首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract One-third of all the LL-chondrites have exposure ages of ~15 Ma and were exposed to cosmic rays following a collisional break-up. The probability that the 15-Ma peak represents a random signal is calculated to be less than 2%. Considerably lower probabilities are obtained if only LL5s or subgroups of high 40Ar retention are used. Furthermore, we show that the peak shape agrees with statistical constraints obtained from multiple analyses of samples from the St. Severin LL6-chondrite. The frequency in and out of the 15-Ma peak varies significantly for different petrographic LL-types. The radiogenic 40Ar retention systematics (most LL-chondrites retained 40Arrad) shows that no substantial heat pulse resulted in the 15-Ma collisional event. Interestingly, smaller exposure age clusters at ~28 Ma and ~40 Ma match up well with clusters in the histogram of L-chondrites. The distribution of LL-exposure ages is not consistent with that expected for a quasi-continuous injection of LL material into a resonance zone of the asteroid belt. The near absence of exposure ages shorter than 8 Ma either indicates a lack of recent collisional events or considerably longer transfer times than inferred from dynamical considerations.  相似文献   

2.
We have examined the magnetic characteristics of representative ureilites, with a view to identify the magnetic effects of shock and to isolate a primary component of the natural remanent magnetization (NRM). As a group, the ureilites show remarkably uniform patterns of magnetic behavior, attesting to a common genesis and history. However, a clearly observed gradation in magnetic properties of the ureilites studied with shock level, parallels their classification based on petrologic and chemical fractionation shock-related trends.The ureilite meteorites possess a strong and directionally stable NRM. Laboratory thermal modelling of this presumably primordial NRM preserved in Goalpara and Kenna produced reliable paleointensity estimates of order 1 Oe, thus providing evidence for strong early, nebular magnetic fields. This paleofield strength is compatible with values obtained previously from carbonaceous chondrites and supports isotopic evidence for a contemporary origin of these two groups of meteorites in the same nebular region. The mechanism for recording nebular fields, manifestly different in carbonaceous chondrite vs. ureilite meteorites, is thus relatively unimportant: violent collisional shock in ureilites seems to have only partially altered an original magnetization, by preferential removal of its least stable portion.  相似文献   

3.
Abstract— A large number of ordinary chondrites contains micron-sized particles of metal and/or troilite dispersed in their silicate grains. Such metallic phases are responsible for the so-called darkening of the silicate grains and might be either precipitates, which formed during reduction of the silicates, or inclusions injected as a melt during a shock event. We have investigated these tiny foreign phases by analytical transmission electron microscopy in three unweathered, metamorphosed ordinary chondrites (Saint Séverin, LL6, Tsarev, L6 and Kernouvé, H6). We also looked for remnant shock indices. Our TEM observations suggest the following sequence of events in the three meteorites. First, a number of relatively strong shock events occurred on the parent body/bodies producing an Fe-FeS melt that was injected into silicate grains along a dense network of open fractures. Most of these shock defects were subsequently erased by high-temperature (700–900 °C) thermal metamorphism. Some remnants of the shock events are the observed trails of tiny metal and/or sulfide inclusions that formed as a result of fracture healing. Chemical homogenization of the silicates and limited oxidation of the metallic blebs also occurred during this high-temperature annealing event, resulting in Ni-rich inclusions. This effect was especially pronounced in the L and LL-chondrites studied. During subsequent cooling of the body/bodies, inclusions of chromite and phosphate precipitated, nucleating preferentially on lattice defects (dislocations, subgrain boundaries) and on the metal and sulfide inclusions. A later shock event of moderate intensity, probably corresponding to the separation of the meteorite from its parent body, produced new shock features in the silicate grains of the Saint Séverin meteorite, including mechanical twins in diopside and straight free screw dislocations in olivine.  相似文献   

4.
Abstract— iron-magnesium ordering was determined in orthopyroxenes from two suites of unshocked (shock stage S1, S2), equilibrated L- and LL-chondrites (10 grains from 5 meteorites and 7 grains from 4 meteorites, respectively) by means of single crystal x-ray diffraction (SCXRD). This study, together with a previous investigation of H-chondrites (13 grains from 8 meteorites), produces an internally consistent data set about the thermal record in equilibrated ordinary chondrites (EOCs). The major feature outlined by cation ordering in EOC orthopyroxenes is that H-, L- and LL-chondrites share a common low-temperature record, that is, a common range of similar cooling rates in the 340–480 °C interval for the petrographic types 4 to 6. As a consequence, the thermal evolution of EOCs consists of at least two subsolidus stages; the first stage occurred at temperatures >480 °C where petrographic types were established in distinct environments; the second stage occurred when EOCs, irrespective of chemical class and type, cooled through 340–480 °C in environments characterized by close temperature-time conditions. Quantitative estimates of minimal cooling rates for EOCs range from a few °C/ka to ~102°C/ka in the 340–480 °C interval. Possibly, final ordering was attained in environments where moderate radiative heat-loss was possible and, thus indicating shallow burial depths in the parent body.  相似文献   

5.
In Lindsley's thermometry, a revised sequence of calculation of components is proposed for clinopyroxene, in which kosmochlor component is added. Temperatures obtained for the components calculated by the revised method are about 50 °C lower than those obtained for the components calculated by the Lindsley's original method and agree well with temperatures obtained from orthopyroxenes. Ca‐partitioning between clino‐ and orthopyroxenes is then thought to be equilibrated in types 5 to 7 ordinary chondrites. The temperatures for Tuxtuac (LL5), Dhurmsala (LL6), NWA 2092 (LL6/7), and Dho 011 (LL7) are 767–793°, 818–835°, 872–892°, and 917–936°C, respectively, suggesting that chondrites of higher petrographic types show higher equilibrium temperatures of pyroxenes. The regression equations which relate temperature and Wo and Fs contents in the temperature‐contoured pyroxene quadrilateral of 1 atm of Lindsley (1983) are also determined by the least squares method. It is possible to reproduce temperatures with an error less than 20 °C (2SE) using the regression equations.  相似文献   

6.
Abstract— The magnetic properties of the Millbillillie eucrite have been intensively studied using mutually oriented samples. The magnetic carrier has been identified as single domain/pseudo-single domain kamacite. It is believed that due to clast-rich/clast-poor layering, the rock has been subjected to minimum shock since formation. This is supported by the presence of a stable, unidirectional remanence. Three separate palaeointensity tests (IRM/NRM, ARM-NRM, and Thellier heating) have been used to determine the strength of the palaeofield. The criteria for the suitability of samples to be used in such tests are discussed, as are the three methods; IRM/NRM is deemed the least accurate. The results obtained (IRM/NRM: 6 μT and 25 μT; ARM-NRM: 31 μT, 28 μT, and 15 μT; Thellier: 30 μT, 37 μT, 15 μT) indicate that the rock cooled in a strong magnetic field. Modes of formation, given that Millbillillie has a layered structure, and the nature of the HED parent body, are discussed. A volcanic genesis is preferred over formation in an impact melt. An internal dynamo field is favoured for dynamical reasons, and calculations based on the assumption that 4 Vesta is a possible HED parent body indicate that an iron core may be present in such a body.  相似文献   

7.
The average directions of natural remanent magnetization (NRM) of three texturally distinct layers (72215, 72255, and 72275) of a 2 m-sized breccia boulder were found to be the same, while the directions of their stable components of NRM were found to be widely divergent. One clast from 72275 yielded a stable NRM direction which was different from that of the matrix. Approximate paleointensity measurements showed that 72255 and 72275 could have obtained their stable remanence from an ancient magnetic field of the same magnitude. However, 72215 probably was magnetized by a magnetic field of a different intensity. We concluded that the coincident NRM directions owe their origin to a secondary imprint of less stable magnetization imparted during the assembly of the boulder at moderate temperatures (~ 450°C) on the South Massif. The stable directions, on the other hand, date from the last, higher-temperature (~ 770°C) magnetizing event experienced by the mineral and lithic components while they were part of the immature pre-Serenitatis regolith.  相似文献   

8.
Abstract— The only well‐known terrestrial analogue of impact craters in basaltic crusts of the rocky planets is the Lonar crater, India. For the first time, evidence of the impactor that formed the crater has been identified within the impact spherules, which are ?0.3 to 1 mm in size and of different aerodynamic shapes including spheres, teardrops, cylinders, dumbbells and spindles. They were found in ejecta on the rim of the crater. The spherules have high magnetic susceptibility (from 0.31 to 0.02 SI‐mass) and natural remanent magnetization (NRM) intensity. Both NRM and saturation isothermal remanent magnetization (SIRM) intensity are ?2 Am2/Kg. Demagnetization response by the NRM suggests a complicated history of remanence acquisition. The spherules show schlieren structure described by chains of tiny dendritic and octahedral‐shaped magnetite crystals indicating their quenching from liquid droplets. Microprobe analyses show that, relative to the target basalt compositions, the spherules have relatively high average Fe2O3 (by ?1.5 wt%), MgO (?1 wt%), Mn (?200 ppm), Cr (?200 ppm), Co (?50 ppm), Ni (?1000 ppm) and Zn (?70 ppm), and low Na2O (?1 wt%) and P2O5 (?0.2 wt%). Very high Ni contents, up to 14 times the average content of Lonar basalt, require the presence of a meteoritic component in these spherules. We interpret the high Ni, Cr, and Co abundances in these spherules to indicate that the impactor of the Lonar crater was a chondrite, which is present in abundances of 12 to 20 percent by weight in these impact spherules. Relatively high Zn yet low Na2O and P2O5 contents of these spherules indicate exchange of volatiles between the quenching spherule droplets and the impact plume.  相似文献   

9.
Abstract— Galim is a polymict breccia consisting of a heavily shocked (shock stage S6) LL6 chondrite, Galim (a), and an impact-melted EH chondrite, Galim (b). Relict chondrules in Galim (b) served as nucleation sites for euhedral enstatite grains crystallizing from the impact melt. Many of the reduced phases typical of EH chondrites (e.g., Si-bearing metallic Fe-Ni; Ti-bearing troilite) are absent. Galim (b) was probably shock-melted while in contact with a more oxidized source, namely, Galim (a); during this event, Si was oxidized from the metal and Ti was oxidized from troilite. Galim (a) contains shock veins and recrystallized, unzoned olivine. The absence of evidence for reduction in Galim (a) may indicate that the amount of LL material greatly exceeded that of EH material; shock metamorphism may have taken place on the LL parent body. Shock-induced redox reactions such as those inferred for the Galim breccia appear to be restricted mainly to asteroids because the low-end tail of their relative-velocity distribution permits mixing of intact disparate materials (including accretion of projectiles of different oxidation states), whereas the peak of the distribution leads to high equilibration shock pressures (allowing impact-induced exchange between previously accreted, disequilibrated materials). Galim probably formed by a two-stage process: (1) accretion to the LL parent body of an intact EH projectile at low relative velocities, and (2) shock metamorphism of the assemblage by the subsequent impact of another projectile at significantly higher relative velocities.  相似文献   

10.
Abstract— Northwest Africa (NWA) 428 is an L chondrite that was successively thermally metamorphosed to petrologic type‐6, shocked to stage S4–S5, brecciated, and annealed to approximately petrologic type‐4. Its thermal and shock history resembles that of the previously studied LL6 chondrite, Miller Range (MIL) 99301, which formed on a different asteroid. The petrologic type‐6 classification of NWA 428 is based on its highly recrystallized texture, coarse metal (150 ± 150 μm), troilite (100 ± 170 μm), and plagioclase (20–60 μm) grains, and relatively homogeneous olivine (Fa24.4 ± 0.6), low‐Ca pyroxene (Fs20.5 ± 0.4), and plagioclase (Ab84.2 ± 0.4) compositions. The petrographic criteria that indicate shock stage S4–S5 include the presence of chromite veinlets, chromite‐plagioclase assemblages, numerous occurrences of metallic Cu, irregular troilite grains within metallic Fe‐Ni, polycrystalline troilite, duplex plessite, metal and troilite veins, large troilite nodules, and low‐Ca clinopyroxene with polysynthetic twins. If the rock had been shocked before thermal metamorphism, low‐Ca clinopyroxene produced by the shock event would have transformed into orthopyroxene. Post‐shock brecciation is indicated by the presence of recrystallized clasts and highly shocked clasts that form sharp boundaries with the host. Post‐shock annealing is indicated by the sharp optical extinction of the olivine grains; during annealing, the damaged olivine crystal lattices healed. If temperatures exceeded those approximating petrologic type‐4 (?600–700°C) during annealing, the low‐Ca clinopyroxene would have transformed into orthopyroxene. The other shock indicators, likewise, survived the mild annealing. An impact event is the most plausible source of post‐metamorphic, post‐shock annealing because any 26Al that may have been present when the asteroid accreted would have decayed away by the time NWA 428 was annealed. The similar inferred histories of NWA 428 (L6) and MIL 99301 (LL6) indicate that impact heating affected more than 1 ordinary chondrite parent body.  相似文献   

11.
Abstract– Northwest Africa 4859 (NWA 4859) is a meteorite of LL chondrite parentage that shows unusual igneous features and contains widely distributed pentlandite. The most obvious unusual feature is a high proportion of large (≤3 cm diameter) igneous‐textured enclaves (LITEs), interpreted as shock melts that were intruded into an LL chondrite host. One such LITE appears to have been produced by whole rock melting of LL chondrite, initial rapid partial crystallization, and subsequent slow cooling of the residual melt in the host to produce a differentiated object. Other unusual features include mm‐sized “overgrowth objects,” fine‐grained plagioclase‐rich bands, and coarse troilite (≤7 mm across) grains. All these features are interpreted as having crystallized from melts produced by a single transient shock event, followed by slow cooling. A subsequent shock event of moderate (S3) intensity produced veining and transformed some of the pyroxene into the clinoenstatite polytype. Pentlandite (together with associated troilite) in NWA 4859 probably formed by the breakdown of a monosulfide precursor phase at low temperature (≤230 °C) following the second shock event. NWA 4859 is interpreted to be an unusual impact‐melt breccia that contains shock melt which crystallized in different forms at depth within the parent body.  相似文献   

12.
Abstract— The magnetometer experiment (MAG) onboard the Near‐Earth Asteroid Rendezvous (NEAR)‐Shoemaker spacecraft detected no global scale magnetization and established a maximum magnetization of 2.1 times 10?6 Am2 kg?1 for asteroid 433 Eros. This is in sharp contrast with the estimated magnetization of other S‐class asteroids (Gaspra, ?2.4 times 10?2 Am2 kg?1; Braille, ?2.8 times 10?2 Am2 kg?1) and is below published values for all types of ordinary chondrites. This includes the L/LL types considered to most closely match 433 Eros based on preliminary interpretations of NEAR remote geochemical experiments. The ordinary chondrite meteorite magnetization intensity data was reviewed in order to assess the reasonableness of an asteroid‐meteorite match based on magnetic property measurements. Natural remanent magnetization (NRM) intensities for the ordinary chondrite meteorites show at least a 2 order of magnitude range within each of the H, L, and LL groups, all well above the 2.1 times 10?6 Am2 kg?1 level for 433 Eros. The REM values (ratio of the NRM to the SIRM (saturation remanent magnetization)) range over 3 orders of magnitude for all chondrite groups indicating no clear relationship between NRM and the amount of magnetic material. Levels of magnetic noise in chondrite meteorites can be as much as 70% or more of the NRM. Consequently, published values of the NRM should be considered suspect unless careful evaluation of the noise sources is done. NASA Goddard SFC studies of per unit mass intensities in large (>10 000 g) and small (down to <1 g) samples from the same meteorite demonstrate magnetic intensity decreases as size increases. This would appear to be explained by demagnetization due to magnetic vector randomness at unknown scale sizes in the larger samples. This would then argue for some level of demagnetization of large objects such as an asteroid. The possibility that 433 Eros is an LL chondrite cannot be discounted.  相似文献   

13.
Abstract— Meteorite magnetic records constitute physical evidence of processes acting during early solar system evolution. Consequently, the validation of these records is important in meteorite research. The first step in the validation process should be the REM value. The REM value is the ratio of natural remanence (NRM) to saturation remanent magnetization imparted by a 1 T magnetic field (SIRM). The REM values range over 3 to 4 orders of magnitude for stony meteorites and for chondrules from Allende (C3V‐S1), Bjurböle (L4‐S1), and Chainpur (LL3‐S1) meteorites. The REM values computed from published NRM and SIRM data identify many orders of magnitude range in the REM values including REM values >100 × 10?3. These data suggest a dependence for the NRM intensity on the curatorial location from which the sample was obtained. Any earth rock acquiring thermoremanent magnetization (TRM) in the geomagnetic field has a restricted range in REM mostly between 5 and 50 × 10?3, the exception being the mineral hematite in the multidomain size range. The only terrestrial samples with REM much greater than 100 × 10?3 are those struck by lightning. The REM value provides a physical basis for recognition between valid records and those that “might be contaminated.” The isothermal remanence acquisition (RA) curve is presented as a contamination curve that allows an indication of the level of magnetic field contamination required to give the computed “REM” (RM/SIRM) value. In the case of the Bjurböle and Chainpur chondrules, with REM values >100 × 10?3, the RA curve indicates that unrealistically large contamination magnetic fields would be required to give REM values greater than 100 × 10?3. This would suggest contamination other than by a hand magnet that is normally available to an experimenter. This would require an explanation that would involve large magnetic fields during chondrule formation, or some extraordinary remanence acquisition mechanism that remains to be described. Magnetic contamination experiments, using ~80 and ~40 mT magnets, demonstrate that the “REM” values and extent of modification of the magnetic vector record are mineralogy dependent, and this is mostly related to the amount and characteristics of the mineral tetrataenite. The complexity of the meteorite records suggest validation of the record as a first step. The REM value is the first physical statement that can be made in this validation.  相似文献   

14.
Abstract— Nineteen LL-chondrites and two L/LL-chondrites (Adrar 003 and Tanezrouft 010) from the Saharan desert of Algeria and Libya have been analysed for their He, Ne and Ar composition as well as for their abundance of 84Kr and 132Xe. Calculated 21Ne cosmic-ray exposure ages vary between 2 and 35 Ma. The age distribution is consistent with that of modern LL-chondrite falls except that no dominant peaks can be observed, especially not the one related to a 15 Ma collisional event. However, the lack of young exposure ages of <8 Ma is obvious. This is a characteristic feature of LL-chondrites. Only one of the 21 LL-chondrites, namely Acfer 066, contains solar gases and is thus considered a regolith breccia. Three specimens reveal considerable loss of 3He, probably due to periods of elevated temperatures in orbits with small perihelion distances. Furthermore, severe loss of 4He and 40Ar is found in two samples. Considering possible pairings, we suggest 14 individual falls basically on the basis of the noble gas data, the petrographic sub-classification and by taking the find location into consideration. However, there are constraints on confirming pairings solely on the basis of our studies. Thus, we can only exclude individual samples with a unique noble gas fingerprint from paired specimens.  相似文献   

15.
Abstract— The purpose of this study is to examine, using light optical and electron optical techniques, the microstructure and composition of metal particles in ordinary chondritic meteorites. This examination will lead to the understanding of the low temperature thermal history of metal particles in their host chondrites. Two type 6 falls were chosen for study: Kernouvé (H6) and Saint Severin (LL6). In both meteorites, the taenite particles consisted of a narrow rim of high Ni taenite and a central region of cloudy zone similar to the phases observed in iron meteorites. The cloudy zone microstructure was coarser in Saint Severin than in Kernouvé due to the higher bulk Ni content of the taenite and the slower cooling rate, 3 K Ma?1 vs. 17 K Ma?1. Three microstructural zones were observed within the high Ni taenite region in both meteorites. The origin of the multiple zones is unknown but is most likely due to the high Ni taenite cooling into the two phase γ″ (FeNi) + γ′ (FeNi3) region of the low temperature Fe-Ni phase diagram. Another explanation may be the presence of uniform size antiphase boundaries within the high Ni taenite. Finally, abnormally wide high Ni taenite regions are observed bordering troilite. The wide zones are probably caused by the diffusion of Ni from troilite into the high Ni taenite borders at low cooling temperatures.  相似文献   

16.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   

17.
Abstract— Adzhi-Bogdo is an ordinary chondrite regolith breccia (LL3–6) which fell on 1949 October 30 in Gobi Altay, Mongolia. The rock consists of submm- to cm-sized fragments embedded in a fine-grained clastic matrix. The polymict breccia contains various types of clasts, some of which must be of foreign origin. Components of the breccia include chondrules, melt rock clasts (some of which are K-rich), highly recrystallized rock fragments (“granulites”), breccia clasts, pyroxene-rich fragments with achondritic textures, and alkali-granitoids. The composition of olivine in most fragments is in the range of LL-chondrites. However, olivine in some components has significantly lower fayalite contents, characteristic of L-chondrites. The bulk meteorite is very weakly shocked (S2). Based on the bulk chemical composition, Adzhi-Bogdo is an ordinary chondrite. The concentrations of Fe and Ni are somewhat intermediate between L- and LL-chondrites. The contents of solar gases indicate that Adzhi-Bogdo is a regolith breccia. Most of the solar He and probably a part of the solar Ne of Adzhi-Bogdo has been lost. It is suggested that Adzhi-Bogdo experienced an (impact-induced) thermal event early in its history, because most of the radiogenic 40Ar is retained.  相似文献   

18.
The Bloomington meteorite, a 67.8 gram veined, brecciated chondrite, fell during the summer of 1938 in Bloomington, Illinois. Its olivine, orthopyroxene and metal compositions (fo69, en74 and Fe52 Ni48 respectively) and its texture identify it as a brecciated LL6 chondrite of shock facies d. Shock melt glasses occur in Bloomington as sparse melt pockets and veins in clasts and as isolated masses in the black, clast-rich matrix. The vein glasses chemically resemble bulk LL-group chondrites and thus appear to reflect total melting of the host meteorite. The melt pocket and matrix glasses, like those described previously in L-group chondrites, have more varied compositions and are typically enriched in normative plagioclase. All glasses that we analyzed in Bloomington have FeO/MgO and Na/Al ratios similar to those of LL-group chondrites, indicating that melting of this meteorite involved neither a significant change in the oxidation state of iron nor loss of sodium to a vapor phase. Bloomington is a monomict breccia whose components formed in place as a result of a single episode of shock and attendant melting.  相似文献   

19.
Three masses of the Chelyabinsk meteorite have been studied with a wide range of analytical techniques to understand the mineralogical variation and thermal history of the Chelyabinsk parent body. The samples exhibit little to no postentry oxidation via Mössbauer and Raman spectroscopy indicating their fresh character, but despite the rapid collection and care of handling some low levels of terrestrial contamination did nonetheless result. Detailed studies show three distinct lithologies, indicative of a genomict breccia. A light‐colored lithology is LL5 material that has experienced thermal metamorphism and subsequent shock at levels near S4. The second lithology is a shock‐darkened LL5 material in which the darkening is caused by melt and metal‐troilite veins along grain boundaries. The third lithology is an impact melt breccia that formed at high temperatures (~1600 °C), and it experienced rapid cooling and degassing of S2 gas. Portions of light and dark lithologies from Chel‐101, and the impact melt breccias (Chel‐102 and Chel‐103) were prepared and analyzed for Rb‐Sr, Sm‐Nd, and Ar‐Ar dating. When combined with results from other studies and chronometers, at least eight impact events (e.g., ~4.53 Ga, ~4.45 Ga, ~3.73 Ga, ~2.81 Ga, ~1.46 Ga, ~852 Ma, ~312 Ma, and ~27 Ma) are clearly identified for Chelyabinsk, indicating a complex history of impacts and heating events. Finally, noble gases yield young cosmic ray exposure ages, near 1 Ma. These young ages, together with the absence of measurable cosmogenic derived Sm and Cr, indicate that Chelyabinsk may have been derived from a recent breakup event on an NEO of LL chondrite composition.  相似文献   

20.
Abstract— All solid solar system bodies have been affected by impact to varying degrees, and, thus, magnetic records in these bodies may have been modified by shock events. Shock events may have overprinted all primordial magnetic records in meteorites. Shock metamorphism stages ranging from very little to extreme, when melting takes place, have been identified in meteorites. We are examining the creation and destruction of magnetic remanence associated with shock. In this paper, we develop a preliminary framework for understanding the magnetic properties of fine‐grained Fe particles (20–110 nm), which carry most of the remanent magnetization in lunar samples and, by extension, the kamacite phase in meteorite samples. Initial experiments on shock effects due to a first‐order shock‐induced crystallographic transformation are described. The first characterization of pre‐ and postshock magnetic properties for sized Fe particles and the first characterization of the transformation remanent magnetization (TMRM) associated with the face‐centered‐cubic (fcc) to body‐centered‐cubic (bcc) transformation in fine particle Fe spheres are described. This is equivalent to the 13 GPa transitions in bcc Fe. We show that the TMRM is in the same direction as the ambient magnetic field present during the shock, but is deflected from the field direction by 30–45° and that the remanence intensity is 1–2 orders of magnitude less than expected for thermoremanent magnetization (TRM) acquired during cooling through the Curie temperature. Isothermal remanence acquisition curves (RA) reveal the increasing magnetic hardness due to shock. Magnetic hysteresis loops are used to characterize the particle size and the shock‐induced magnetic anisotropy. Thermal demagnetization experiments describe the probable presence of particle size effects and the effects associated with recovery‐recrystallization due to the annealing that takes place during the thermomagnetic experiment. These observations have implications for paleofield determinations and the recognition of thermal unblocking. A TMRM mechanism could produce a shock overprint in a meteorite and might impart a significant directional feature in an asteroid magnetic signature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号