64 MgO, 1.07 MnO, 1.55 Fe2O3, 0.27 Al2O3, 17.83 SiO2, 16.88 TiO2, 0.74 Nb2O5, 5.93 P2O5, 5.29 SO3, 0.14 F, −O=F2 = −0.06, total is 99.12. The empirical formula calculated on the basis of (Si,Al)4O14 is (Ba3.59Sr0.13K0.01)Σ3.73(Na2.59Mg0.21Ca0.04)Σ3.04(Ti2.80Fe 0.26 3+ Nb0.07)Σ3.13[(Si3.93Al0.07)Σ4O14(P1.11S0.87)Σ1.98O7.96](O2.975F0.10)Σ3.075. The simplified formula is Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)3. The mineral is triclinic, space group P or P1. The unit cell dimensions are a = 5.38, b = 7.10, c = 14.76 ?; α = 99.00°, β = 94.94°, γ = 90.14°; and V = 555 ?3, Z = 1. The strongest lines of the X-ray powder pattern [d, ? in (I)(hkl)] are: 14.5(100)(001), 3.455(40)(103), 3.382(35)(0 2), 2.921(35)(005), 2.810(40)(1 4), 2.683(90)(200, 01), 2.133(80)( 2), 2.059(40)(204, 1 3, 221), 1.772(30)(0 1, 1 7, 2 2, 2 3). The infrared spectrum is demonstrated. An admixture of P substituting S has been detected in the innelite samples from the Inagli pluton (South Yakutia, Russia). An innelite-phosphoinnelite series with a variable S/P ratio has been discovered. The type material of phosphoinnelite has been deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. Original Russian Text ? I.V. Pekov, N.V. Chukanov, I.M. Kulikova, D.I. Belakovsky, 2006, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2006, No. 3, pp. 52–60. Considered and recommended by the Commission on New Minerals and Mineral Names, Russian Mineralogical Society, May 9, 2005. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, July 4, 2005 (proposal 2005-022).  相似文献   

11.
Oxyphlogopite is a new mica-group mineral with the idealized formula K(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2. The holotype material came from a basalt quarry at Mount Rothenberg near Mendig at the Eifel volcanic complex in Rhineland-Palatinate, Germany. The mineral occurs as crystals up to 4 × 4 × 0.2 mm in size encrusting cavity walls in alkali basalt. The associated minerals are nepheline, plagioclase, sanidine, augite, diopside, and magnetite. Its color is dark brown, its streak is brown, and its luster is vitreous. D meas = 3.06(1) g/cm3 (flotation in heavy liquids), and D calc = 3.086 g/cm3. The IR spectrun does not contain bands of OH groups. Oxyphlogopite is biaxial (negative); α = 1.625(3), β = 1.668(1), and γ = 1.669(1); and 2V meas = 16(2)° and 2V calc = 17°. The dispersion is strong; r < ν. The pleochroism is medium; X > Y > Z (brown to dark brown). The chemical composition is as follows (electron microprobe, mean of 5 point analyses, wt %; the ranges are given in parentheses; the H2O was determined using the Alimarin method; the Fe2+/Fe3+ was determined with X-ray emission spectroscopy): Na2O 0.99 (0.89–1.12), K2O 7.52 (7.44–7.58), MgO 14.65 (14.48–14.80), CaO 0.27 ((0.17–0.51), FeO 4.73, Fe2O3 7.25 (the range of the total iron in the form of FeO is 11.09–11.38), Al2O3 14.32 (14.06–14.64), Cr2O3 0.60 (0.45–0.69), SiO2 34.41 (34.03–34.66), TiO2 12.93 (12.69–13.13), F 3.06 (2.59–3.44), H2O 0.14; O=F2 −1.29; 99/58 in total. The empirical formula is (K0.72Na0.14Ca0.02)(Mg1.64Ti0.73Fe0.302+ Fe0.273+Cr0.04)Σ2.98(Si2.59Al1.27Fe0.143+ O10) O1.20F0.73(OH)0.07. The crystal structure was refined on a single crystal. Oxyphlogopite is monoclinic with space group C2/m; the unit-cell parameters are as follows: a = 5.3165(1), b = 9.2000(2), c = 10.0602(2) ?, β = 100.354(2)°. The presence of Ti results in the strong distortion of octahedron M(2). The strongest lines of the X-ray powder diffraction pattern [d, ? (I, %) [hkl]] are as follows: 9.91(32) [001], 4.53(11) 110], 3.300(100) [003], 3.090(12) [112], 1.895(21) [005], 1.659(12) [−135], 1.527(16) [−206, 060]. The type specimens of oxyphlogopite are deposited at the Fersman Mineralogical Museum in Moscow, Russia; the registration numbers are 3884/2 (holotype) and 3884/1 (cotype).  相似文献   

12.
Recent isopiestic studies of the Fe2(SO4)3-H2SO4-H2O system at 298.15 K are represented with an extended version of Pitzer’s ion interaction model. The model represents osmotic coefficients for aqueous {(1 − y)Fe2(SO4)3 + yH2SO4} mixtures from 0.45 to 3.0 m at 298.15 K and 0.0435 ? y ? 0.9370. In addition, a slightly less accurate representation of a more extended molality range to 5.47 m extends over the same y values, translating to a maximum ionic strength of 45 m. Recent isopiestic data for the system at 323.15 K are represented with the extended Pitzer model over a limited range in molality and solute fraction. These datasets are also represented with the usual “3-parameter” version of Pitzer’s model so that it may be incorporated in geochemical modeling software, but is a slightly less accurate representation of thermodynamic properties for this system. Comparisons made between our ion interaction model and available solubility data display partial agreement for rhomboclase and significant discrepancy for ferricopiapite. The comparisons highlight uncertainty remaining for solubility predictions in this system as well as the need for additional solubility measurements for Fe3+-bearing sulfate minerals. The resulting Pitzer ion interaction models provide an important step toward an accurate and comprehensive representation of thermodynamic properties in this geochemically important system.  相似文献   

13.
Computer modelling techniques were used to elucidate the hydration behaviour of three iron (hydr)oxide minerals at the atomic level: white rust, goethite and hematite. A potential model was first adapted and tested against the bulk structures and properties of eight different iron oxides, oxyhydroxides and hydroxides, followed by surface simulations of Fe(OH)2, α-FeO(OH) and α-Fe2O3. The major interaction between the adsorbing water molecules and the surface is through interaction of their oxygen ions with surface iron ions, followed by hydrogen-bonding to surface oxygen ions. The energies released upon the associative adsorption of water range from 1 to 17 kJ mol−1 for Fe(OH)2, 26 to 80 kJ mol−1 for goethite and 40 to 85 kJ mol−1 for hematite, reflecting the increasing oxidation of the iron mineral. Dissociative adsorption at goethite and hematite surfaces releases larger hydration energies, ranging from 120 to 208 kJ mol−1 for goethite and 76 to 190 kJ mol−1 for hematite.The thermodynamic morphologies of the minerals, based on the calculated surface energies, agree well with experimental morphologies, where these are available. When the partial pressures required for adsorption of water from the gas phase are plotted against temperature for the goethite and hematite surfaces, taking into account experimental entropies for water, it appears that these minerals may well be instrumental in the retention of water during the cyclic variations in the atmosphere of Mars.  相似文献   

14.
橄榄岩的稀土元素特征对研究岩石成因、岩浆作用过程具有重要的意义。橄榄岩中的稀土元素含量低(∑REEs=0.1~1μg/g),且存在镁、铁等基体元素的干扰,难以准确测定。前人通常利用高压密闭酸溶-离子交换法处理样品,将稀土元素与镁、铁等基体元素分离,达到了预富集的效果,但耗时长(消解时间接近7天)、操作步骤繁多,不利于大批量样品的分析。本文建立了过氧化钠碱熔、Fe(OH)_3和Mg(OH)_2共沉淀的样品前处理方法,通过离心使溶液与沉淀分离,从而实现了稀土元素与镁、铁等基体元素的快速分离,再采用电感耦合等离子体质谱法测定稀土元素含量。方法检出限为0.17~2.18 ng/g,加标回收率为95%~101%,国家标准物质(GBW07101和GBW07102)的测定值与标准值的相对误差小于20%,相对标准偏差(RSD,n=11)小于10%。该方法既减少了分步沉淀过程中带来的损失,也缩短了分析周期(消解时间仅需一天),操作简便,分析效率高。  相似文献   

15.
CaCO3Ca(OH)2CaS serves as a model system for sulfide solubility in carbonatite magmas. Experiments at 1 kbar delineate fields for primary crystallization of CaCO3, Ca(OH)2 and CaS. The three fields meet at a ternary eutectic at 652°C with liquid composition (wt%): CaCO3 = 46.1%, Ca(OH)2 = 51.9%, CaS = 2.0%. Two crystallization sequences are possible for liquids that precipitate calcite, depending upon whether the liquid is on the low-CaS side, or the high-CaS side of the line connecting CaCO3 to the eutectic liquid. Low-CaS liquids precipitate no sulfide until the eutectic temperature is reached leading to sulfide enrichment. The higher-CaS liquids precipitate some sulfide above the eutectic temperature, but the sulfide content of the melt is not greatly depleted as the eutectic temperature is approached. Theoretical considerations indicate that sulfide solubility in carbonate melts will be directly proportional to ?S212 and inversely proportional to ?O212; it also is likely to be directly proportional to melt basicity, defined here by aCO32??CO2. A strong similarity exists in the processes which control sulfide solubility in carbonate and in silicate melts. By analogy with silicates, ferrous iron, which was absent in our experiments, may also exert an important influence on sulfide solubility in natural carbonatite magmas.  相似文献   

16.
Experiments were conducted on gibbsite to determine whether oxygen-isotope exchange rates at hydroxyl bridges (μ2-OH) on the basal sheet exhibit similar reactivity trends as in large aluminum polyoxocations, for which high-quality kinetic data exist. We followed the exchange of 18O from the mineral surface to solution by using a high-surface-area solid that had been enriched to tens of percent in 18O. To establish this high enrichment, we initially react the solid hydrothermally with highly enriched H218O in order to tag all oxygens near the mineral surface, and then back exchange the most reactive oxygens with isotopically normal water. This enrichment procedure isolates 18O into the least-reactive sites, which are presumably μ2-OH on the basal surface. By analogy with aqueous aluminum complexes, including large multimers, the η-OH2 sites exchange within fractions of a second and should be isotopically normal using this procedure.When suspended in isotopically normal electrolyte solutions, we find that the rates of release of 18O from the mineral fall close to the rates of dissolution. The lack of steady isotopic exchange of μ2-OH on gibbsite surfaces contrasts with the aluminum polyoxocations, where the μ2-OH exchange many hundreds of times with bulk water molecules before the molecule dissociates. Additional experiments were conducted in solutions at near-neutral pH to determine the flux of oxygens at conditions near thermodynamic equilibrium. As in more acidic solutions, rates are close to values expected from dissolution of the mineral and there is no evidence for steady exchange of hydroxyl bridges with water molecules in the bulk solution.  相似文献   

17.
The damage caused to structures and other human endeavours, on or in the ground, by swelling clay soils is considered as a natural hazard. In order to mitigate this hazard an attempt was made to stabilize the swelling clay mineral structure by the addition of Mg(OH)2. This will turn the swelling minerals, like montmorillonite, into non-swelling ones, e.g., chloride. Accordingly, the various factors affecting the precipitation-adsorption of the Mg-hydroxide by clays, was investigated, and the conditions giving the best results were established. The factors examined were: the base used as precipitant (NH4OH and NaOH); the preparation of the precipitate, inside or outside the clay suspension; the sequence and the duration of the reagents addition; the OH/Mg ratio; the time of clay-chemical contact; and the drying time and temperature. The method, was applied to different clay minerals (swelling and non-swelling). The material produced after the Mg-hydroxide precipitation was examined by the methylene blue dye adsorption test, XRD, DTA and DTGA methods; the results were treated statistically by factorial analysis. From the results obtained, it is concluded that the factors affecting the Mg-hydroxide adsorption by clays are: the base used as a precipitant, the preparation of the hydroxide directly inside or outside the clay suspension, the drying temperature, and the rate of titration of the reagents. Therefore, the best conditions for the laboratory preparation of hydroxy-Mg-interlayers are a dilute (1–2%) and well-dispersed clay suspension, pH between 10–12; some 12 meq Mg2+, as Mg-salt (e.g., MgCl2) per gram of clay, added before the base and followed by the dropwise titration of 1–2 N NaOH solution into the clay suspension, to give a molar ratio OH/Mg of about 1.5; vigorous agitation of the suspension during titration of the reagents; centrifugation and decantation of the supernatant liquid, and drying the product at about 250°C. Satisfactory results are also obtained with the fast titration of the base and drying at 105°C to complete dryness.  相似文献   

18.
为了更精准地研究鄂尔多斯盆地西南部华庆地区上三叠统延长组长62-63油层组储层特征,运用岩心照片、测井数据、粒度分析、录井数据等资料,对延长组长62-63油层组的岩性、碎屑颗粒、构造、测井响应、生物标志以及接触关系进行了分析研究。分析了长6油层组沉积微相特征,识别出该沉积时期半深湖-深湖亚相和三角洲前缘亚相两类沉积亚相,半深湖泥、浊积岩、砂质碎屑流砂体、水下分流河道、分流间湾和席状砂6类沉积微相,并分析华庆地区延长组长62-63期沉积相发育演化过程。沉积微相精细化描述揭示了华庆地区延长组6段油层组沉积环境,为精细化勘探开发提供地质依据。  相似文献   

19.
Keilite (Fe>0.5,Mg<0.5)S, the iron-dominant cubic analog of niningerite, (Mg>0.5,Fe<0.5)S, occurs in enstatite chondrites [Shimizu, M., Yoshida, H., Mandarino, J.A., 2002. The new mineral species keilite, (Fe,Mg)S, the iron-dominant analog of niningerite. Can. Mineral. 40, 1687–1692]. I find that keilite occurs only in enstatite chondrite impact-melt rocks and impact-melt breccias. Based on the phase relations in the system MgS–MnS–CaS–FeS [Skinner, B.J., Luce, F.D., 1971. Solid solutions of the type (Ca,Mg,Mn,Fe)S and their use as geothermometers for the enstatite chondrites. Am. Mineral. 56, 1269–1296], I conclude that keilite formed from niningerite or alabandite (Mn>0.5,Fe<0.5)S by reaction with troilite (FeS) at elevated temperatures of well above 500 °C (the lowest equilibration temperature of keilite), but it is likely that the maximum temperatures during melting experienced by keilite-bearing impact-melt rocks and impact-melt breccias were considerably higher, perhaps >1500 °C, as indicted by the occurrence of euhedral enstatite that formed from a melt [McCoy, T.J., Dickinson, T.L., Lofgren, G.E., 1999. Partial melting of the Indarch (EH4) meteorite: a textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 34, 735–746]. Based on the classifications of the keilite-bearing meteorites as impact-melt rocks and impact-melt breccias and my own textural observations, I conclude that this elevated temperature was reached as a result of impact and not internal heating and melting, followed by fast cooling, thus, quenching in keilite. Enstatite chondrite impact-melt rocks and impact-melt breccias that do not contain keilite may have been more deeply buried after impact and, hence, cooled slowly and were annealed so that FeS exsolved from keilite, concomitant with the formation of niningerite, alabandite or various (Mn,Mg,Fe) mixed sulfides.  相似文献   

20.
It is important to understand the history and dynamics of climate in a transitional region between areas with different atmospheric circulation patterns, where the vegetation and ecosystems are vulnerable to environmental change. We investigated variations in the long-term oxygen isotope composition (δ18O) in tree rings of Qinghai spruce (Picea crassifolia) and their relationships to climatic parameters in the arid Qilian Mountains of northwestern China from 1870 to 2006. We found that the mean temperature from the previous November to the current February was significantly and positively correlated with the tree-ring δ18O values. The temperature effect, (the positive relationship between the temperature and the precipitation δ18O value) can explain the connection between temperature and the tree-ring δ18O values. Due to pooling of the earlywood and latewood into yearly tree-ring samples, it appears that the cellulose δ18O may be influenced by isotopically nonhomogeneous water sources and climatic conditions during the previous and current growing seasons. Subtle shifts and amplitude deviations in cellulose δ18O, which abruptly became more positive around 1977–1978, may be attributed to the shifting climatic regime in China and to temperature variations, respectively. Our results illustrated the potential for investigating climatic or atmospheric circulation patterns based on oxygen isotope records in tree rings in regions near the interface between different large-scale synoptic circulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号