首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neutron signals measured by the Neutron Spectrometer on board the Mars Odyssey satellite are analyzed at Central Elysium Planitia. The neutron currents have variations associated with the boundaries of geological units in all three energy ranges: thermal, epithermal and fast neutron. Geochemical constraints can be derived from the neutron data using macroscopic absorption cross sections. This variable measures the ability of a material to absorb neutrons, giving clues of its chemical composition. The neutron derived chemical constraints are compared with the elemental abundances measured by the Gamma Subsystem, also on board Mars Odyssey. Differences between the two datasets are interpreted to reflect heterogeneities of probed surfaces. The knowledge already derived from other observations and a detailed examination of the GRS datasets are used to determine a general overview of the geology of the region and possible mechanisms of emplacement. The particular role played by chlorine in this scheme is emphasized.  相似文献   

2.
We searched for solar neutrons using the data collected by six detectors from the International Network of Solar Neutron Telescopes and one Neutron Monitor between January 2010 and December 2014. We considered the peak time of the X-ray intensity of thirty five ≥ X1.0 class flares detected by GOES satellite as the most probable production time of solar neutrons. We prepared a light-curve of the solar neutron telescopes and the neutron monitor for each flare, spanning ± 3 h from the peak time of GOES. Based on these light curves, we performed a statistical analysis for each flare. Setting a significance level at greater than 3σ, we report that no statistically significant signals due to solar neutrons were found. Therefore, upper limits are determined by the background level and solar angle of these thirty five solar flares. Our calculation assumed a power-law neutron energy spectrum and an impulsive emission profile at the Sun. The estimated upper limits of the neutron emission are consistent within the order of magnitude of the successful detections of solar neutrons made in solar cycle 23.  相似文献   

3.
A lead-free neutron monitor operating at High Altitude Research Laboratory (HARL), Gulmarg optimized for detecting 2.45 MeV neutron bursts produced during the atmospheric lightning discharges is also concurrently used for studying background neutron component present in the atmosphere. These background neutrons are produced due to the interaction of primary cosmic rays with the atmospheric constituents. In order to study and extract the information about the yield of the neutron production during transient atmospheric lightning discharges, the system is continuously operated to monitor and record the cosmic ray produced background secondary neutrons in the atmosphere. The data analysis of the background neutrons recorded by Lead-Free Gulmarg Neutron Monitor (LFGNM) has convincingly established that the modulation effects due to solar activity phenomena compare very well with those monitored by the worldwide IGY or NM64 type neutron monitors which have optimum energy response relatively towards the higher energy regime of the cosmic rays. The data has revealed various types of modulation phenomena like diurnal variation, Forbush decrease etc. during its entire operational period. However, a new kind of a periodic/seasonal variation pattern is also revealed in the data from September 2007 to September 2012, which is seen to be significantly consistent with the data recorded by Emilio Segre observatory, Israel (ESOI) Neutron Monitor. Interestingly, both these neutron monitors have comparable latitude and altitude. However, the same type of consistency is not observed in the data recorded by the other conventional neutron monitors operating across the globe.  相似文献   

4.
We propose an iterative algorithm for computing the synthesis of heavy elements through the rapid capture of neutrons (r-process) and, at sufficiently high temperatures, protons by simultaneously using two distinct computer codes. One of the codes describes the kinetics of nuclear reactions between light and intermediate chemical elements, which are the source of free neutrons and protons used by the second code to synthesize heavy elements from seed nuclides (isotopes near the iron peak of the cosmic abundance curve). The two codes interact through the neutron and proton reaction channels. We demonstrate the efficiency of our method with an example of the nucleosynthesis in a supernova’s helium shell triggered by the evaporation of neutrons and protons from α particles exposed to the neutrino flux from a collapsing stellar core. In this case, three or four iterations are enough to obtain an almost exact self-consistent solution.  相似文献   

5.
An experiment has been performed to search for the existence of a flux of solar neutrons at the earth using a detector sensitive to neutrons in the energy region 20–120 MeV. The instrument was carried by balloon to an atmospheric depth of 4 g/cm2, from Palestine, Texas on the morning of November 2, 1967 and flown through sunrise and for about 7 hours into the day. Numerous flares of importance 1B or less occurred during the float period. By comparison of night and day counting rates we have deduced that the upper limit to the continuous emission of solar neutrons at the earth is 2 × 10–2 neutrons/cm2 sec in the above energy region. Using a theoretical form for the neutron differential energy spectrum we have expressed this result as an upper limit differential solar neutron flux. If neutrons were emitted in association with any of the small flares then the maximum flux at the earth was less than 4 × 10–2 neutron/cm2 sec in the same energy region. The minimum detectable flux with the present instrument is therefore well below the predicted flux from a 3B flare (e.g., Nov. 12, 1960) of 550 neutrons/cm2 sec.  相似文献   

6.
Response of Alma-Ata neutron monitor for solar neutrons from the 15 June 1991 was studied. We considered this response as a test for various scenarios of proton acceleration during the flare. The analysis of neutron monitor is an evidence in favour of the assumption of two acts of proton acceleration at impulsive and post-impulsive phases of the flare.  相似文献   

7.
As soon as the energies of electrons near the Fermi surface exceed Q, the threshold energy of inverse β-decay, electron capture (EC) dominates inside a neutron star. The high-energy neutrons released by EC will destroy anisotropic 3 P 2 neutron Cooper pairs in the degenerate superfluid. By colliding with the neutrons produced in the process n+(nn↓)→n+n+n, the kinetic energies of the neutrons released by EC will be transformed into thermal energy. A portion of this thermal energy will be transported from the star interior to the star surface by conduction, then converted to a thermal spectrum of soft X-rays and γ-rays. By introducing two important parameters: the Landau level-superfluid modified factor and the overal soft X/γ-ray efficiency coefficient, we compute the theoretical luminosity L X of a magnetar under our model and plot a diagram of L X as a function of magnetic field strength B. Numerical calculations based on our model agree well with the observed properties of magnetar candidates.  相似文献   

8.
On the basis of solar flare forecasts, balloon flights were made from Hyderabad, India (vertical geomagnetic threshold rigidity of 16.9 GV), to detect the possible emission of high energy neutrons during solar flares. The detector comprised of a central plastic scintillator, completely surrounded by an anticoincidence plastic scintillator shield. The instrument responds to neutrons of about 15–150 MeV and gamma rays of about 5–30 MeV with about the same efficiency. The detector was flown to an atmospheric depth of 25 g cm-2 on February 26, 1969; while the balloon was at ceiling a flare of importance 2B and one of 1N occurred. No perceptible flare associated increase in the counting rate was observed. Using the observed counting rates, an upper limit of 1.2 × 10-2 neutrons cm-2 sec-1 is obtained for the first time for a flare of importance 2B for neutrons of energy 15–150 MeV. The corresponding upper limit for gamma rays of energy 5–30 MeV is found to be 10-2 photons cm-2 sec-1. The neutron flux limits are compared with the recent calculations of Lingenfelter.  相似文献   

9.
Valdés-Galicia  J.F.  Dorman  L.I.  Rodríguez  M. 《Solar physics》2000,191(2):409-417
We revise the published neutron monitor raw data for the increase caused by the solar neutron event of the 24 May 1990. With these data we calculate the attenuation length, , of solar neutrons in the Earth's atmosphere assuming either a minimum path as given by the spread of elastically scattered neutrons, or using the minimum mass path estimated by Smart, Shea, and O'Bren (1995) due to an atmospheric refraction effect. In both cases reduces to a value around 100 g cm–2, which is more in accordance with data on neutron cross-sections (Shibata, 1994). These two phenomenological calculations suggest that solar neutrons do not propagate in straight lines in the atmosphere. The previous estimate of the attenuation length, =208 g cm–2, was calculated assuming straight-ahead transport (Smart, Shea, and O'Bren, 1995). Dorman, Valdes-Galicia, and Dorman (1999) performed a numerical simulation and an analytical approximation to the problem of solar neutron scattering and attenuation in the Earth's atmosphere. These solutions incorporate the refraction effect as a natural consequence of the greater absorption experienced by neutrons scattered to large zenith angles. They are able to reproduce the normalised observed counting rates of neutron monitors for this event.  相似文献   

10.
The SONG instrument onboard the CORONAS-F satellite recorded gamma-ray emission with energy above 500 keV in 28 solar flares over three years of its in-orbit operation. According to the GOES classification, the X-ray importance of these flares lay within the range M1.4-X28. The gamma-ray energy recorded by SONG exceeded 4 MeV in 16 flares. Gamma-ray emission with energy up to 100 MeV was recorded in three events, more specifically, on August 25, 2001, October 28, 2003, and November 4, 2003. Increases in the count rate in the SONG channels that recorded neutrons with energies above 20 MeV were found during these three events. The energies of the recorded neutrons were estimated for the neutron increases. The time dependence of the neutron increases was compared with data from high-altitude ground-based neutron monitors that could, in principle, record the arrival of high-energy neutrons from the Sun. It should be noted that we detected series of flares with gamma-ray emission generated by the same active region (AR). The series in the last decade of August 2002 (AR NOAA 0069), the end of May 2003 (AR NOAA 0365), and the famous period of extreme solar activity in October–November 2003 associated with AR NOAA 0486 and AR NOAA 0501 are quite revealing. The catalog can be of use for future statistical and correlation analyses of solar flares.  相似文献   

11.
We present an analysis of the long-term evolution of outbursts in the neutron star soft X-ray transient GRS 1747–312. Observations taken from ASM/RXTE, in the 1.5–12 keV passband, are utilized. We reveal a cyclic behavior in the residuals of the outburst recurrence time with respect to the mean value of TC = 136 ± 2 days. The profile of this cycle is approximately sinusoidal; the remaining cycle-to-cycle fluctuations possess a considerably smaller amplitude. We find that, although the peak flux of the outbursts displays a significant scatter at a given phase of the cycle, the most luminous outbursts occur after the longest TC. The fluence displays a large scatter for the individual outbursts and tends to decrease with time. We argue that although the cycle-length of ~5.4 yr is compatible with that of the presumed magnetic activity of the late-type donor, it cannot be explained by variations of the mass outflow from the donor to the disk. In our interpretation, the stellar activity is translated to variations of TC via interaction of the magnetic field of the spots on the donor with the magnetic field of the disk. This gives rise to a variable efficiency of the removal of the angular momentum from the quiescent disk during the activity cycle of the donor. This mechanism can be strengthened by accompanying variations of the radius of the optically thin advection-dominated accretion flow in quiescence. We show that the peak mass accretion rate onto the neutron star in the individual outbursts of GRS 1747–312 is considerably more stable than in two other similar systems with frequent outbursts, Aql X-1 and 4U 1608–52; this allows the cyclic modulation of TC to show itself in GRS 1747–312.  相似文献   

12.
The first increase in neutron monitor count rate during the ground-level event on 24 May 1990 was interpreted by Shea et al. (1991) as a consequence of an arrival of flare neutrons. Debrunner et al. (1991) rejected the neutron hypothesis and proposed that the first neutron monitor increase was due to the arrival of primary protons. We have show that neutron monitor data do not contradict the hypothesis of a neutron origin of the first increase of ground-level event on 24 May 1990.  相似文献   

13.
The constraints on the properties of neutron star matter from the mass of neutron star PSR J1614-2230 are examined in the framework of the relativistic mean field theory. We find that there are little differences between the σ potentials of large mass neutron star and those of canonnical mass neutron star. For potentials of ω, ρ, neutrons and electrons, the values corresponding to the large mass neutron star are larger than those to the canonnical mass neutron star as the baryon number density is more than a certain value. We also find that for the relative particle number density of electrons, muons, neutrons and protons and the pressure of the neutron star, the values corresponding to the large mass neutron star are far larger than those to the canonnical mass neutron star. For the relative particle number density of hyperons Λ, Σ?, Σ0, Σ+ and Ξ?, the values corresponding to the large mass neutron star are far smaller than those to the canonnical mass neutron star. These mean that the larger mass of neutron star is more advantageous to the production of protons but is not advantageous to the production of hyperons.  相似文献   

14.
Solar neutron events provide important opportunities to explore particle acceleration mechanisms using data from ground-based detectors and spacecrafts. Energetic neutrons carry crucial physics information of the acceleration site, such as energy spectrum, atmospheric elements of solar flare, scale height, convergence of the magnetic field and magnetohydrodynamic turbulence. Here 12 representative solar neutron events observed on the Earth, together with X and γ-ray observations from spacecrafts are presented. Theoretical approaches on solar neutrons that are carried out mainly through the Monte Carlo simulation are compared with the observation data, and the constraints of different theoretical models on the observations are to be summarized.  相似文献   

15.
Kocharov  L. G.  Torsti  J.  Vainio  R.  Kovaltsov  G. A.  Usoskin  I. G. 《Solar physics》1996,169(1):181-207
A joint analysis of neutron monitor and GOES data is performed to study the production of high-energy neutrons at the Sun. The main objects of the research are the spectrum of >50 MeV neutrons and a possible spectrum of primary (interacting) protons which produced those neutrons during the major 1990 May 24 solar flare. Different possible scenarios of the neutron production are presented. The high magnitude of the 1990 May 24 neutron event provided an opportunity to detect neutron decay protons of higher energies than ever before. We compare predictions of the proposed models of neutron production with the observations of protons on board GOES 6 and 7. It is shown that the precursor in high-energy GOES channels observed during 20:55–21:09 UT can be naturally explained as originating from decay of neutrons in the interplanetary medium. The ratio of counting rates observed in different GOES channels can ensure the selection of the model parameters.The set of experimental data can be explained in the framework of a scenario which assumes the existence of two components of interacting protons in the flare. A hard spectrum component (the first component) generates neutrons during a short time while the interaction of the second (soft spectrum) component lasts longer. Alternative scenarios are found to be of lesser likelihood. The intensity-time profile of neutron - decay protons as predicted in the framework of the two-component exponential model of neutron production (Kocharov et al., 1994a) is in an agreement with the proton profiles observed on board GOES. We compare the deduced characteristics of interacting high-energy protons with the characteristics of protons escaping into the interplanetary medium. It is shown that, in the 100–1000 MeV range, the spectrum of the second component of interacting protons was close to the spectrum of the prompt component of interplanetary protons. However, it is most likely that, at 300 MeV, the interacting proton spectrum was slightly softer than the spectrum of interplanetary protons. An analysis of gamma-ray emission is required to deduce the spectrum of interacting protons below 100 MeV and above 1 GeV.  相似文献   

16.
The large flare of 11 June 1991 (GOES class X12) was detected by the Total Absorption Shower Counter (TASC) segment of the EGRET gamma-ray telescope on board the Compton Gamma Ray Observatory. Significant gamma-ray emission was observed over the entire energy range to which the TASC was sensitive –1 to 140 MeV. Several phases were identified which showed major changes in the intensity and spectral shape of the flare gamma-rays. Furthermore, a 'delayed' phase during which a response consistent with the detection of energetic neutrons and pion-decay gamma-rays was seen, implying a qualitative change in the spectral shape of the accelerated ion spectrum. The similarity of the characteristics of this delayed phase (pion and energetic neutron production) to those in other large flares hint at a common particle acceleration mechanism.  相似文献   

17.
Using time evolutions of the relevant linearized equations, we study non-axisymmetric oscillations of rapidly rotating and superfluid neutron stars. We consider perturbations of Newtonian axisymmetric background configurations and account for the presence of superfluid components via the standard two-fluid model. Within the Cowling approximation, we are able to carry out evolutions for uniformly rotating stars up to the mass-shedding limit. This leads to the first detailed analysis of superfluid neutron star oscillations in the fast rotation regime, where the star is significantly deformed by the centrifugal force. For simplicity, we focus on background models where the two fluids (superfluid neutrons and protons) corotate, are in β-equilibrium and co-exist throughout the volume of the star. We construct sequences of rotating stars for two analytical model equations of state. These models represent relatively simple generalizations of single fluid, polytropic stars. We study the effects of entrainment, rotation and symmetry energy on non-radial oscillations of these models. Our results show that entrainment and symmetry energy can have a significant effect on the rotational splitting of non-axisymmetric modes. In particular, the symmetry energy modifies the inertial mode frequencies considerably in the regime of fast rotation.  相似文献   

18.
E. L. Chupp 《Solar physics》1988,118(1-2):137-154
We review the current observational knowledge on the production of neutrons in association with solar flares. From a study of the observations it is shown that unique information can be obtained on the spectral properties of accelerated ions produced during the flare. Also, the abundance of 3He/H in the photosphere can be directly determined. We also review the current interpretations of all available neutron observations and in particular highlight the uncertainties, and provide guide posts for future experiments.  相似文献   

19.
Both relativistic and non-relativistic two-fluid models of neutron star cores are constructed, using the constrained variational formalism developed by Brandon Carter and co-workers. We consider a mixture of superfluid neutrons and superconducting protons at zero temperature, taking into account mutual entrainment effects. Leptons, which affect the interior composition of the neutron star and contribute to the pressure, are also included. We provide the analytic expression of the Lagrangian density of the system, the so-called master function, from which the dynamical equations can be obtained. All the microscopic parameters of the models are calculated consistently using the non-relativistic nuclear energy density functional theory. For comparison, we have also considered relativistic mean field models. The correspondence between relativistic and non-relativistic hydrodynamical models is discussed in the framework of the recently developed 4D covariant formalism of Newtonian multifluid hydrodynamics. We have shown that entrainment effects can be interpreted in terms of dynamical effective masses that are larger in the relativistic case than in the Newtonian case. With the nuclear models considered in this work, we have found that the neutron relativistic effective mass is even greater than the bare neutron mass in the liquid core of neutron stars.  相似文献   

20.
Transiently accreting neutron stars in quiescence ( L X ≲1034 erg s−1) have been observed to vary in intensity by factors of few, over time-scales of days to years. If the quiescent luminosity is powered by a hot neutron star core, the core cooling time-scale is much longer than the recurrence time, and cannot explain the observed, more rapid variability. However, the non-equilibrium reactions which occur in the crust during outbursts deposit energy in isodensity shells, from which the thermal diffusion time-scale to the photosphere is days to years. The predicted magnitude of variability is too low to explain the observed variability unless – as is widely believed – the neutrons beyond the neutron-drip density are superfluid. Even then, the variability due to this mechanism in models with standard core neutrino cooling processes is less than 50 per cent – still too low to explain the reported variability. However, models with rapid core neutrino cooling can produce a variability by a factor as great as 20, on time-scales of days to years following an outburst. Thus, the factors of ∼ few intensity variability observed from transiently accreting neutron stars can be accounted for by this mechanism only if rapid core cooling processes are active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号