首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
海面温度变化影响台风"海棠"强度的数值研究   总被引:1,自引:0,他引:1  
通过对台风"海棠"5 d的数值模拟,研究海表温度(SST)变化对台风强度的影响。与NCEP月平均海表温度相对比,在中尺度大气模式中引入热带测雨卫星(TRMM)微波成像仪(TMI)/先进微波扫描辐射计(AMSR-E)来考察SST对台风"海棠"路径和强度的影响。研究结果表明,每天变化SST的试验模拟的台风强度和路径整体效果不错;模拟的台风路径不敏感于SST的变化,而台风强度的变化不仅取决于由于台风移动引发的SST冷却的幅度大小,而且取决于SST冷却区域的相对位置。在台风"海棠"强烈发展过程中,台风中心右侧冷却区对台风中心气压影响很小;台风强烈发展过后,SST冷却区开始影响台风强度,但造成台风中心气压下降幅度不大,6 h内台风中心气压减弱约3.9 hPa。海面热量通量和海面风速与SST的分布都有良好的相关性:在SST变化为正值的暖水区,感热通量和潜热通量都是一个正的通量分布的极值区,并有风速极大值区域存在;在台风右侧相应的冷却区,则存在着负的通量异常和风速极小值区域。  相似文献   

2.
How the role of vertical turbulent mixing (VTM) in sea surface cooling (SSC) varies with the moving speed of a tropical cyclone was examined for Typhoon Rex (1998) by using the Meteorological Research Institute Community Ocean Model (MRI.COM). The MRI.COM well reproduced TRMM/TMI three-day mean sea surface temperature (SST) fields along Rex’s track. During the fast-moving phase of Rex, SSC simulated by the MRI.COM was caused by shear-induced VTM on the right side of the track. During the slowly-moving phase, on the other hand, the Ekman-pumping area mostly overlapped the VTM area right behind Rex’s center. During the recurvature phase, cool water transported by the upwelling was more efficiently entrained into a mixed layer by the VTM for nearly a 1 near-inertial period after the passage of Rex. We then modified the entrainment formulation of Deardorff (1983), which was incorporated into a slab mixed-layer ocean model (SOM) so as to fit to the results simulated by the MRI.COM. The principal modifications are as follows: (1) consideration of turbulent kinetic energy (TKE) production caused by surface wave breaking; (2) increase in the coefficient for estimating dissipation to balance with TKE production due to turbulent transport; and (3) changing the initial guess for the critical Richardson number. These modifications led to an improvement of SST simulations by the SOM. The impact of the modifications on simulated SSTs turned out to be more significant than the impacts of initial mixed-layer depth and the difference between diurnally-varying and daily mean short-wave radiation.  相似文献   

3.
Analyses of factors forming offshore SST anomaly(O-SSTA) in China seas   总被引:1,自引:1,他引:0  
INTRoDUCTIONThestatusofChinaseasisverycomplicated.First,itisoftendisturbedbystrongsynopticsy8tems,suchastheadvanceandretreatofthesubtropichighs,theactivityofthetyphoonsandthecoldwavesetc;next,ithascomplexwater-systemswhicharecontrolledbyaplanetary-scalecurrentsyStemofKuroshio;inaddition,italsohasacomplicatedtopographyandwidecontinen-talshelves(about4OOkmwide).Underthesecircumstances,theSSTvariesObviouslythrough-outtheyear.OneoutstandingvariationistheoffshoreSSTanomaly,namely,crSSTA.…  相似文献   

4.
Based on in-situ observation,satellite and reanalysis data,responses of the western North Pacific subtropical ocean(WNPSO)to the slow-moving category 5 super typhoon Nanmadol in 2011 are analyzed.The dynamical response is dominated by near-inertial currents and Ekman currents with maximum amplitude of 0.39m/s and 0.15m/s,respectively.The near-inertial currents concentrated around 100m below the sea surface and had an e-folding timescale of 4 days.The near-inertial energy propagated both upward and downward,and the vertical phase speed and wavelength were estimated to be 5m/h and 175m,respectively.The frequency of the near-inertial currents was blue-shifted near the surface and redshifted in ocean interior which may relate to wave propagation and/or background vorticity.The resultant surface cooling reaches-4.35℃ and happens when translation speed of Nanmadol is smaller than 3.0m/s.When Nanmadol reaches super typhoon intensity,the cooling is less than 3.0℃ suggesting that the typhoon translation speed plays important roles as well as typhoon intensity in surface cooling.Upwelling induced by the slow-moving typhoon wind leads to typhoon track confined cooling area and the right-hand bias of cooling is slight.The mixed layer cooling and thermocline warming are induced by wind-generated upwelling and vertical entrainment.Vertical entrainment also led to mixed layer salinity increase and thermocline salinity decrease,however,mixed layer salinity decrease occurs at certain stations as well.Our results suggest that typhoon translation speed is a vital factor responsible for the oceanic thermohaline and dynamical responses,and the small Mach number(slow typhoon translation speed)facilitate development of Ekman current and upwelling.  相似文献   

5.
Category 5 typhoon Megi was the most intense typhoon in 2010 of the world. It lingered in the South China Sea (SCS) for 5 d and caused a significant phytoplankton bloom detected by the satellite image. In this study, the authors investigated the ocean biological and physical responses to typhoon Megi by using chlorophylla (chla) concentration, sea surface temperature (SST), sea surface height anomaly (SSHA), sea surface wind measurements derived from different satellites and in situ data. The chla concentration (>3 mg/m3) increased thirty times in the SCS after the typhoon passage in comparison with the mean level of October averaged from 2002 to 2009. With the relationship of wind stress curl and upwelling, the authors found that the speed of upwelling was over ten times during typhoon than pretyphoon period. Moreover, the mixed layer deepened about 20 m. These reveal that the enhancement of chla concentration was triggered by strong vertical mixing and upwelling. Along the track of typhoon, the maximum sea surface cooling (6-8℃) took place in the SCS where the moving speed of typhoon was only 1.4-2.8 m/s and the mixed layer depth was about 20 m in pretyphoon period. However, the SST drop at the east of the Philippines is only 1-2℃ where the translation speed of typhoon was 5.5-6.9 m/s and the mixed layer depth was about 40 m in pretyphoon period. So the extent of the SST drop was probably due to the moving speed of typhoon and the depth of the mixed layer. In addition, the region with the largest decline of the sea surface height anomaly can indicate the location where the maximum cooling occurs.  相似文献   

6.
Many typhoons pass through the East China Sea(ECS) and the oceanic responses to typhoons on the ECS shelf are very energetic. However, these responses are not well studied because of the complicated background oceanic environment. The sea surface temperature(SST) response to a severe Typhoon Rananim in August 2004 on the ECS shelf was observed by the merged cloud-penetrating microwave and infrared SST data. The observed SST response shows an extensive SST cooling with a maximum cooling of 3°C on the ECS shelf and the SST cooling lags the typhoon by about one day. A numerical model is designed to simulate the oceanic responses to Rananim.The numerical model reasonably simulates the observed SST response and thereby provides a more comprehensive investigation on the oceanic temperature and current responses. The simulation shows that Rananim deepens the ocean mix layer by more than 10 m on the ECS shelf and causes a cooling in the whole mixed layer. Both upwelling and entrainment are responsible for the cooling. Rananim significantly deforms the background Taiwan Warm Current on the ECS shelf and generates strong Ekman current at the surface. After the typhoon disappears, the surface current rotates clockwise and vertically, the current is featured by near inertial oscillation with upward propagating phase.  相似文献   

7.
“暖池”表层对大气局地强迫的响应特征   总被引:4,自引:2,他引:4  
刘秦玉  王启 《海洋与湖沼》1995,26(6):658-664
利用湍流动能垂直混合模式和TOGA-COARE加强观测期的观测资料,对“暖池”上混合层的垂直混合过程进行数值试验和数值模拟,分析表层温度、盐度的变化特征。结果表明:TKE模式可以较好地模拟混层,尤其是表层温度、盐度对大气局地强迫的响应;太阳辐射是热源,感热、潜热通量等会造成“暖池”上混合层的温度降低,“暖池”对大气释放热量;降水有利于“淡水盖”形成和维持,从则使层结稳定,SST升高。但在气温低于海  相似文献   

8.
中国近海异常海温数值预报模式研究Ⅰ.模式的建立   总被引:10,自引:3,他引:7  
本文从近海异常海温的定义和形成机制出发,在原有的海表温度数值预报模式的基础上,考虑了上层海洋对强天气强迫的动力响应和浅海效应,前者包括卷入和卷出、冷水抽吸和暖水辐聚,后者包括潮混合和浅海对短波吸收之影响,从而建立了一个以混合层的温、流、深度为变量的中国近海异常海温数值预报模式.  相似文献   

9.
利用Argo剖面浮标分析上层海洋对台风“布拉万”的响应   总被引:9,自引:2,他引:7  
In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage of Typhoon Bolaven, the deepening of mixed layer depth(MLD), and the cooling of mixed layer temperature(MLT) were observed. The changes in mixed layer salinity(MLS) showed an equivalent number of increasing and decreasing because the typhoon-induced salinity changes in the mixed layer were influenced by precipitation, evaporation, turbulent mixing and upwelling of thermocline water. The deepening of the MLD and the cooling of the MLT indicated a significant rightward bias, whereas the MLS was freshened to the left side of the typhoon track and increased on the other side. Intensive temperature and salinity profiles observed by Iridium floats make it possible to view response processes in the upper ocean after the passage of a typhoon. The cooling in the near-surface and the warming in the subsurface were observed by two Iridium floats located to the left side of the cyclonic track during the development stage of the storm, beyond the radius of maximum winds relative to the typhoon center. Water salinity increases at the base of the mixed layer and the top of the thermocline were the most obvious change observed by those two floats. On the right side of the track and near the typhoon center when the typhoon was intensified, the significant cooling from sea surface to a depth of 200×104 Pa, with the exception of the water at the top of the thermocline, was observed by the other Iridium float. Owing to the enhanced upwelling near the typhoon center, the water salinity in the near-surface increased noticeably. The heat pumping from the mixed layer into the thermocline induced by downwelling and the upwelling induced by the positive wind stress curl are the main causes for the different temperature and salinity variations on the different sides of the track. It seems that more time is required for the anomalies in the subsurface to be restored to pretyphoon conditions than for the anomalies in the mixed layer.  相似文献   

10.
Time series changes in sea surface temperature (SST), chlorophyll a (Chl a), nutrients (PO4, NO3), and sea winds, which correlated with the passage of Typhoon Shanshan in the East/Japan Sea (EJS), are illustrated using satellite data for Chl a, SST, sea winds, and in situ data for nutrients and water temperature. The sea-surface cooling (SSC) effect by the passage of the typhoon was higher at stations nearer to the center compared to stations further from the center. The SSC effect at stations in the colder water region (on the left side of the typhoon’s track) was higher than at stations in the Tsushima Warm Current region (on the right side of the typhoon). The SSC effect continued for approximately 10 days after the passage of the typhoon. The Chl a concentration at all stations increased after the passage of the typhoon. This increase continued for a period of approximately 10 days, but the duration period at each station varied with distance from the typhoon center. Changes in Chl concentrations at stations within a 2° distance on both sides from the typhoon’s center were higher than that at other stations. The changes in Chl a by the passage of the typhoon were measured at approximately 0.3–1.0 mg/m3 along the moving path of the typhoon. Phosphate and nitrate changes were inversely correlated with the water temperature changes; the nutrient concentration increased with the passage of the typhoon. Like the changes in SST, changes in nutrient concentrations on the left side of the typhoon’s track were higher compared to those at the center and the right side.  相似文献   

11.
连续台风对海表温度和海表高度的影响   总被引:1,自引:0,他引:1  
利用多卫星观测资料,分析了2008年9月3个连续台风前后的海表温度(SST)和海表高度距平(SSHA)的时空变化特征,并探讨了影响其变化的主要因子。结果表明:(1)3个台风引起了强烈的上升流(1×10-5~150×10-5 m/s),海表显著降温(1~6 ℃),海表高度也有不同程度降低(10~50 cm);(2)台风引起的SST最大降温中心与SSHA负值或中尺度冷涡的区域中心十分吻合,同时台风使得先前存在的海洋中尺度冷涡得到加强;(3)同一区域台风对SST影响程度大小受台风的强度、移动速度以及台风对海面强迫时间等因素控制;(4)在原先SSHA为正值的海域,3个台风连续强迫下使得局地洋面形成一个SSHA为负值的中尺度涡,这与单一"打转"台风强迫海洋生成中尺度涡的现象不同。因此,对于西北太平洋海域而言,频发的台风在中尺度涡生消演变过程中的影响应不容忽视。  相似文献   

12.
In the present study an attempt has been made to investigate the impact of salinity stratification on the SST during the tropical cyclone (TC) passage. In this context, a severe post monsoon cyclone, Sidr, (Category 4) that developed over the south-eastern Bay of Bengal (BoB) during 11–16 November, 2007 was chosen as a case study. Pre-existence of a thick barrier layer (BL), temperature inversions and a higher effective oceanic layer for cyclogenesis (EOLC) were noticed along the path of the Sidr cyclone. The analysis of available Argo floats along the Sidr cyclone track also revealed less cooling during as well as after its passage as was reported from satellite derived SST. The role of BL on Sidr induced sea surface cooling was investigated using a diagnostic mixed layer model. Model results also depict the reduced sea surface cooling during the passage of Sidr. This is attributed to the presence of BL which results in the inhibition of the entrainment of cool thermocline water into the shallow mixed layer. Climatological as well as in situ observations of tropical cyclone heat potential (TCHP) and EOLC shows that the Sidr cyclone propagated towards the regions of higher EOLC.  相似文献   

13.
Ocean temperature responses to Typhoon Mstsa in the East China Sea   总被引:1,自引:1,他引:0  
The MASNUM wave-tide-circulation coupled model, with 21 layers in the vertical and (1/8) °horizontal resolution, was employed to investigate the oceanic responses to Typhoon Mstsa which traversed the East China Sea (ECS) during the period of 4 - 6 August, 2005. Numerical experiment results are analyzed and compared with observation. The responses of the sea surface temperature (SST), in a focused area of (27° -29°N, 121° - 124°E), include heating and cooling stages. The heating is mainly due to warm Kuroshio water transportation and downwelling due to the water accumulation. In the cooling stage, the amplitude of the simulated cold wake ( -3℃ ), located on the right side of this typhoon track, is compared quite well with that of the satellite observed SST data. The wave-induced mixing(Bv) plays a key role for the SST cooling. Bv still plays a leading role, which accounts for 36%, for the ocean temperature drop in the upper ocean of 0 - 40 m, while the upwelling is responsible for 84% of the cooling for the lower layer of 40 - 70 m. The mixed layer depth (MLD) increased quickly from 28 to 50 m in the typhoon period. However, the simulated MLD without the wave-induced vertical mixing, evolution from 13 to 32 m, was seriously underestimated. The surface wave is too important to be ignored for the ocean responses to a typhoon.  相似文献   

14.
To explore the causes of the winter shallow mixed layer and high sea surface temperature (SST) along the strong Kuroshio jet from the East China Sea to the upstream Kuroshio extension (25.5°N–150°E) during 1988–1994 when the Japanese sardine stocks collapsed, high-resolution ocean general circulation model (OGCM) hindcast data are analyzed with a bulk mixed layer model which traces particles at the mixed layer base. The shallow mixed layer and high SST along the Kuroshio jet are mainly caused by the acceleration of the Kuroshio current velocity and the reduction of the surface cooling. Because the acceleration reduces the time during which the mixed layer is exposed to wintertime cooling, deepening and cooling of the winter mixed layer are restricted. The weaker surface cooling due to less severe meteorological forcing also causes the shallow mixed layer and the high SST. The impact of the strong heat transport along the Kuroshio extends to the southern recirculation gyre of the Kuroshio/Kuroshio extension regions; previous indications that the Japanese sardine recruitment is correlated with the winter SST and the mixed layer depth (MLD) in the Kuroshio extension recirculation region could be related to the velocity, SST, and MLD near the Kuroshio axis which also could affect the variability of North Pacific subtropical water.  相似文献   

15.
海洋表层温度对台风"蔷薇"路径和强度预测精度的影响   总被引:1,自引:0,他引:1  
基于中尺度大气模式WRF(Weather Research and Forecasting Model),首先对2007年3次船舶辐射通量观测进行模拟,以检验WRF对长波和短波辐射通量的模拟能力,结果表明使用中国近海海洋环境数值预报系统环流模式POM(Princeton Ocean Model)模拟的高时空分辨率的海洋表层温度能够显著改进短波辐射通量的模拟,而对长波辐射通量模拟的改进不明显。然后,将业务化运行的中国近海海洋环境数值预报系统后报的逐时海洋表面温度(SST)作为WRF底边界条件,对2008年15号强台风"蔷薇"(Jangmi)过程进行了数值后报试验。结果表明,与使用NCEP/NCAR的SST试验后报的台风中心位置偏差相比,使用高时空分辨率的SST能够较为显著地改善"蔷薇"的路径模拟,台风中心位置模拟偏差减少11%,尤其在台风减弱阶段,台风中心位置模拟偏差减少37%。台风强度在台风发展的不同阶段对下垫面SST的变化敏感性不同。台风路径附近的海表面温度下降会导致海洋向大气输送的热量减少从而减弱台风强度。  相似文献   

16.
基于中尺度大气模式WRF(Weather Research and Forecasting Model),首先对2007年3次船舶辐射通量观测进行模拟,以检验WRF对长波和短波辐射通量的模拟能力,结果表明使用中国近海海洋环境数值预报系统环流模式POM(Princeton Ocean Model)模拟的高时空分辨率的海洋表层温度能够显著改进短波辐射通量的模拟,而对长波辐射通量模拟的改进不明显。然后,将业务化运行的中国近海海洋环境数值预报系统后报的逐时海洋表面温度(SST)作为WRF底边界条件,对2008年15号强台风"蔷薇"(Jangmi)过程进行了数值后报试验。结果表明,与使用NCEP/NCAR的SST试验后报的台风中心位置偏差相比,使用高时空分辨率的SST能够较为显著地改善"蔷薇"的路径模拟,台风中心位置模拟偏差减少11%,尤其在台风减弱阶段,台风中心位置模拟偏差减少37%。台风强度在台风发展的不同阶段对下垫面SST的变化敏感性不同。台风路径附近的海表面温度下降会导致海洋向大气输送的热量减少从而减弱台风强度。  相似文献   

17.
南海上层对台风响应的模拟研究   总被引:1,自引:0,他引:1  
利用中尺度海气耦合模式对2006年第1号台风Chanchu海气相互作用的模拟结果.分析了南海上层海洋对台风的热力和动力响应特征.研究发现:模拟的chanchu影响下南海SST分布与观测较为符合;与SST降低相对应的是混合层深度普遍增加,较大的海面冷却对应了较大的混合层加深;在台风作用下,海面上产生了一个气旋式环流,随着台风中心的移动而移动.流场呈现明显的不对称结构;模拟结果表明南海对台风的响应具有很明显的近惯性振荡特征.  相似文献   

18.
以海洋上部混合层(UML)存在为基础,建立了考虑UML深度变化的二维层模式。探讨有限区域的短期海表温(SST)业务数值预报模式。预报方程有三:低频流(黑潮及其分支)的无幅散化余流方程组、动力预报方程和模式物理学方程。本模式用于3~5d的SST预报,同时也给出UML平均漂流的预报。指出在大风状况下的降温,UML深是一个重要的影响因子,并与UML为平底时情况进行了比较。  相似文献   

19.
A mesoscale coupled atmosphere–ocean model has been developed based on the GRAPES(Global and Regional Assimilation and Prediction System) regional typhoon model(GRAPES_TYM) and ECOM-si(estuary, coast and ocean model(semi-implicit)). Coupling between the typhoon and ocean models was conducted by exchanging wind stress, heat, moisture fluxes, and sea surface temperatures(SSTs) using the coupler OASIS3.0. Numerical prediction experiments were run with and without coupling for the case of Typhoon Muifa in the western North Pacific. To investigate the impact of using more accurate SST information on the simulation of the track and the intensity of Typhoon Muifa, experiments were also conducted using increased SST resolution in the initial condition field of the control test. The results indicate that increasing SST resolution in the initial condition field somewhat improved the intensity forecast, and use of the coupled model improved the intensity forecast significantly, with mean absolute errors in maximum wind speed within 48 and 72 h reduced by 32% and 20%, respectively. Use of the coupled model also resulted in less pronounced over-prediction of the intensity of Typhoon Muifa by the GRAPES_TYM. Moreover, the effects of using the coupled model on the intensity varied throughout the different stages of the development of Muifa owing to changes in the oceanic mixed layer depth. The coupled model had pronounced effects during the later stage of Muifa but had no obvious effects during the earlier stage. The SSTs predicted by the coupled model decreased by about 5–6°C at most after the typhoon passed, in agreement with satellite data. Furthermore, based on analysis on the sea surface heat flux, wet static energy of the boundary layer, atmospheric temperature, and precipitation forecasted by the coupled model and the control test, the simulation results of this coupled atmosphere–ocean model can be considered to reasonably reflect the primary mechanisms underlying the interactions between tropical cyclones and oceans.  相似文献   

20.
The response of the eastern tropical Indian Ocean(ETIO) to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model(CESM). A significant positive asymmetry in sea surface temperature(SST) is found over the ETIO—the warming responses to the positive forcing exceeds the cooling to the negative forcing. A mixed layer heat budget analysis is carried out to identify the mechanisms responsible for the SST asymmetry. Results show that it is mainly ascribed to the ocean dynamical processes, including vertical advections and diffusion. The net surface heat flux, on the contrary, works to reduce the asymmetry through its shortwave radiation and latent heat flux components. The former is due to the nonlinear relationship between SST and cloud, while the latter is resulted mainly from Newtonian damping and air-sea stability effects. Changes in the SST skewness are also evaluated, with more enhanced negative SST skewness over the ETIO found for the cooling than heating scenarios due to the asymmetric thermocline-SST feedback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号