首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
赤道MJO活动对南海夏季风爆发的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
利用1979—2013年NCEP/DOE再分析资料的大气多要素日平均资料、美国NOAA日平均向外长波辐射资料和ERSST月平均海温资料,分析赤道大气季节内振荡(简称MJO)活动对南海夏季风爆发的影响及其与热带海温信号等的协同作用.结果表明,赤道MJO活动与南海夏季风爆发密切联系,MJO的湿位相(即对流活跃位相)处于西太平洋位相时,有利于南海夏季风爆发,而MJO湿位相处于印度洋位相时,则不利于南海夏季风爆发.赤道MJO活动影响南海夏季风爆发的物理过程主要是大气对热源响应的结果,当MJO湿位相处于西太平洋位相时,一方面热带西太平洋对流加强使潜热释放增加,导致处于热源西北侧的南海—西北太平洋地区对流层低层由于Rossby响应产生气旋性环流异常,气旋性环流异常则有利于西太平洋副热带高压的东退,另一方面菲律宾附近热源促进对流层高层南亚高压在中南半岛和南海北部的建立,使南海地区高层为偏东风,从而有利于南海夏季风建立;当湿位相MJO处于印度洋位相时,热带西太平洋对流减弱转为大气冷源,情况基本相反,不利于南海夏季风建立.MJO活动、孟加拉湾气旋性环流与年际尺度海温变化协同作用,共同对南海夏季风爆发迟早产生影响,近35年南海夏季风爆发时间与海温信号不一致的年份,基本上是由于季节转换期间的MJO活动特征及孟加拉湾气旋性环流是否形成而造成,因此三者综合考虑对于提高季风爆发时间预测水平具有重要意义.  相似文献   

2.
Seasonal climate prediction for the Indian summer monsoon season is critical for strategic planning of the region. The mean features of the Indian summer monsoon and its variability, produced by versions of the ‘Florida State University Coupled Ocean-Atmosphere General Circulation Model’ (FSUCGCM) hindcasts, are investigated for the period 1987 to 2002. The coupled system has full global ocean and atmospheric models with coupled assimilation. Four member models were created by choosing different combinations of parameterizations of the physical processes in the atmospheric model component. Lower level wind flow patterns and rainfall associated with the summer monsoon season are examined from this fully coupled model seasonal integrations. By comparing with observations, the mean monsoon condition simulated by this coupled model for the June, July and August periods is seen to be reasonably realistic. The overall spatial low-level wind flow patterns and the precipitation distributions over the Indian continent and adjoining oceanic regions are comparable with the respective analyses. The anomalous below normal large-scale precipitation and the associated anomalous low-level wind circulation pattern for the summer monsoon season of 2002 was predicted by the model three months in advance. For the Indian summer monsoon, the ensemble mean is able to reproduce the mean features better compared to individual member models.  相似文献   

3.
The Asian-Australian “land bridge” is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid-and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.  相似文献   

4.
给定1948~1999年逐月变化的全球观测的海表温度分布,使用全球大气环流模式(CCM3/NCAR)模拟了大气对海表温度变化的响应,利用SVD和合成检验方法,分析了El Nino发展阶段夏季、成熟阶段冬季以及衰亡阶段夏季东亚大气环流的年际异常型.结果表明:El Nino发展阶段夏季,中国东北、朝鲜半岛以及日本海附近为高度负异常中心,西太平洋副高偏弱、偏东,东亚夏季风增强;El Nino成熟阶段冬季,东亚大槽加强,东亚北部冬季风加强;El Nino衰亡阶段夏季,西太平洋副高偏强、偏南、西伸,东亚夏季风减弱;El Nino事件在其衰亡阶段夏季与东亚大气环流异常的关系最紧密,其次是成熟阶段冬季,最后是发展阶段夏季.模拟的El Nino演变不同阶段东亚大气环流年际异常型易于解释以往研究中观测分析揭示的由El Nino造成的我国东部气温和降水异常型.  相似文献   

5.
Simulation of South-Asian Summer Monsoon in a GCM   总被引:1,自引:0,他引:1  
Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.  相似文献   

6.
The Asian-Australian "land bridge" is an area with the most vigorous convection in Asian monsoon region in boreal spring, where the onset and march of convection are well associated with the onset of East Asian summer monsoon. The convection occurs over Indo-China Peninsula as early as mid-April, which exerts critical impact on the evolution of monsoon circulation. Before mid-April there are primarily sensible heatings to the atmosphere over Indo-China Peninsula and Indian Peninsula, so the apparent heating ratios over them decrease with height. However, after mid-April it changes into latent heating over Indo-China Peninsula due to the onset of convection, and the apparent heating ratio increases with height in mid- and lower troposphere. The vertical distribution of heating ratio and its differences between Indo-China Peninsula and Indian Peninsula are the key factors leading to the splitting of boreal subtropical high belt over the Bay of Bengal. Such mechanism is strongly supported by the fact that the evolution of the vertical heating ratio gradient above Indo-China Peninsula leads that of 850 hPa vorticity over the Bay of Bengal. Convections over Indo-China Peninsula and its surrounding areas further increase after the splitting. Since then, there is a positive feedback lying among the convective heating, the eastward retreat of the subtropical high and the march of monsoon, which is a possible mechanism of the advance of summer monsoon and convection from Indo-China Peninsula to South China Sea.  相似文献   

7.
Some aspects of the monsoon circulation and monsoon rainfall   总被引:1,自引:0,他引:1  
Summary The south Asian summer monsoon from June to September accounts for the greater part of the annual rainfall over most of India and southeast Asia. The evolution of the summer and winter monsoon circulations over India is examined on the basis of the surface and upper air data of stations across India. The salient features of the seasonal reversals of temperature and pressure gradients and winds and the seasonal and synoptic fluctuations of atmospheric humidity are discussed. The space-time variations of rainfall are considered with the help of climatic pentad rainfall charts and diagrams. The rainfall of several north and central Indian stations shows a minimum around mid-August and a maximum around mid-February which seem to be connected with the extreme summer and winter positions of the ITCZ and the associated north-south shifts in the seasonal circulation patterns. Attention is drawn to the characteristic features of the monsoon rainfall that emerge from a study of daily and hourly rainfall of selected stations. Diurnal variations of temperature, pressure, wind and rainfall over the monsoon belt are briefly treated.  相似文献   

8.
青藏高原大地形的热力强迫作用对亚洲夏季风的形成和发展具有重要的影响.本文利用较高分辨率的WRF区域模式,探讨了高原不同区域(斜坡和平台)的地形加热分别对南亚夏季风和东亚夏季风的影响.结果表明:高原南部喜马拉雅山脉的斜坡地形加热对其周围局地的环流形势和降水影响十分明显,是南亚夏季风北支分量形成和维持的主导因子,也是斜坡上气流爬坡和降水发生的必要条件.斜坡加热对东亚夏季风也有明显的增强作用,它不仅加强了中国东部低空西南季风环流,还会造成北部南下的异常干冷空气的响应.斜坡上的地形加热作用也是对流层高层暖中心位置维持在斜坡上空的一个重要原因.而高原平台加热对季风环流和降水的影响虽然没有喜马拉雅山脉斜坡加热那么显著,但是对南亚夏季风的影响范围更广,对经向哈得来环流影响更明显,能够调控高原以外更远处热带洋面上的西南季风环流.通过比较高原不同区域地形加热条件下的多种季风指数,进一步表明了高原地形加热对南亚和东亚夏季风均有增强作用,但是高原不同区域的地形加热对两类夏季风子系统又会产生不一样的影响.  相似文献   

9.
In this study, sensitivity of the Indian summer monsoon simulation to the Himalayan orography representation in a regional climate model (RegCM) is examined. The prescribed height of the Himalayan orography is less in the RegCM model than the actual height of the Himalayas. Therefore, in order to understand the impact of the Himalayan orography representation on the Indian summer monsoon, the height of the Himalayan orography is increased (decreased) by 10 % from its control height in the RegCM model. Three distinct monsoon years such as deficit (1987), excess (1988) and normal rainfall years are considered for this study. The performance of the RegCM model is tested with the use of a driving force from the reanalysis data and a global model output. IMD gridded rainfall and the reanalysis-2 data are used as verification analysis to validate the model results. The RegCM model has the potential to represent mean rainfall distribution over India as well as the upper air circulation patterns and some of the semi-permanent features during the Indian summer monsoon season. The skill of RegCM is reasonable in representing the variation in circulation and precipitation pattern and intensity during two contrasting rainfall years. The simulated seasonal mean rainfall over many parts of India especially, the foothills of the Himalaya, west coast of India and over the north east India along with the whole of India are more when the orography height is increased. The low level southwesterly wind including the Somali jet stream as well as upper air circulation associated with the tropical easterly jet stream become stronger with the enhancement of the Himalayan orography. Statistical analysis suggests that the distribution and intensity of rainfall is represented better with the increased orography of RegCM by 10 % from its control height. Thus, representation of the Himalayan orography in the model is close to actual and may enhance the skill in seasonal scale simulation of the Indian summer monsoon.  相似文献   

10.
A relationship between summer monsoon rainfall and sea surface temperature anomalies was investigated with the aim of predicting the monthly scale rainfall during the summer monsoon period over a section (80°–90°E, 14°–24°N) of eastern India that depends heavily upon the rainfall during the summer monsoon months for its agricultural practices. The association between area-averaged rainfall of June over the study zone and global sea surface temperature (SST) anomalies for the period 1982–2008 was examined and the variability of rainfall in monthly scale was calculated. With a view to significant variability in the rainfall in the monthly scale, it was decided to implement the artificial neural network (ANN) for forecasting the monthly scale rainfall using the SST anomalies as a predictor. Finally, the potential of ANN in this prediction has been assessed.  相似文献   

11.
A continuing goal in the diagnostic studies of the atmospheric general circulation is to estimate various quantities that cannot be directly observed. Evaluation of all the dynamical terms in the budget equations for kinetic energy, vorticity, heat and moisture provide estimates of kinetic energy and vorticity generation, diabatic heating and source/sinks of moisture. All these are important forcing factors to the climate system. In this paper, diagnostic aspects of the dynamics and energetics of the Asian summer monsoon and its spatial variability in terms of contrasting features of surplus and deficient summer monsoon seasons over India are studied with reanalysis data sets. The daily reanalysis data sets from the National Centre for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) are used for a fifty-two year (1948–1999) period to investigate the large-scale budget of kinetic energy, vorticity, heat and moisture. The primary objectives of the study are to comprehend the climate diagnostics of the Asian summer monsoon and the role of equatorial convection of the summer monsoon activity over India.It is observed that the entrance/exit regions of the Tropical Easterly Jet (TEJ) are characterized by the production/destruction of the kinetic energy, which is essential to maintain outflow/inflow prevailing at the respective location of the TEJ. Both zonal and meridional components contribute to the production of kinetic energy over the monsoon domain, though the significant contribution to the adiabatic generation of kinetic energy originates from the meridional component over the Bay of Bengal in the upper level and over the Somali Coast in the low level. The results indicate that the entire Indian peninsula including the Bay of Bengal is quite unstable during the summer monsoon associated with the production of vorticity within the domain itself and maintain the circulation. The summer monsoon evinces strong convergence of heat and moisture over the monsoon domain. Also, considerable heat energy is generated through the action of the adiabatic process. The combined effect of these processes leads to the formation of a strong diabatic heat source in the region to maintain the monsoon circulation. The interesting aspect noted in this study is that the large-scale budgets of heat and moisture indicate excess magnitudes over the Arabian Sea and the western equatorial Indian Ocean during surplus monsoon. On the other hand, the east equatorial Indian Ocean and the Bay of Bengal region show stronger activity during deficient monsoon. This is reflected in various budget terms considered in this study.  相似文献   

12.
利用1979~2003年的NCEP/NCAR再分析资料探讨了亚澳季风区经向气流的季节性分支和结构特征. 结果表明,亚澳季风区经向气流的垂直斜压结构由冬到夏发生季节性转向,即从冬季时的低层北风、高层南风转换为夏季时的低层南风、高层北风. 季节反向的经向气流主体偏向北半球,其区域差异性在对流层中低层更为显著. 以印度半岛和中南半岛为界,亚洲热带季风区中低层经向气流在冬夏季均呈现三通道特征,与此相应,亚澳季风区自西向东存在三支相对独立的经向环流分支,且冬夏季的差异均很显著,如冬季的中心高度自西向东递减、夏季的经向跨度自西向东递增等.  相似文献   

13.
This study examines seasonal circulation, hydrography, and associated spatial variability over the inner shelf of the northern South China Sea (NSCS) using a nested-grid coastal ocean circulation model. The model external forcing consists of tides, atmospheric forcing, and open boundary conditions based on the global ocean circulation and hydrography reanalysis produced by the Hybrid Coordinate Ocean model. Five numerical experiments are conducted with different combinations of external forcing functions to examine main physical processes affecting the seasonal circulation in the study region. Model results demonstrate that the monthly mean circulation in the study region features the Guangdong Coastal Current (GCC) over coastal waters and the South China Sea Warm Current (SCSWC) in the offshore deep waters. The GCC produced by the model flows nearly southwestward in winter months and northwestward in summer months, which agrees with previous studies. The SCSWC flows roughly northeastward and is well defined in summer months. In winter months, by comparison, the SCSWC is superseded by the southwestward strong wind-driven currents. Analysis of model results in five different experiments demonstrates that the monthly mean circulation over coastal and inner shelf waters of the NSCS can be approximated by barotropic currents forced by the southwestward monsoon winds in winter months. In summer months, by comparison, the monthly mean circulation in the study region is affected significantly by baroclinic dynamics associated with freshwater runoff from the Pearl River and advection of warm and saline waters carried by the SCSWC over the NSCS.  相似文献   

14.
Based on numerical simulation, this study explored the characteristics and interactions of surface sensible heating and atmospheric latent heating over the main part of the Tibetan Plateau, i.e., terrain at elevations >2 km in summer. The impacts of these two types of heating on local vertical motion and monsoonal meridional circulation were compared. Theoretical analysis and numerical experimentation demonstrated that by changing the configuration of the upper-tropospheric air temperature and circulation, the two types of heating could generate both minimum absolute vorticity and abnormal potential vorticity forcing near the tropopause, enhance the meridional circulation of the Asian summer monsoon, and produce an eastward- propagating Rossby wave train within the mid-latitude westerly flow. Consequently, the manifestations of these features were shown to influence the circulation of the Northern Hemisphere.  相似文献   

15.
Changes of rainfall and its possible reasons in the Nansi Lake Basin,China   总被引:2,自引:1,他引:1  
This study investigates the changes of rainfall patterns along with the underlying reasons in the Nansi Lake Basin (NLB), China during 1960–2009. Results show that the annual rainfall increases from the northwest to the southeast of the NLB. From the temporal variation perspective, annual rainfall decreases slightly in the majority of stations. Furthermore, in spite of no pronounced trends are detected in all stations, the annual rainfall series fluctuate intensely, and present step changes around the year of 1974 and 2002. This change pattern of rainfall is verified by the approximately wet–dry–wet phase pattern, which is exhibited in the standardized departures of annual rainfall series, during the three sub-periods divided by the pre-obtained two change years. In particular, the parametric t test demonstrate that the step change in 2002 is significant. The variations in the rainy season (RS, June–September) rainfall contributed mostly to the changes in the annual rainfall, and a high similarity of change patterns between the RS and annual rainfall is also observed. The long term mean RS and annual rainfall decreases largely from the sub-period of 1960–1974 to 1974–2002, and increased largely from the sub-period of 1974–2002 to 2002–2009 in the NLB. Besides, various elements, such as the summer East Asian summer monsoon and summer Pacific decadal oscillation, may together lead to the step changes in summer rainfall over our study area.  相似文献   

16.
南海夏季风爆发与南大洋海温变化之间的联系   总被引:2,自引:1,他引:1       下载免费PDF全文
利用1979-2009年NCEP第二套大气再分析资料和ERSST海温资料,分析南海夏季风爆发时间的年际和年代际变化特征,考察南海夏季风爆发早晚与南大洋海温之间的联系.主要结果为:(1)南海夏季风爆发时间年际和年代际变化明显,1979-1993年与1994-2009年前后两个阶段爆发时间存在阶段性突变;(2)南海夏季风爆发时间与前期冬季(12-1月)印度洋-南大洋(0-80°E,75°S-50°S)海温、春季(2-3月)太平洋-南大洋(170°E -80°W,75°S-50°S)海温都存在正相关关系,当前期冬、春季南大洋海温偏低(高)时,南海夏季风爆发偏早(晚).南大洋海温信号,无论是年际还是年代际变化,都对南海夏季风爆发具有一定的预测指示作用;(3)南大洋海温异常通过海气相互作用和大气遥相关影响南海夏季风爆发的迟早.当南大洋海温异常偏低(偏高)时,冬季南极涛动偏强(偏弱),同时通过遥相关作用使热带印度洋-西太平洋地区位势高度偏低(偏高)、纬向风加强(减弱),热带大气这种环流异常一直维持到春季4、5月份,位势高度和纬向风异常范围逐步向北扩展并伴随索马里越赤道气流的加强(减弱),从而为南海夏季风爆发偏早(偏晚)提供有利的环流条件.初步分析认为,热带大气环流对南大洋海气相互作用的遥响应与半球际大气质量重新分布引起的南北涛动有关.  相似文献   

17.
Solar diffuse radiation data including global radiation, shortwave and longwave balances, net radiation and sunshine hours have been extensively analyzed to study the variation of diffuse radiation with turbidity and cloud discharges appearing in the form of atmospherics over the tropics. Results of surface radiation measurements at Calcutta, Poona, Delhi and Madras are presented together with some meteorological parameters. The monthly values of diffuse radiation and the monthly ratios of diffuse to global solar radiation have been examined, with a special emphasis in relation to the noise level of atmospherics at Calcutta in the very low frequency band. The results exhibit some definite seasonal changes which appear to be in close agreement with one another.  相似文献   

18.
孟加拉湾夏季风爆发的判断指标及其年际特征   总被引:1,自引:0,他引:1       下载免费PDF全文
晏红明  孙丞虎  王灵  李蕊  金燕 《地球物理学报》2018,61(11):4356-4372
利用高低层大气环流、OLR(向外长波辐射)、CMAP降水、SST(海表温度)等资料分析了孟加拉湾地区3—5月多年气候平均大气环流及不同要素的演变特征,定义了一个新的孟加拉湾夏季风(BOBSM,下同)爆发指标为孟加拉湾地区(5°N—15°N,90°E—97.5°E)850 hPa和200 hPa纬向风区域平均的变化同时满足U850 > 3 m·s-1和U200 < -5 m·s-1,并持续5天的第一天即作为BOBSM爆发日期.该季风指数有明确的天气学意义,可以反映孟加拉湾低层西南风持续稳定和南亚高压在青藏高原建立早晚的特征.文章进一步分析了BOBSM爆发的年际特征及其前兆海洋信号特征,结果表明:1981—2010年BOBSM爆发的平均日期为5月10日,季风爆发有显著的年际波动,爆发最早在1999年(4月11日)和最晚在1968年(6月1日),年代际尺度上表现为由爆发偏晚至偏早的变化趋势;BOBSM爆发早(晚)与热带印度洋地区850 hPa的越赤道气流和西风异常加强(减弱),以及200 hPa青藏高原南亚高压的季节性建立偏早(晚)等密切联系;前期冬季赤道西太平洋的海温冷(暖)变化对BOBSM爆发早(晚)有很好的指示意义,前期冬季海温偏高(低)有利于季风偏早(晚),其影响的主要途径是通过热源变化激发纬向垂直环流及其热带印度洋和太平洋低层环流异常,进而影响季风爆发早晚.  相似文献   

19.
There is a statistical linkage between tropical outgoing longwave radiation (OLR) and all-India summer monsoon rainfall (AISMR). A positive and significant correlation is observed over the surrounding areas of northeast Australia and the Arafura Sea during the months of January and February (J&F) which drops down as the lead month decreases. The OLR index as an area average over the surrounding areas of northeast Australia and the Arafura Sea is found to have 0.4 correlation with AISMR. The index is also found to be strongly correlated with the Indian monsoon index. In view of the teleconnection pattern, the OLR index is used for the development of statistical models using the concept of linear regression (LR) and canonical correlation analysis (CCA). Potential of CCA over LR is observed for the prediction of seasonal rainfall over the northwest, west central and over the whole country as well. The seasonal rainfall predictability basically comes from the months of June and September.  相似文献   

20.
夏季风期间长江流域的水汽输送状态及其年际变化   总被引:3,自引:1,他引:2       下载免费PDF全文
本文利用NCEP/NCAR再分析资料,分析了长江流域夏季风期间的水汽收支和循环,着重研究了不同月份与水汽收支的年际变化显著相关的大尺度水汽输送和环流异常.流域范围的西南夏季风水汽输送以6、7月最为强烈,经向输送在5~8月造成流域水汽辐合,9月造成辐散;纬向输送在5~7月造成流域水汽辐散,8、9月造成辐合.研究表明,在不同月份,流域的南北边界处的水汽输送在流域水汽收支的年际变化中起着不同的作用.这种变化与大气环流的异常密切相关.在夏季风相对较弱月份(5、8、9月),流域水汽收支的年际变化极大地受到流域南边界南风水汽输入通道的影响,对应于水汽收入偏丰年,该3个月500 hPa高空在青藏高原东部都存在显著异常低压区,而且,8、9月在中南半岛及其以东洋面存在显著异常反气旋环流,与8月西太副高的向西向南异常伸展,以及9月副高的西伸较弱和南北范围较宽有关,这些异常环流均造成南边界的大量异常水汽输入.而在夏季风十分强盛的6、7月,流域北边界南风水汽输出极大增加,成为流域水汽收入年际变化的关键敏感通道,对应于水汽收入偏丰年,6月500 hPa高空主要受中纬度以黄海和东海为中心的异常低压系统和气旋性异常环流影响,与该区域副高偏南、偏弱有关,而7月则主要受中高纬以外兴安岭为中心的异常高压和反气旋性异常环流影响,应该是由于该区域大陆高压的频繁生成造成的,它们均造成流域北边界水汽输出的异常减少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号