首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Sediment vibracores and surface samples were collected from the mixed carbonate/siliciclastic inner shelf of west–central Florida in an effort to determine the three-dimensional facies architecture and Holocene geologic development of the coastal barrier-island and adjacent shallow marine environments. The unconsolidated sediment veneer is thin (generally <3 m), with a patchy distribution. Nine facies are identified representing Miocene platform deposits (limestone gravel and blue–green clay facies), Pleistocene restricted marine deposits (lime mud facies), and Holocene back-barrier (organic muddy sand, olive-gray mud, and muddy sand facies) and open marine (well-sorted quartz sand, shelly sand, and black sand facies) deposits. Holocene back-barrier facies are separated from overlying open marine facies by a ravinement surface formed during the late Holocene rise in sea level. Facies associations are naturally divided into four discrete types. The pattern of distribution and ages of facies suggest that barrier islands developed approximately 8200 yr BP and in excess of 20 km seaward of the present coastline in the north, and more recently and nearer to their present position in the south. No barrier-island development prior to approximately 8200 yr BP is indicated. Initiation of barrier-island development is most likely due to a slowing in the Holocene sea-level rise ca. 8000 yr BP, coupled with the intersection of the coast with quartz sand deposits formed during Pleistocene sea-level highstands. This study is an example of a mixed carbonate/siliciclastic shallow marine depositional system that is tightly constrained in both time and sea-level position. It provides a useful analog for the study of other, similar depositional systems in both the modern and ancient rock record.  相似文献   

2.
The innermost shelf off Sarasota, Florida was mapped using sidescan-sonar imagery, seismic-reflection profiles, surface sediment samples, and short cores to define the transition between an onshore siliciclastic sand province and an offshore carbonate province and to identify the processes controlling the distribution of these distinctive facies. The transition between these facies is abrupt and closely tied to the morphology of the inner shelf. A series of low-relief nearly shore-normal ridges characterize the inner shelf. Stratigraphically, the ridges are separated from the underlying Pleistocene and Tertiary carbonate strata by the Holocene ravinement surface. While surficial sediment is fine to very-fine siliciclastic sand on the southeastern sides of the ridges and shell hash covers their northwestern sides, the cores of these Holocene deposits are a mixture of both of these facies. Along the southeastern edges of the ridges the facies boundary coincides with the discontinuity that separates the ridge deposits from the underlying strata. The transition from siliciclastic to carbonate sediment on the northwestern sides of the ridges is equally abrupt, but it falls along the crests of the ridges rather than at their edges. Here the facies transition lies within the Holocene deposit, and appears to be the result of sediment reworking by modern processes. This facies distribution primarily appears to result from south-flowing currents generated during winter storms that winnow the fine siliciclastic sediment from the troughs and steeper northwestern sides of the ridges. A coarse shell lag is left armoring the steeper northwestern sides of the ridges, and the fine sediment is deposited on the gentler southeastern sides of the ridges. This pronounced partitioning of the surficial sediment appears to be the result of the siliciclastic sand being winnowed and transported by these currents while the carbonate shell hash falls below the threshold of sediment movement and is left as a lag. The resulting facies boundaries on this low-energy, sediment-starved inner continental shelf are of two origins which both are tied to the remarkably subtle ridge morphology. Along the southeastern sides of the ridges the facies boundary coincides with a stratigraphic discontinuity that separates Holocene from the older deposits while the transition along the northwestern sides of the ridges is within the Holocene deposit and is the result of sediment redistribution by modern processes.  相似文献   

3.
A regional study of the Holocene sequence onlapping the west-central Florida Platform was undertaken to merge our understanding of the barrier-island system with that of the depositional history of the adjacent inner continental shelf. Key objectives were to better understand the sedimentary processes, sediment accumulation patterns, and the history of coastal evolution during the post-glacial sea-level rise. In the subsurface, deformed limestone bedrock is attributed to mid-Cenozoic karstic processes. This stratigraphic interval is truncated by an erosional surface, commonly exposed, that regionally forms the base of the Holocene section. The Holocene section is thin and discontinuous and, north or south of the Tampa Bay area, is dominated by low-relief sand-ridge morphologies. Depositional geometries tend to be more sheet-like nearshore, and mounded or ridge-like offshore. Sand ridges exhibit 0.5–4 m of relief, with ridge widths on the order of 1 km and ridge spacing of a few kilometers. The central portion of the study area is dominated nearshore by a contiguous sand sheet associated with the Tampa Bay ebb-tidal delta. Sedimentary facies in this system consist mostly of redistributed siliciclastics, local carbonate production, and residual sediments derived from erosion of older strata. Hardground exposures are common throughout the study area. Regional trends in Holocene sediment thickness patterns are strongly correlated to antecedent topographic control. Both the present barrier-island system and thicker sediment accumulations offshore correlate with steeper slope gradients of the basal Holocene transgressive surface. Proposed models for coastal evolution during the Holocene transgression suggest a spatial and temporal combination of back-stepping barrier-island systems combined with open-marine, low-energy coastal environments. The present distribution of sand resources reflects the reworking of these earlier deposits by the late Holocene inner-shelf hydraulic regime.  相似文献   

4.
High-resolution side-scan mosaics, sediment analyses, and physical process data have revealed that the mixed carbonate/siliciclastic, inner shelf of west-central Florida supports a highly complex field of active sand ridges mantled by a hierarchy of bedforms. The sand ridges, mostly oriented obliquely to the shoreline trend, extend from 2 km to over 25 km offshore. They show many similarities to their well-known counterparts situated along the US Atlantic margin in that both increase in relief with increasing water depth, both are oriented obliquely to the coast, and both respond to modern shelf dynamics. There are significant differences in that the sand ridges on the west-central Florida shelf are smaller in all dimensions, have a relatively high carbonate content, and are separated by exposed rock surfaces. They are also shoreface-detached and are sediment-starved, thus stunting their development. Morphological details are highly distinctive and apparent in side-scan imagery due to the high acoustic contrast. The seafloor is active and not a relict system as indicated by: (1) relatively young AMS 14C dates (<1600 yr BP) from forams in the shallow subsurface (1.6 meters below seafloor), (2) apparent shifts in sharply distinctive grayscale boundaries seen in time-series side-scan mosaics, (3) maintenance of these sharp acoustic boundaries and development of small bedforms in an area of constant and extensive bioturbation, (4) sediment textural asymmetry indicative of selective transport across bedform topography, (5) morphological asymmetry of sand ridges and 2D dunes, and (6) current-meter data indicating that the critical threshold velocity for sediment transport is frequently exceeded. Although larger sand ridges are found along other portions of the west-central Florida inner shelf, these smaller sand ridges are best developed seaward of a major coastal headland, suggesting some genetic relationship. The headland may focus and accelerate the N–S reversing currents. An elevated rock terrace extending from the headland supports these ridges in a shallower water environment than the surrounding shelf, allowing them to be more easily influenced by currents and surface gravity waves. Tidal currents, storm-generated flows, and seasonally developed flows are shore-parallel and oriented obliquely to the NW–SE trending ridges, indicating that they have developed as described by the Huthnance model. Although inner shelf sand ridges have been extensively examined elsewhere, this study is the first to describe them in a low-energy, sediment-starved, dominantly mixed siliciclastic/carbonate sedimentary environment situated on a former limestone platform.  相似文献   

5.
The west-central Florida inner shelf represents a transition between the quartz-dominated barrier-island system and the carbonate-dominated mid-outer shelf. Surface sediments exhibit a complex distribution pattern that can be attributed to multiple sediment sources and the ineffectiveness of physical processes for large-scale sediment redistribution. The west Florida shelf is the submerged extension of the Florida carbonate platform, consisting of a limestone karst surface veneered with a thin unconsolidated sediment cover. A total of 498 surface sediment samples were collected on the inner shelf and analyzed for texture and composition. Results show that sediment consists of a combination of fine quartz sand and coarse, biogenic carbonate sand and gravel, with variable but subordinate amounts of black, phosphorite-rich sand. The carbonate component consists primarily of molluskan fragments. The distribution is patchy and discontinuous with no discernible pattern, and the transition between sediment types is generally abrupt. Quartz-rich sediment dominates the inner 15 km north of the entrance into Tampa Bay, but south of the Bay is common only along the inner 3 km. Elsewhere, carbonate-rich sediment is the predominate sediment type, except where there is little sediment cover, in which cases black, phosphorite-rich sand dominates. Sediment sources are likely within, or around the periphery of the basin. Fine quartz sand is likely reworked from coastal units deposited during Pleistocene sea-level high stands. Carbonate sand and gravel is produced by marine organisms within the depositional basin. The black, phosphorite-rich sand likely originates from the bioerosion and reworking of the underlying strata that irregularly crop out within the study area. The distribution pattern contains elements of both storm- and tide-dominated siliciclastic shelves, but it is dictated primarily by the sediment source, similar to some carbonate systems. Other systems with similar sediment attributes include cool-water carbonate, sediment-starved, and mixed carbonate/siliciclastic systems. This study suggests a possible genetic link among the three systems.  相似文献   

6.
Barrier island stratigraphy and Holocene history of west-central Florida   总被引:4,自引:0,他引:4  
Although the morphology of the barrier-inlet system along the west-central Florida coast is quite complicated, the stratigraphy of these barriers is rather simple. The basal Holocene unit in most cores is an organic-rich, muddy sand that represents a vegetated, paralic marine, coastal environment similar to that which is north and south of the present barrier system. Above that unit is a muddy, bioturbated sand that displays a marine fauna at most locations but also contains Crassostrea virginica in a few places. These sediments accumulated in a low-energy marine setting that may or may not have been protected by a barrier island. Much of this facies also represents sediment that was delivered as washover deposits in an intertidal or subtidal setting and was subsequently bioturbated. The facies that can be attributed to a barrier island with some certainty are no more than 3000 years old, and on most islands, are much younger. These are the shelly sand and sorted sand facies. The shelly strata represent deposition in nearshore, beach, supratidal washover or intertidal spillover environments, and tidal inlet and tidal delta channels, whereas the sorted sand is typical of eolian deposition in dunes or the backbeach and some tidal delta elements. The presence of Holocene oyster beds offshore of a present barrier suggests that some of these islands formed significantly offshore and moved to their present position through washover. It is likely that most of these barriers initially formed through upward shoaling by waves. Although there is significant morphologic difference between the wave-dominated and mixed-energy, drumstick barrier islands, their stratigraphy is quite similar. The only significant difference is the presence of extensive progradation on at least part of the drumstick islands and a relatively high amount of former washover deposits on the wave-dominated type.  相似文献   

7.
The purpose of this study was to determine if and how a large, modern estuarine system, situated in the middle of an ancient carbonate platform, has affected its adjacent inner shelf both in the past during the last, post-glacial sea-level rise and during the present. An additional purpose was to determine if and how this inner shelf seaward of a major estuary differed from the inner shelves located just to the north and south but seaward of barrier-island shorelines. Through side-scan sonar mosaicking, bathymetric studies, and ground-truthing using surface grab samples as well as diver observations, two large submarine sand plains were mapped – one being the modern ebb-tidal delta and the other interpreted to be a relict ebb-tidal delta formed earlier in the Holocene. The most seaward portion of the inner shelf studied consists of a field of lobate, bathymetrically elevated, fine-sand accumulations, which were interpreted to be sediment-starved 3D dunes surrounded by small 2D dunes composed of coarse molluscan shell gravel. Additionally, exposed limestone hardbottoms supporting living benthic communities were found as well. This modern shelf sedimentary environment is situated on a large, buried shelf valley, which extends eastward beneath the modern Tampa Bay estuary. These observations plus the absence of an incised shelf valley having surficial bathymetric expression, and the absence of sand bodies normally associated with back-tracking estuarine systems indicate that there was no cross-shelf estuarine retreat path formed during the last rise in sea level. Instead, the modern Tampa Bay formed within a mid-platform, low-relief depression, which was flooded by rising marine waters late in the Holocene. With continued sea-level rise in the late Holocene, this early embayment was translated eastward or landward to its present position, whereby a larger ebb-tidal delta prograded out onto the inner shelf. Extensive linear sand ridges, common to the inner shelves to the north and south, did not form in this shelf province because it was a low-energy, open embayment lacking the wave climate and nearshore zone necessary to create such sand bodies. The distribution of bedforms on the inner shelf and the absence of seaward-oriented 2D dunes on the modern ebb-tidal delta indicate that the modern estuarine system has had little effect on its adjacent inner shelf.  相似文献   

8.
The southeastern beaches and inner shelf of the Buenos Aires coastline are dominated by storms coming from the south and southeast. Erosion is dominant at the coastal cliffs and abrasion platforms, while deposition is extended below the 9-m contour depth. In relation to sand abundance on the inner shelf, there is a northward transition between shelly sand sheets, a fine-sand ribbon field, and sand ridges with oblique megaripples. Side-scan records indicate the selective sorting processes that lead to grain size diminishing to the north, and heavy-mineral enrichment, either at the beach or on the shelf. These storm-induced effects should be considered when evaluating placers on the inner shelf or monitoring the heavy-metal content in sediments. Two-way analyses of variance (ANOVA) tests were used to establish the grain-size effects on heavy-metal analysis.  相似文献   

9.
《Marine Geology》2001,172(3-4):265-285
Studies of latest Quaternary continental slope sediments at two localities on the east Australian margin have revealed markedly different responses to late Quaternary sea level fluctuations. Offshore of Noosa, in the sub-tropics, the sediment is predominantly a mixture of fine metastable carbonate, siliciclastic material, and pelagic carbonate. Important features of the stratigraphy include a siliciclastic-dominated facies deposited relatively slowly during the last glacial lowstand (sedimentation rate ≤8 cm/ka), and a calcareous facies, rich in metastable carbonate, deposited more rapidly during the late post-glacial transgression (sedimentation rates 15–24 cm/ka). Highstand and transgressive sedimentation rates are greater than lowstand rates by a factor of 2.5–6 due to increased shelf carbonate productivity after flooding of the mid-shelf. Off Sydney, in temperate latitudes, continental slope sediment is largely a mixture of fine siliciclastic material and pelagic carbonate. Mean sedimentation rates range from 2 to 5 cm/ka over the last four oxygen isotope stages, with mean glacial/interstadial rates higher than Holocene rates by a factor of ∼1.36. This largely reflects the transfer of siliciclastic mud from the shelf to the slope during sea level regression. In both localities, facies changes on the slope are not related to specific sea level states (e.g. lowstand facies, transgressive facies, etc.), but reflect instead the interaction of changing sea level with shelf morphology.  相似文献   

10.
Sediments from the seabed off the eastern side of the North Island, New Zealand, are divided into 12 facies on the basis of grain size and mineralogy of the sand fraction. The facies are grouped into three types; modern detrital sediments, relict detrital sediments, and non‐detrital sediments. The sediments are described in terms of a modified Wentworth grain‐size scale and a modified Folk sediment classification.

The modern detrital sediments range from fine sand near the shore to clayey fine silt on the lower slope. At most places they are bimodal, probably because floes and single grains are deposited together. The relict detrital sediments, which include sands and gravels, occur where deposition is slow on the inner continental shelf and near the shelf edge. Those near the shelf edge include Last Glacial sandy muds that have been winnowed and mixed with Holocene volcanic ash and glauconite. The non‐detrital sediments, which contain forarninifera, volcanic ash, and glauconite, but no detrital sand, occur on anticlinal ridges on the continental slope. In places they overlie muddier sediment deposited during the last glaciation when the sources of river‐borne detritus were nearer than at present and when mud was deposited more rapidly on the ridges than at present.  相似文献   

11.
One hundred fourteen vibracores from the Atlantic continental shelf offshore of southeastern North Carolina were opened, described, and processed over several contract years (years 6-9) of the Minerals Management Service Association of American State Geologists Continental Margins program. Reports for years 9 and 10 of the program compiled the results of the work and assembled the data for release as an interactive CD-ROM report, respectively. The continental shelf of Onslow and Long Bays consists predominantly of outcropping Cretaceous through late Tertiary geologic units. Nearshore these units are covered and incised by late Tertiary and Quaternary units. From oldest to youngest, formally recognized geologic units mapped as part of this study are the Late Cretaceous Peedee Formation a muddy, fine-to medium-grained quartz sand with trace amounts of glauconite and phosphate; the Paleocene Beaufort Forma tion a muddy, fine-to medium-grained glauconitic quartz sand with locally occurring turritelid-mold biosparrudite; the middle Eocene Castle Hayne Forma tion a sandy bryozoan biomicrudite and biosparrudite; the Oligocene River Bend Formation a sandy molluscan-mold biosparrudite; and the Miocene Pungo River Formation a medium-grained, poorly sorted slightly shelly phosphatic sand. Infor mal units include a very widespread, unnamed fine-to very fine grained, well-sorted, dolomitic muddy quartz sand that is biostratigraphically equivalent to the Oligocene River Bend Formation; several large valley-fill lithosomes composed of biomicrudite, biomicrite, and biosparrudite of Plio Pleistocene age; muddy, shelly sands and silty clays of Pliocene, Pleistocene, or mixed Plio Pleistocene age; and loose, slightly shelly, medium- to coarse-grained sands assigned a Holocene age. Heavy minerals (SG>2.96) comprise an average of 0.54 wt % (on a bulk-sam ple basis) of the sediments in 306 samples derived from the 114 vibracores. Heavy-mineral content ranges from <0.01 to 3.69 wt %. The economic heavy mineral content (EHM ilmenite zircon rutile aluminosilicates leucoxene [altered ilmenite] monazite) of the bulk samples averages 0.26 wt % in a range of <0.01-1.70 wt %. As a percentage of the heavy-mineral concentrate, the average EHM value is 45.78 % in a range of 0.27-68.60 %. The distribution of heavy minerals offshore of southeastern North Carolina is controlled by the lithostratigraphic framework. The unnamed Oligocene sand unit has the highest heavy-mineral content, averaging 0.86 wt % on a bulk-sample basis. The remaining geologic units and their heavy-mineral content (in decreasing order of abundance) are Beaufort (0.64 %), Holocene sand (0.60 %), Plio-Pleistocene muddy sand and silty clay (0.59 %), Peedee (0.42 %), River Bend (0.34 %), Plio-Pleistocene carbonate (0.12 %), and Castle Hayne (0.08 %). The heavy-mineral assemblage is fairly consistent throughout the different units. Significantly smaller percentages of heavy minerals correlate with increased amounts of CaCO3 in the sediments. The sediments analyzed in this study have significantly lower overall heavymineral content, as well as lower EHM content than sediments that are known to host commercially important heavy-mineral deposits in the southeastern United States. The potential for economic deposits of heavy minerals in the area of this study, therefore, appears to be limited.  相似文献   

12.
The barrier-island systems of the Mississippi River Delta plain are currently undergoing some of the highest rates of shoreline retreat in North America (~20 m/year). Effective management of this coastal area requires an understanding of the processes involved in shoreline erosion and measures that can be enacted to reduce loss. The dominant stratigraphy of the delta plain is fluvial mud (silts and clays), delivered in suspension via a series of shallow-water delta lobes that prograded across the shelf throughout the Holocene. Abandonment of a delta lobe through avulsion leads to rapid land subsidence through compaction within the muddy framework. As the deltaic headland subsides below sea level, the marine environment transgresses the bays and wetlands, reworking the available sands into transgressive barrier shorelines. This natural process is further complicated by numerous factors: (1) global sea-level rise; (2) reduced sediment load within the Mississippi River; (3) diversion of the sediment load away from the barrier shorelines to the deep shelf; (4) storm-induced erosion; and (5) human alteration of the littoral process through the construction of hardened shorelines, canals, and other activities. This suite of factors has led to the deterioration of the barrier-island systems that protect interior wetlands and human infrastructure from normal wave activity and periodic storm impact. Interior wetland loss results in an increased tidal prism and inlet cross-sectional areas, and expanding ebb-tidal deltas, which removes sand from the littoral processes through diversion and sequestration. Shoreface erosion of the deltaic headlands does not provide sufficient sand to balance the loss, resulting in thinning and dislocation of the islands. Abatement measures include replenishing lost sediment with similar material, excavated from discrete sandy deposits within the muddy delta plain. These sand bodies were deposited by the same cyclical processes that formed the barrier islands, and understanding these processes is necessary to characterize their location, extent, and resource potential. In this paper we demonstrate the dominant fluvial and marine-transgressive depositional processes that occur on the inner shelf, and identify the preservation and resource potential of fluvio-deltaic deposits for coastal management in Louisiana.  相似文献   

13.
Beach-nearshore profiles combined with beach and surficial sediment samples were analyzed in conjunction with wave, current, littoral drift and sea-level data to determine the effect of bedrock on morphodynamic processes within the littoral zone of Alexandria on the Mediterranean coast of Egypt. This 14.5-km-long littoral cell is bounded by pronounced embayments and pocket beaches separated by headlands which prevent bypassing of beach sands, in effect making this cell a large, semi-closed basin. The compartmented nature of this cell acts together with the rough irregularity of the rocky seafloor to trap a thin veneer of sediment (<3 m thick), showing proportional mixing between two sedimentary provinces. A modern fine-grained sediment facies consisting of mixed carbonate/siliciclastic sand flanks most of the nearshore zone down to a depth of 8–10 m. Beyond this depth, considered to be the depth of closure, a relict late Pleistocene to mid-Holocene coarse-grained facies composed of biogenic carbonate sand is found. Along a short section of the coastline (km 3–6), the coarser sediment also occupies the nearshore zone. Over most of the study area the two sediment types are mixed in various proportions, largest mixing coinciding with poorest sorting. Profile analyses revealed seasonal changes in sediment volume along the coast which closely follow the cyclicity of seasonal changes in wave climate. The present shoreline orientation, headlands and rough, irregular rocky seabed are reflected in the erosion/accretion pattern, sediment characteristics, and the reversibility of longshore currents and littoral drift. Although there is a marked deficiency in the sediment balance, the sand budget for this cell, including artificial material (2.339*106 m3) has increased slightly by 0.041*106 m3 year–1 as a result of engineering works carried out to widen the coastal road (Corniche). In addition to the physical properties of the bedrock (degree of induration), the accelerating sea-level rise during the Holocene and human influences, the modern morphology of the coast, the erosional seabed features in the nearshore zone, and the texture of seabed sediments are all controlled by the original geometry of the coast which consisted of an elevated subaerial ridge.  相似文献   

14.
Erosional shelf ridges in the mid-eastern Yellow Sea   总被引:1,自引:0,他引:1  
In the mid-eastern Yellow Sea, closely spaced high-resolution seismic profiles and a 44-m-long sediment core (YSDP-104) were analyzed to reveal the internal structures and stratigraphy of the shelf ridges currently shaped by tidal currents. Three depositional sequences (sequences I, II and III in descending order) can be recognized. Sequence III, the substratum of the ridges, consists of coarse-grained sediments in the lower part (non-marine deposits) and tide-influenced muddy sediments in the upper part (probable transgressive to highstand systems tract). Sequence II represents internal ridge sediments, similar in character to sequence III, but is demarcated by an undulatory ridge topography. According to radiocarbon dating of marine muds, these sequences range in age from 47,000 to 28,000 years B.P., representing two cycles of short-term sea-level fluctuations during oxygen isotope stage 3. Sequence I consists mostly of late-Holocene transgressive sand veneer on the ridge surface. It also includes minor amounts of early-Holocene muddy sediments occasionally underlying the sand. Most of the ridges are presently undergoing erosion by tidal currents, forming widespread sand dunes on the entire surface.  相似文献   

15.
In the mid-eastern Yellow Sea, closely spaced high-resolution seismic profiles and a 44-m-long sediment core (YSDP-104) were analyzed to reveal the internal structures and stratigraphy of the shelf ridges currently shaped by tidal currents. Three depositional sequences (sequences I, II and III in descending order) can be recognized. Sequence III, the substratum of the ridges, consists of coarse-grained sediments in the lower part (non-marine deposits) and tide-influenced muddy sediments in the upper part (probable transgressive to highstand systems tract). Sequence II represents internal ridge sediments, similar in character to sequence III, but is demarcated by an undulatory ridge topography. According to radiocarbon dating of marine muds, these sequences range in age from 47,000 to 28,000 years B.P., representing two cycles of short-term sea-level fluctuations during oxygen isotope stage 3. Sequence I consists mostly of late-Holocene transgressive sand veneer on the ridge surface. It also includes minor amounts of early-Holocene muddy sediments occasionally underlying the sand. Most of the ridges are presently undergoing erosion by tidal currents, forming widespread sand dunes on the entire surface.  相似文献   

16.
High-frequency sequences composed of mixed siliciclastic-carbonate deposits may exhibit either vertical or horizontal changes between siliciclastics and carbonates. Vertical facies shifts occur between systems tracts and define a ‘reciprocal sedimentation’ pattern, typically consisting of transgressive/highstand carbonates and forced regressive/lowstand siliciclastics, although variations from this rule are common. Mixed systems with lateral facies change, usually typifying transgressive and/or highstand systems tracts, may exhibit proximal siliciclastics and distal carbonates or vice-versa, although variations may also occur along depositional strike. The marked variability of mixed siliciclastic-carbonate sequences makes the definition of a universal sequence stratigraphic model impossible, as the composition and geometries of systems tracts may change considerably, and sequence stratigraphic surfaces and facies contacts may vary in terms of occurrence and physical expression. However, some resemblance exists between siliciclastic sequences and mixed sequences showing lateral facies changes between siliciclastics and carbonates. In particular, these mixed sequences display 1) a stratal architecture of the clastic part of the systems tracts that is comparable to that of siliciclastic deposits, 2) a dominant role of the inherited physiography and of erosional processes, rather than carbonate production, in shaping the shelf profile, and 3) a local lateral juxtaposition of siliciclastic sandstones and carbonate bioconstructions due to hydrodynamic processes. These observations are helpful in predicting the location of porous and potential sealing bodies and baffles to fluid flow at the intra-high-frequency sequence scale, and ultimately they are useful for both petroleum exploration and production.  相似文献   

17.
The sedimentary features of the inner-middle shelf of the strait of Bonifacio (western Mediterranean) were analyzed to evaluate the relationship between the production and transport of biogenic carbonate sediments and the basin morphology and hydrodynamics. A three-dimensional hydrodynamic modeling was performed in order to simulate the influence of waves and currents at seabed level. Superficial sediments were collected at depths ranging from 5 to 80 m and were analyzed for grain size, mineralogical composition and skeletal carbonate composition. Posidonia oceanica seagrass meadows border the coasts in a narrow strip on both sides of the strait down to a depth of 40 m. At greater depths, the seabed is characterized by the presence of plateaus and ridges which are controlled by outcropping bedrock morphology.  相似文献   

18.
厄瓜多尔Oriente盆地南部区块沉积特征   总被引:3,自引:0,他引:3  
通过构造演化和地层发育特征分析,将厄瓜多尔Oriente盆地南部区块Napo组划分为4个层序。根据岩心中的潮汐层理、羽状交错层理、冲洗交错层理、具有大量贝壳等特征,识别研究区具有潮坪沉积环境。针对其沉积坡度缓,碎屑岩和碳酸盐岩互层沉积的特点,建立了缓坡混积陆棚边缘的沉积相模式,认为Oriente盆地南部区块Napo组发育有海岸平原、潮坪、局限台地和混积陆棚相。相序的垂向组合和平面迁移受海平面升降的控制,指出潮坪砂岩主要出现在各层序的陆架边缘体系域,水下浅滩砂岩出现在海侵体系域。从沉积角度看,潮汐水道砂体是最好的储层砂体。  相似文献   

19.
海平面变化及其海岸响应   总被引:4,自引:0,他引:4  
第四纪气温的大幅度冷暖变化,导致全球海平面的变化,引起陆架海侵扣海退。海岸上的各种地貌如海滩、沙坝、三角洲扣陆架沙脊等响应海平面升降而发生新的演化扣变异。东海陆架古岸线、围绕古岸线发育的陆架沙脊、陆架深切河谷扣河谷充填沉积以及冰后期海进型扣海退型沙坝的形成乖演化等沉积事件都是响应海平面升降的结果。近百年来特别是近30年全球海平面普遍上升,引起风暴潮的频度扣幅度的增大。近岸波能增强,越滩浪增多,导致海滩侵蚀,岸线后退。Bruun法则扣其他一些模型能够说明海滩随海平面上升而蚀退的规律,但在预测速率时仍存在很多问题。使用时应注意海平面变化的区域性、海滩发育的滞后性和海滩蚀退因素间的权重关系。  相似文献   

20.
A total of 120 grab samples of the surficial sediments in the Cap-Breton submarine canyon and surrounding continental shelf were collected and analyzed by grain-size sieving. A Q-mode Factor Analysis was made on the grain-size data in order to define the most meaningful facies types. Four distinct lithological facies were found to exist: silt and clay, very fine sand, fine sand, and coarse sand. Comparison with previous work and a 14C date on the silt and clay facies showed that the facies are not contemporaneous. The sands and coarse sands on the shelf were emplaced during the pre-Würm and Würm regressions, and later probably reworked during the Holocene (Flandrian) transgression. The silty clays found in the canyon and on the shelf to the south are younger and represent sediments brought in as suspended load by the Adour and other nearby rivers during the Holocene (Flandrian) transgression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号